2008 summer course,
C-language

Homework 5

Exercise 1 (size of pointer type): write a program to show size of pointer type like Figure 1,
[image: image17.png]#include <stdio.h>

int main(int arge, charx argu[]

<

printf(
printf(
printf(
printf(
return 0 ;

of
of
of
of

charx = %d\n",
intx = %d\n",
Floatx = Zdn",
doublex = %d\n",

sizeof(
sizeof(
sizeof(
sizeof(

charx))
intx))
Floatx))

[image: image1]
(1) execute this program and list processor in your desktop PC and workstation, what’s the difference between them.
(2) We say content of a pointer is address of some variable, in 32-bit machine, system use 32-bit (4 bytes) to address a variable, so we expect size of a pointer is 4 (bytes), what’s the value of size of pointer type in 64-bit machine?

(3) Search “EM64t” in google, what do you find?

Exercise 2 (fetch address of an array): consider statement “ip = &z[0] ;” in Figure 2, why we interpret it as “ip now points to z[0]”, not “ip = (&z)[0]”. Hint: use precedence of operator.

[image: image2]
Exercise 3 (dynamic allocation): in the course we introduce a pair of library functions, malloc and free to do dynamic memory allocation and de-allocation. Write test code like Figure 3, you can modify symbolic constant ALLOC_SIZE to allocate different size of memory block. Note that operating system must return you a contiguous memory block, if OS cannot find one, then it return NULL (no space).
(1) remove casting term (int*) in statement “ip = (int*) malloc(sizeof(int)*ALLOC_SIZE) ;”, what’s error message when using g++ and icpc
(2) What value of ALLOC_SIZE should you take to exhaust all memory such that function malloc returns NULL? Report your answer for PC and workstation.

[image: image3]
(3) try to allocate more memory blocks to exhaust system memory, you can refer source code in Figure 4 or write your own version. Note that when you allocate a memory block, do something for this memory block, for example, random a value or arithmetic operation.
Can you exhaust system memory?

[image: image4]
Exercise 4 (pointers and function argument): in the course we introduce call-by-value and use swap as an example to show how to use pointer to avoid copy of function arguments.
(1) write test code in Figure 5 and use Visual Studio debugger to trace change of memory, record configuration of all variables, is the configuration the same as we talk in the course?

(2) Do the same experiment in Linux machine, since we don’t have debugger in Linux machine (in fact, GDB is debugger in unix system, but we don’t introduce it), we need to report address explicitly like Figure 6. Use g++ and icpc to compile and execute source code in Figure 6 respectively, record address of all variables and compare configuration between these two compilers.

[image: image5]

[image: image6]
Exercise 5 (string operation): standard C library provides basic operation for string, in this lecture, we introduce two among them, one is strcpy (string copy), the other is strcmp (string comparison).
(1) in Figure 7, we implement strcpy function void strcpy(char *s, char *t), when pointer s and t move in function strcpy, array A and B in function main are fixed, why?
(2) In textbook, the author provides two version of string compare (see Figure 8), one is based on array whereas the other is based on pointer. Write a code to test this two versions, explain why they are equivalent.

[image: image7]

[image: image8]
‘
Exercise 6 (command-line argument): write program in Figure 9 and execute it in Linux machine, trace the address of each arguments, is the result the same as we talk in the course?

[image: image9]
Second, if we restrict size of array argv as you see in Figure 10, does the program work? Write the program and test it in the Linux machine.

[image: image10]
Exercise 7 (diagnosis, assert): experienced C-programmer use a lot of assertions to help them write /debug program, why? If some error activates assertion, then such assertion would print File name and Line number which assertion occurs, this is so important that we can locate the bugs. However if program is correct, then assertions are redundant (they never execute), we can remove them by adding symbolic constant NDEBUG. The popular assertion in C-language is macro assert which is defined in assert.h, and you can find description in page 253 of textbook or MSDN library. Here we provide an example (given by MSDN library)

[image: image11]
(1) Test code of Figure 11 in your PC and Linux workstation, what’s message in the terminal?
(2) Add symbolic constant NDEBUG to remove assertion, note that definition of NDEBUG must be in front of #include <assert.h>, see Figure 12. What’s the result in PC and Linux workstation?
(3) If you don’t explicit define symbolic constant NDEBUG in code of Figure 12, do you have other choice to disable assert operation? Hint: add macro in compiler’s option.

[image: image12]
Exercise 8 (quick sort): sorting is basic skill in computer science and we will use it frequently in scientific computation, in standard C library, it provide quick sort (a sorting algorithm) in stdlib.h, see page 253 in textbook

void qsort(void *base, size_t n, size_t size,

int (*cmp)(const void*, const void*))

However quick sort uses function pointer cmp as comparison operator provided by user.
(1) Use qsort to sort integer array, character array, floating point array and string array. You can refer source code in Figure 13 which sorts double array.

[image: image13]
(2) read section 5.11 in textbook, also the author use another comparison operation for string array, the comparison is called numcmp, see Figure 14. Take an example yourself and use this new comparison to do quick sort, what’s your result? Can you explain it?

[image: image14]
Exercise 9 (bubble sort): in lecture note, we take bubble sort as our sorting algorithm, and we provide final version, which has the same function prototype as quick sort in standard C library.
(1) implement bubble sort we talk about in the course (see Figure 15) and use example you built in Exercise 8 to test it.
(2) Compare performance between quick sort and bubble sort, which one is better? Note that in order to compare both algorithms, you need a large array as example.

[image: image15]
Exercise 10 (extract sign, exponent and fraction of a floating point): in the course we introduce how to use pointer to extract each field in a single precision floating point, the source code is in Figure 16
(1) interpret the value of sign, exponent and fraction after shift operation

(2) do you have other approach to find out sign, exponent and fraction of a single precision floating point number?
(3) Refer to source code in Figure 16, write a code to extract each field in a double precision floating point

[image: image16]
�

Figure � SEQ Figure * ARABIC �1�: show size of 4 pointer type

�

Figure � SEQ Figure * ARABIC �2�: reference and dereference operaiton

�

Figure � SEQ Figure * ARABIC �3�: use library function mallc to do dynamic memory allocation.

�

Figure � SEQ Figure * ARABIC �5�: wrong version of swap function

�

Figure � SEQ Figure * ARABIC �6�: report address of all variables explicitly, we need this kind of code in Linux machine.

�

Figure � SEQ Figure * ARABIC �11�: assertion example

�

Figure � SEQ Figure * ARABIC �12�: use symbolic constant NDEBUG to disable assertion

�

Figure � SEQ Figure * ARABIC �4�: use pointer array to exhaust system memory.

�

Figure � SEQ Figure * ARABIC �13�: use quick sort to sort double array.

�

Figure � SEQ Figure * ARABIC �14�: another comparison operator on string, it use numerical value of a string.

�

�

Figure � SEQ Figure * ARABIC �15�: bubble sort algorithm.

�

Figure � SEQ Figure * ARABIC �7�: string copy

�

�

Figure � SEQ Figure * ARABIC �8�: string comparison: left panel is array version and right panel is pointer version.

�

Figure � SEQ Figure * ARABIC �9�: display command-line argument.

�

Figure � SEQ Figure * ARABIC �10�: restrict size of array argv as 3

�

Figure � SEQ Figure * ARABIC �16�: extract sign, exponent and fraction fields of single precision floating point � EMBED Equation.DSMT4 ���

PAGE
5

[image: image18.png]#include <stdio.h>

int main(int arge, charx argu[]

<

it x -1

int y -2

int 2[10] ; // z is an integer array
int «ip 3 /7 ip is a pointer to int
ip - & 3 // ip now points to x
y==xip; //yisnout

*ip =03 //xisnow o

ip - &2[0] 5 // ip now points to z[0]
return 0 ;

[image: image19.png]#include <stdio.h>
#include <stdlib.h> // prototype of malloc and free

Hdefine ALLOC_SIZE 10

int main(int arge, charx argu[]
<
it x-1,y-2
int 2[10] 5 // z is an integer array, static
int «ip 3 /7 ip is a pointer to int

77 dynanic allocate integer array with 10 elements From 0S
77 and rveturn address of first element to pointer ip
ip - (int=) malloc(sizeof(int)*ALLOC_SIZE)
if (ML == dp)¢
printf(“Error: allocation fails\n");

>
Printf("ip(x%p) = Bx%pAn”, &ip, ip);

free(ip) ; // release integer array to 0S
return 6 ;

[image: image20.png]#include <stdio.h>
void swap(int x, int y) ;

int main(int arge, charx argu[])
<
int x = 1
ity -5

printf(“Before suap, x = %d, y= XN, X, y) 3
suap(%, y) 3
printf(“after swap, x = %d, y= JN", x, y) 3
return 0 ;

>

/% this is wrong version x/
void swap(int x, int y)
<

int temp ;

temp = x ;

x=ys
y - temp ;

[image: image21.png]#include <stdio.h>
void swap(int x, int y) ;

int main(int arge, charx argu[])

<
intx =13
inty -5
printf("main: x(8x%p)\n”, &x) ;
printf("main: y(ex¥p)An”, &y) ;
printf(“Before suap, x = %d, y= XN, X, y) 3
suap(%, y) 3
printf(“after swap, x = %d, y= JN", x, y) 3
return 0 ;

>

/% this is wrong version x/

void swap(int x, int y)

<
int temp ;
Printf("suap: x(8x%p)An”, &x) ;
Printf("suap: y(exIPAN", &y) ;
printf("suap: temp(8x%p)\n”, atemp) ;
temp - x 3

[image: image22.png]#include <stdio.h>
#include <assert.h>
#include <string.h>

void analyze_string(char xstring); // Prototype

int main(int arge, char xargy[]

<

H

“abe”
NULL 5 /7 no string

char test1[]
char xtest?

printf (“Analyzing string '%s'\n", test1);
analyze_string(test1);
printf { “Analyzing string '%s'\n", test2)
analyze_string(test2);

return 0 ;

77 Tests a string to see if it is NULL,
77 enpty, or longer than O characters.
void analyze_string(char * string

<

3y

assert(string 1= NULL)3 77 Cannot be NULL
assert(xstring t= '\); 77 Cannot be enpty
assert(strlen(string) > 2); // Length must exceed

[image: image23.png]#idefine NDEBUG // disable assertion

#include <stdio.h>
#include <assert.h>
#include <string.h>

void analyze_string(char xstring); // Prototype

int main(int arge, char xargy[]
<
char test1[] = “abc
char xtest = NULL ; // no string

printf (“Analyzing string '%s'\n", test1);
analyze_string(test1);
printf { “Analyzing string '%s'\n", test2)
analyze_string(test2);

return 0 ;

>

77 Tests a string to see if it is NULL,

77 enpty, or longer than O characters.

void analyze_string(char * string

<
assert(string 1= NULL)3 77 Cannot be NULL
assert(xstring t= '\); 77 Cannot be enpty
assert(strlen(string) > 2); // Length must exceed

3y

[image: image24.png]#tinclude <stdio.h>
#include <stdlib.h> // prototype of malloc and free

Hdefine ALLOC_SIZE 10

int main(int arge, charx argu[]
<

int i

double *ip[18] ; // ip is a pointer array

77 dynanic allocate integer array with 10 elements From 0S
77 and return address of first element to pointer ip
For (i=931<10; ir)
ip[i] - (doublex) malloc(sizeof (double)=ALLOC_SIZE)

if CMULL == dp[i])¢

printf(“Error: allocation fails\n");
>
printf(“ip[%d] = Ox%p\n”, i, ip[i])

7/ do some computation here

>
For (i=0351<10; ir)

fFree(ip[i]) ; // release integer array to 0S
>

return 0 ;

[image: image25.png]#include <stdio.h>
#include <stdlib.h>

int double_comp(double xx, double =y
<
return (int)(xx - xy)
>
int main(int arge, charx argy[]

int i
double a[] = { 4.8, 3.0, 1.8, 2.0, 8.0, 7.0 }

gsort((voidx) a, (size_t) 6, sizeof(double),

(int (x)(const voidx, const voidx)) &double_conp

For(i-=9;5
printe("

>
printf("\n")

return 0 ;

[image: image26.png]#include <stdlib.h> // prototype of atof

/7% nuncp: compare s1 and s2 numerically x/
int nuncmp(char xs1, char xs2)
<

double v1, v2 ;

v1 = atof(s1)
v2 = atof(s2)
if (v1<u2)
return -1 3
else if (vl > v2)
return 1 ;
else
return 0 ;

[image: image27.png]#include <stddef.h>
void swap(void =x, void =y , size_t size)

17 sort base[0], ... base[n-1], total n elements
void bubble_sort(voidx base, size_t n, size_t size,
int (xcomp)(voidx, voidx))

<
int k, j 3
chare 3 = (charx) base
charx aj ; 17 ga[j]

charx aj_plus1 ; /7 ea[j*1]

For (k=n-1;0<k; k=)
For (§ =05 j <k X
aj =la v sizexj
aj_plus1 = aj + size ;
iF7C (xcomp)(aj, aj_plus1) > 8)
swap((voidx) aj, (void=) aj_plus1,
size)

Kk
<

>
3/ for §
3/ For k

[image: image28.png]void swap(void xx, void xy, sizZe_t size)
<
size_t i
char”tenp
chars px = (chare) x
chars py = (chars) y

For (1= 8 ;i< size; ire){
temp = xpx ;
*px = xpy 3
*py = temp ;
pres

[T

[image: image29.png]#include <stdio.h>

11 strepy: copy t to s : pointer
void stropy(char xs, char xt

<

int

uhile ("\@" ¢
s

e

(s = %) K

main(int arge, chars argu[

char a[]
char B[]

now is the time’
This is a book

version

)

strcpy(B, A) 5 // copy A to B

printf(“array B

return 0 ;

%s \n", B)

7/ an array
7/ an array

[image: image30.png]<8 ifs<t
=0 ifs=t
>0 ifs>t

/% stremp © return

*/
int stremp(char xs, char *t)

<
int i

For (1 =03 s[i] == t[i] 5 iee)(
iF (N0t == 5[i])
return 85 /7 s =t

>
return s[i] - t[i] 5 // s

t, compare character

[image: image31.png]/% stremp @ return < 0 if s <t
-8 ifs-t
>80 ifs>t

*/
int stremp(char xs, char *t)

<
For (5 % == xt ; s+, tee)(
if ("\e' *s)
return 8 ; // s =t

¥
return xs - *t 3 // s

t, compare character

[image: image32.png]#include <stdio.h>

int main(int arge, charx argu[])
<
printf(“arge (%p)
printf(“arge (%p)
uhile *argy)
printf(“argu= %p, *argu(%p) = %s\n”, argy,
xargu, *argy);
argues

%d\n", targe, arge);
%pAn", targ, argy)}

¥
return 0 ;

[image: image33.png]#include <stdio.h>

int main(int arge, charx argu[3])
<
int i g

printf(targe = %d\n", argc)3

For(i =03 i< arge 5 iss)
printf(“arge[%d] - %s\n", i, argu[i])

>

return 0 ;

[image: image34.png]#include <stdio.h>
int main(int arge, charx argy[]

<

float a = 0.15625 ;

int
int
int
int

printf("a (double) = %25.16F\n", a)

sign
exponent =

sign = 0 ;
exponent.
nantissa = 0

]
*alnt_ptr = (int=) &a ;

*alnt_ptr & 0x80000000
*alnt_ptr & 0x7F800000

mantissa = *alnt_ptr & 0x0007FFFFF

Printf("\t\t before shift\n")

printf("sign
printf(“exponent

Zx\n”
ZxAn”

sign);
exponent

printf(“nantissa - %x\n", mantissa

sign

(*alnt_ptr & 0x50000000

exponent = (xalnt_ptr & 0x7F800000

mantissa

printf("\t\t after shiftin")

printf("sign
printf(“exponent

Zx\n”
ZxAn”

sign)3

*alnt_ptr & 0x0007FFFFF

)
)

) >> 31
) >> 23

exponent };

printf(“nantissa - %x\n", mantissa)

return 0 ;

[image: image35.wmf]0.15625

a

=

_1276928372.unknown

