2008 summer course,
C-language
homework 7
Exercise 1 (familiar with getchar and putchar): implement code in Figure 1

[image: image1]
(1) execute it in Linux machine and feed the program a file by using redirect operator

(2) modify the code such that one can read files from argv and convert the characters to lower case

(3) modify the code in (2), if character is alphabet, then convert upper case to lower case and lower case to upper case, otherwise keep the character.
Exercise 2 (variable-length argument list): if you search “va_list” in MSDN library, you can find example code like Figure 2.

[image: image2]
(1) What is purpose of -1 in Figure 2? Can you use other number?

(2) describe difference between function average and function printf.

(3) modify code in Figure 2 to deal with double and verify your answer.

Exercise 3 (minprintf): in the course, we write a minimum printf function to demonstrate usage of variable-length arguments, now we want to add one more option in function minprintf such that we can output sturct point (note that struct point is not a primitive type, printf does not show its content). First we need to define protocol (協定)
(1) format option for sturct point is %pt
(2) pass pointer to sturct point into function minprintf

(3) show each field of sturct point
example: struct point maxpt = { 20, 30, "Earth" }
 minprintf(“%pt\n”, &maxpt)
output :
 point.x = 20
 point.y = 30
 point.name = Earth

[image: image3]
Exercise 4 (sprintf): sprintf is the same as printf except that output is written to a given string, not to standard output (display). Consider the following code

[image: image4]
(1) what is the purpose of index
[image: image5.wmf]j

(2) why is parameter
[image: image6.wmf]bufferj

+

 valid in first argument of function sprintf ?

(3) explain the output result and “number of character count is 79”
(4) what happen if we declare size of
[image: image7.wmf]buffer

 as 20?

Exercise 5 (scanf): in the course, we introduce format specification of function scanf, [image: image8.png]%[*] [width] [{h | 1] 11 | 164 | L}]tvpe

We restrict size of converted data as 2 in Figure 5, execute this program and input integer with different size, what’s the result? Can you explain it?

[image: image9]
second, use fscanf to rewrite code in Figure 5 and check the result.
Exercise 6 (error of printf): in the course, we say variable-length argument lists has potential bug when format string fmt does not match number of parameters. Fro example in Figure 6, we lack a parameter corresponding to %s in function printf
(1) write the program, run it on visual C and Linux machine

(2) what is warning message of icpc and g++?

[image: image10]
Exercise 7 (file access): implement code example in the course to familiar with File access routines. In Figure 7, we concatenate all input files and show the result into the screen, modify the code such that we can store the result into another file, you can specify output filename yourself.

[image: image11]
Exercise 8 (command execution): we use function system in stdlib.h to execute command in host machine, in Figure 8, we show content of a directory by issuing command “dir” in windows or “ls” in Linux, here we use compilation directive to help us find the correct version.

[image: image12]
(1) Can you call this command again by function system, we called this process as recursive call itself. Write the code and test it in Linux machine, what’s the result
(2) Modify code in (1) such that you can call yourself 5 times only.
Exercise 9 (preprocessor): write a preprocessor (just focus on macro substitution), you need
(1) open a file (source code)

(2) read a character one-by-one till matching some macro

(3) replace the macro

�

Figure � SEQ Figure * ARABIC �2�: example of variable-length argument list in MSDN library.

�

Figure � SEQ Figure * ARABIC �5�: restrict size of converted data as 2 in function scanf.

�

�

Figure � SEQ Figure * ARABIC �4�: write a sequence of different type into a buffer through function sprintf, result is shown in right panel.

�

Figure � SEQ Figure * ARABIC �1�: convert character though input into lower case

�

�

Figure � SEQ Figure * ARABIC �3�: add one more option in function minprintf to deal with struct point

�

�

Figure � SEQ Figure * ARABIC �7�: left panel is main.cpp and right panel is filecopy.cpp

�

Figure � SEQ Figure * ARABIC �8�: use function system to invoke command in host machine, since each host machine may has different command name to do the same work, for example, in order to show content of directory, windows uses “dir” and linux uses ”ls”. Hence we use compilation directive to help us find the correct version.

�

Figure � SEQ Figure * ARABIC �6�: we lack a parameter in printf

PAGE
4

[image: image13.png]#include <stdio.h>
#include <stdarg.h>
int average(int first,

)

int main(int arge, charx argy[]

<
/7% Call with 3 integers (-1 is used as terminator). =/
printf(“Average is: d\n", average(2, 3, 4, -1))
7% Call with 4 integers. x/
printf(“Average is: %d\n", average(5, 7, 9, 11, -1))
7% Call with just -1 terminator. x/
printf(“Average is: %d\n", average(-1))
return 0 ;
>

int average(int first,
<

int count = 8, sun
va_list marker;

va_start(marker, first); // Initialize variable arguments.

unfle(i t= -1)¢
sum += i
countes;
i - va_arg(marker, int);
>
va_end(marker); 77 Reset variable arguments.

refurn(sum ? (sum / count) : 8);

[image: image14.png]#include <stdio.h>
int main(int arge, charx argu[])
<

double sum, y 3

sun = 0.0 ;

uhile(1 == scanf(“%21F", &v))
printf("\t read v - %.2f, sun
Printf("\tx.2F\n", sum +< y)

>

return 0 ;

[image: image15.png]#include <stdio.h>

int main(void)
<

char buffer[200], s[] =
int i35, 3
Float p = 1.7320534F;

“computer”, ©

/7 Format and print various data:

j = sprintf(buffer, String: %s\n", s)3 // C4996
 += sprintf(buffer + j, Character: %c\n", c)3 // C4996
 += sprintf(buffer + j, Integer: %d\n", i); // C4996
 += sprintf(buffer + j, Rea %EAN", £p)37/ Cu996

printf("Output:\ngs\ncharacter count = d\n", buffer, j);

return 03

[image: image16.png]Outpus

String: computer
Character: 1
Integer: 35
Real: 1.732053

haracter count = 79
[Press any key to continuen

[image: image17.png]#include <stdio.h>
#include <ctype.h>

7% convert input to lover case x/
int main(int argc, charx argy[]
<

int ¢

uhile(EOF f= (c-getchar()))
putchar(tolower(c))

¥
return 0 ;

[image: image18.png]#include <stdio.h>
#include <stdarg.h>
77 minprintf: mininl printf with variable argument list
void minprintf(char xfnt, ...)
<
va_list ap ; // points to each unnamed arg in turn
char xp, xsval ;
int ival ;
double dual ;
va_start(ap, fmt); // make ap point to 1st unamed arg
For (p = Fmt 3 xp 3 pre)
iF (% 1m wp)
putchar (xp) 3
continue ;

>
switeh(x++p X
case 'd*
ival = va_arg(ap, int) ; printf("%d", ival) ;
break ;
case 'f*
dval = va_arg(ap, double) ; Printf("%f", dval) ;
break ;
st
For (sval - va_arg(ap, charx) ; xsval ; svals+){
putchar(xsval) ;

case

>
break ;

default:
putchar(xp) 3
break ;

>

371 for each character xp
va_end(ap) ; // clean up when done

[image: image19.png]struct point ¢
int x 3 // x component of a point
inty ; // y component of a point
char name[26] ; // name of the point

[image: image20.png]#include <stdio.h>

void filecopy(FILE xifp, FILE %ofp)

int main(int arge, charx argy[]

<

FILE *fp ;

if (1 == arge){ // no args: copy standard input
Filecopy(stdin, stdout)
selse(
while(--arge >0){
£p = fopen(x++argu, "r")
if (NULL == Fp)
printf(“cat: can't open %s\n", xargu);

selse(
Filecopy(Fp, stdout)
Felose(£p) 5
>
347 For each argument

¥
return 0 ;

[image: image21.png]#include <stdio.h>

void filecopy(FILE xifp, FILE xofp
<
int ¢

uhile (EOF t= (c = Fgetc(ifp)))
Fputc(c, ofp)
>

[image: image22.png]#include <stdlib.h>

int main(void)
<

#ifdef _WING2
systen("dir”
frelse
systen(“1s -al")
Hrendif

return 0 ;

[image: image23.png]#include <stdio.h>

int main(int arge, charx argu[]
<

printf("x = %d, vord = %s\n"

return 0 ;

_1277012754.unknown

_1277012926.unknown

_1277012729.unknown

