2008 summer course, C-language Homework 6

Exercise 1(heterogeneous data aggregation): implement codes in Figure 1 and check its address
of each variable, in the code we use string copy strcpy to setup name of point as Venus. This
operation is not safe, for example, consider code in Figure 2, we modify struct point such that
name field is defined as character pointer, not character array, what happens when you execute
code in Figure 2? Can you explain the error? Write a correct one.

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
t#tinclude <{assert_h>

struct point ¢
int ®x ; // % component of a point i i i
int y ; // y component of a point Figure 1: structure point and its
char name[6] ; // name of the point

Ys manipulation.

int main{ int arge, char= arqu[] }
struct point =pt = HULL ; // pt is a pointer

pt = (struct point =) malloc{ sizeof{struct point)) ;
assert{ pt) ;

pt->x = &4 ; // set x component of point pt as &4
pt->y = 3 ; // set y component of point pt as 3
strepy{ pt->name, “Uenus") ; // set name of pt

printf{"=pt = (%d, %d, %s)\n", pt->x , pt->y, pt->name };
printf{"=pt = (%d, %d, %s I\n", (=pt).x , (=pt).y, (=pt).name);

return 6 ;

#tinclude <{stdio.h>
#include <string.h>
ttinclude <stdlib.hZ
#include <assert.h>

struct point {
int % ; // x component of a point
int y ; /4 y component of a point

[char xname 3]/ name of the point structure point as character

HH pointer, not a character array.

Figure 2: change name field in

int main{ int argc, char= argu[])
{
struct point =pt = HULL ; // pt is a pointer

pt = (struct point =) malloc{ sizeof{struct point)) ;
assert{ pt) ;

pt->x = 4 ; // set x component of point pt as 4
pt->y 3 ; // set y component of point pt as 3
strcpy{ pt->name, “Venus"} ; // set name of pt

printf{"=pt = (%d, %d, %s)\n", pt->x , pt->y, pt->name);
printf{"=pt = (%d, %d, %5 I\n", (=pt).x , (=pt).y, (=pt).name);

return 8 ;

Exercise 2(padding and alignment): In the course, we introduce padding technique of compiler,
and show you some alignment of basic data type in Table 1.

(1) write codes in Figure 3 (we talk about in the course) and show the alignments by debugger
(the graph of alignment has been shown in the course)
(2) Can you explain the alignment?

Table 1: suggested alignment for the scalar members of structures

C data type alignment C data type Alignment
char byte short Word (2 bytes)
int doubleword (4 bytes) | double quadword (8 bytes)

ttinclude <stdio_h>

/7 word = 2 bytes, doubleword = 4 bytes, quadword = 8 bytes
struct $1 {

short a ;
¥

ff size = 2 bytes, alignment = 2 bytes;

struct 32 { // size = 24 bytes, alignment = quadword Figure 3: padding example
int a ;
double b ;
short ¢ ;

¥

struct 53
char
short
char
int

// size = 12 bytes, alignment = doubleword

= — - TR
PR T

int main{ int argc, charx argu[])

struct $1 % ;

struct 52 gy ;

struct 83 z ;
printf{“size of struct $1
printf(“size of struct $1
printf(“size of struct $1
return 8 ;

%dwn", sizeof(struct %1)) ;
%dwn", sizeof(struct $2)) ;
%dwn", sizeof(struct $3)) ;

Exercise 3(binary search): in the course, we introduce framework of linear search and binary

search, also we use technique of function pointer to implement these two algorithms, see Figure 4.

(1) implement these two algorithms and test these two algorithms on structure array keytab we
talk about in the course. Which algorithm is efficient? Explain your reason

(2) in page 137 of textbook, the author provide a binary search as Figure 5, verify that this
algorithm does work on your test in (1). What is pros and cons () of this binary search?

#tinclude <stddef_h> t#tinclude <stddef.h>

/% Given keyType array base[@], ... base[n-1] i
check if key is a keyword in array base =/ /% Given keyType array base[0], ... base[n-1]
void* binsearch{ const void *key, const void *base, check if key is a keyword in array base =/
size_t n, size_t size,
int (=cmp){const void =keyval, const void =datum) void* linear_search{ const void =key, const void =base,
size_t n, size_t size,
{ int (=cmp){const void =keyval, const void x*atum)
size_t 1low, high, mid ; // index of array base,)
/7 always keep low < mid < high {
int cond ; // comparison result of key and base[i] size_t i ;
char =a_i ; // &base[i] char =a_i ; // &base[i]
char =a = (char=) base ; char *a = (char=) base ;
low = 8 ; high = n ; fFor{ i=@ ; i < n ; i++){
while{ low < high }{ a_i = a + size*i ;
mid = low + (high - low)/2 ;
a_i = a + sizexmid ; if (8 == (*xcmp){ key, a_i) X
cond = (*cmp)(key, a_i) ; return a_i ;
if (8 > cond) 3 =
high = mid ; ¥
else if (8 < cond } return NULL ; // not found
low = mid + 1 ; ¥
else

return a_i ;

H
return HULL ; // not found

Figure 4: framework of binary search (left panel) and linear search (right panel)

struct Key= binsearch{char =word, strcut key =tab, int n)
{
int cond ;
struct key =low &tab[0] ;
struct kKey =high = &tab[n] ; . . .
struct key =mid ; Figure 5: binary search in page 137 of

while { low < high){ textbook.
mid = low + {(high - low)/2 ;
if { {cond = strcmp{word, mid->word)) < 8)
high = mid ;
else if (cond > B)
low = mid + 1 ;
else
return mid ;

¥
return HULL ;

Exercise 4(linked list) : In the course we say linked list is a discontinuous array and demonstrate

this via code in Figure 6.

(1) Implement code in Figure 6 and run it on Linux machine, does this discontinuous nature hold?

(2) In Figure 6, we only create a linked list of two elements (this is just first two elements of
structure array keytab), try to build a liked list corresponding to structure array keytab.

(3) When we de-allocate linked list, wrong procedures would cause program crash,

/7 wrong deallocation
for { elePtr = keytahList ; HULL t*= elePtr ; elePtr = elePtr->next){
free(elePtr) ;
H

Explain why above code does not work and run above code in Linux machine, what is error
message?

<stdio.h>
<string.h>
<stdlib.h>
<assert.h>
"kEyList.h"

ftinclude
#include
ttinclude
#include
#include

int main{ int argc,
{

char= argu[])

keylListEleType
keyListEleType
keyListEleType

=keytabList = HULL ;
*unitEle = HULL ;
*elePtr = HULL ;

#/ first element in linked list

typedef struct keylListEle {
char word[16] ;
int count ;
struct keylListEle
} keyListEleType ;

// keyuword of C-language
/{ number of keyword in a file
=next ; // next entry in the chain

unitEle = (keylListEleTypex) malloc{ sizeof{keyListEleType))} ;

assert(unitEle) ;
strepy(unitEle->word, "auto™) ;
unitEle->count = B ; unitEle-»next = HULL ;
keytabList = unitEle ;
// second elements in linked list
unitEle =
assert(unitEle) ;
strepy(unitEle->word, "break™) ;
unitEle->count = @ ; unitEle->next = HULL ;
keytabList-»next = unitEle ;
/f traverse linked list
for (elePtr = keytaDList ; HULL *= elePtr ; elePtr =
printf{"[Bx%p] - word = %8s, count = %d, next =
elePtr->word, elePtr->count, elePtr-»next) ;
H

return 8 ;

(keyListEleTypex) malloc{ sizeof{keyListEleType)) ;

Figure 6: construct linked list and

traverse it.

elePtr->next){

Bx%pyn”, elePtr,

Exercise 5(hash table): read section 6.6 in page 143 of textbook and write codes in the book.

