
2008 summer course, C-language Homework 5

Exercise 1 (size of pointer type): write a program to show size of pointer type like Figure 1,

(1) execute this program and list processor in your desktop PC a

difference between them.
We say content of a pointe(2) r is address of some variable, in 3

(3) find?

xercise 2 (fetch address of an array): consider statement “ip

xercise 3 (dynamic allocation): in the course we introduce a p

nt*) in statement “ip = (int*) malloc(

(2) exhaust all

(4 bytes) to address a variable, so we expect size of a pointer
size of pointer type in 64-bit machine?
Search “EM64t” in google, what do you

E
interpret it as “ip now points to z[0]”, not “ip = (&z)[0]”. Hint: u

Figure 2: refer

E
and free to do dynamic memory allocation and de-allocation. Wr
can modify symbolic constant ALLOC_SIZE to allocate differen
that operating system must return you a contiguous memory blo
return NULL (no space).
(1) remove casting term (i

what’s error message when using g++ and icpc
What value of ALLOC_SIZE should you take to

 1
Figure 1: show size of 4 pointer type

nd workstation, what’s the

2-bit machine, system use 32-bit

= &z[0] ;” in Figure 2, why we

air of library functions, malloc

it

sizeof(int)*ALLOC_SIZE) ;”,

memory such that function

 is 4 (bytes), what’s the value of

se precedence of operator.

ence and dereference operaiton

ite test code like Figure 3, you
t size of memory block. Note

ck, if OS cannot find one, then

malloc returns NULL? Report your answer for PC and workstation.

(3) try to allocate more memory blocks to exhaust system memory, you can refer source code in

Figure 3: use library function mallc to

do dynamic memory allocation.

Figure 4 or write your own version. Note that when you allocate a memory block, do something
for this memory block, for example, random a value or arithmetic operation.
Can you exhaust system memory?

Figure 4: use pointer array to

exhaust system memory.

Exercise 4 (pointers and function argument): in the course we introduce call-by-value and use

ry, record

(2) achine

swap as an example to show how to use pointer to avoid copy of function arguments.
(1) write test code in Figure 5 and use Visual Studio debugger to trace change of memo

configuration of all variables, is the configuration the same as we talk in the course?
Do the same experiment in Linux machine, since we don’t have debugger in Linux m
(in fact, GDB is debugger in unix system, but we don’t introduce it), we need to report
address explicitly like Figure 6. Use g++ and icpc to compile and execute source code in

 2

Figure 6 respectively, record address of all variables and compare configuration between t
two compilers.

hese

xercise 5 (string operation): standard C library provides basic operation for string, in this

we implement strcpy function void strcpy(char *s, char *t), when pointer s and t

(2) e 8), one is based on

Figure 5: wrong version of swap function

Figure 6: report address of all variables

explicitly, we need this kind of code in

Linux machine.

E
lecture, we introduce two among them, one is strcpy (string copy), the other is strcmp (string
comparison).
(1) in Figure 7,

move in function strcpy, array A and B in function main are fixed, why?
In textbook, the author provides two version of string compare (see Figur
array whereas the other is based on pointer. Write a code to test this two versions, explain why
they are equivalent.

 3

Figure 7: string copy

‘
Exercise 6 (command-line argument): write program in Figure 9 and execute it in Linux
machine, trace the address of each arguments, is the result the same as we talk in the course?

Second, if we restrict size of array argv as you see in Figure 10, does the program work? Write
the program and test it in the Linux machine.

Figure 8: string comparison: left panel is array version and right panel is pointer version.

Figure 9: display command-line

argument.

 4

Figure 10: restrict size of array argv as 3

Exercise 7 (diagnosis, assert): experienced C-programmer use a lot of assertions to help them
write /debug program, why? If some error activates assertion, then such assertion would print File
name and Line number which assertion occurs, this is so important that we can locate the bugs.
However if program is correct, then assertions are redundant (they never execute), we can remove
them by adding symbolic constant NDEBUG. The popular assertion in C-language is macro assert
which is defined in assert.h, and you can find description in page 253 of textbook or MSDN
library. Here we provide an example (given by MSDN library)

Figure 11: assertion example

(1) Test code of Figure 11 in your PC and Linux workstation, what’s message in the terminal?
(2) Add symbolic constant NDEBUG to remove assertion, note that definition of NDEBUG must

be in front of #include <assert.h>, see Figure 12. What’s the result in PC and Linux
workstation?

(3) If you don’t explicit define symbolic constant NDEBUG in code of Figure 12, do you have
other choice to disable assert operation? Hint: add macro in compiler’s option.

 5

Figure 12: use symbolic constant

NDEBUG to disable assertion

Exercise 8 (quick sort): sorting is basic skill in computer science and we will use it frequently in
scientific computation, in standard C library, it provide quick sort (a sorting algorithm) in stdlib.h,
see page 253 in textbook
 void qsort(void *base, size_t n, size_t size,

int (*cmp)(const void*, const void*))
However quick sort uses function pointer cmp as comparison operator provided by user.
(1) Use qsort to sort integer array, character array, floating point array and string array. You can
refer source code in Figure 13 which sorts double array.

Figure 13: use quick sort to sort double

array.

(2) read section 5.11 in textbook, also the author use another comparison operation for string array,
the comparison is called numcmp, see Figure 14. Take an example yourself and use this new
comparison to do quick sort, what’s your result? Can you explain it?

 6

Figure 14: another comparison operator on

string, it use numerical value of a string.

Exercise 9 (bubble sort): in lecture note, we take bubble sort as our sorting algorithm, and we

(2) tween quick sort and bubble sort, which one is better? Note that in

xercise 10 (extract sign, exponent and fraction of a floating point): in the course we
urce

e of sign, exponent and fraction after shift operation
 single precision

(3) igure 16, write a code to extract each field in a double precision

provide final version, which has the same function prototype as quick sort in standard C library.
(1) implement bubble sort we talk about in the course (see Figure 15) and use example you built

in Exercise 8 to test it.
Compare performance be
order to compare both algorithms, you need a large array as example.

Figure 15: bubble sort algorithm.

E
introduce how to use pointer to extract each field in a single precision floating point, the so
code is in Figure 16
(1) interpret the valu
(2) do you have other approach to find out sign, exponent and fraction of a

floating point number?
Refer to source code in F
floating point

 7

 8

Figure 16: extract sign, exponent and fraction

fields of single precision floating point

0.15625a =

