
2008 summer course, C-language homework 7

Exercise 1 (familiar with getchar and putchar): implement code in Figure 1

Figure 1: convert character though input into

lower case

(1) execute it in Linux machine and feed the program a file by using redirect operator
(2) modify the code such that one can read files from argv and convert the characters to lower

case
(3) modify the code in (2), if character is alphabet, then convert upper case to lower case and

lower case to upper case, otherwise keep the character.

Exercise 2 (variable-length argument list): if you search “va_list” in MSDN library, you can
find example code like Figure 2.

Figure 2: example of variable-length

argument list in MSDN library.

(1) What is purpose of -1 in Figure 2? Can you use other number?
(2) describe difference between function average and function printf.

 1

(3) modify code in Figure 2 to deal with double and verify your answer.

Exercise 3 (minprintf): in the course, we write a minimum printf function to demonstrate usage
of variable-length arguments, now we want to add one more option in function minprintf such
that we can output sturct point (note that struct point is not a primitive type, printf does not show
its content). First we need to define protocol (協定)
(1) format option for sturct point is %pt
(2) pass pointer to sturct point into function minprintf
(3) show each field of sturct point
example: struct point maxpt = { 20, 30, "Earth" }
 minprintf(“%pt\n”, &maxpt)
output :
 point.x = 20
 point.y = 30
 point.name = Earth

Figure 3: add one more option in

function minprintf to deal with struct

point

Exercise 4 (sprintf): sprintf is the same as printf except that output is written to a given string,
not to standard output (display). Consider the following code

 2

Figure 4: write a sequence of different type into a buffer through function sprintf, result is shown in right

panel.

(1) what is the purpose of index j
(2) why is parameter valid in first argument of function sprintf ? buffer j+

(3) explain the output result and “number of character count is 79”
(4) what happen if we declare size of as 20? buffer

Exercise 5 (scanf): in the course, we introduce format specification of function scanf,

We restrict size of converted data as 2 in Figure 5, execute this program and input integer with
different size, what’s the result? Can you explain it?

Figure 5: restrict size of converted data as 2 in

function scanf.

second, use fscanf to rewrite code in Figure 5 and check the result.

Exercise 6 (error of printf): in the course, we say variable-length argument lists has potential
bug when format string fmt does not match number of parameters. Fro example in Figure 6, we
lack a parameter corresponding to %s in function printf
(1) write the program, run it on visual C and Linux machine
(2) what is warning message of icpc and g++?

 3

Figure 6: we lack a parameter in printf

Exercise 7 (file access): implement code example in the course to familiar with File access
routines. In Figure 7, we concatenate all input files and show the result into the screen, modify the
code such that we can store the result into another file, you can specify output filename yourself.

Figure 7: left panel is main.cpp and right panel is filecopy.cpp

Exercise 8 (command execution): we use function system in stdlib.h to execute command in host
machine, in Figure 8, we show content of a directory by issuing command “dir” in windows or
“ls” in Linux, here we use compilation directive to help us find the correct version.

Figure 8: use function system to invoke command in host machine,

since each host machine may has different command name to do the

same work, for example, in order to show content of directory,

windows uses “dir” and linux uses ”ls”. Hence we use compilation

directive to help us find the correct version.

(1) Can you call this command again by function system, we called this process as recursive call
itself. Write the code and test it in Linux machine, what’s the result

(2) Modify code in (1) such that you can call yourself 5 times only.

 4

Exercise 9 (preprocessor): write a preprocessor (just focus on macro substitution), you need

(1) open a file (source code)
(2) read a character one-by-one till matching some macro
(3) replace the macro

 5

