
2008 summer course, C-language Homework 2

Exercise 1 (2’s complement): we have shown that signed integer of 2’s complement under size =
4-bits ranges from -8 to 7, the complete mapping between decimal and 2’s complement is
decimal 2’s complement (binary) decimal 2’s complement (binary)
0 0 0 0 0 -8 1 0 0 0
1 0 0 0 1 -7 1 0 0 1
2 0 0 1 0 -6 1 0 1 0
3 0 0 1 1 -5 1 0 1 1
4 0 1 0 0 -4 1 1 0 0
5 0 1 0 1 -3 1 1 0 1
6 0 1 1 0 -2 1 1 1 0
7 0 1 1 1 -1 1 1 1 1
Now answer the following questions
(1) 2’s complement representation of 0 is unique
(2) for general , signed integer of 2’s complement ranges from n bits− 12n−− to . 12 1n− −
(3) Suppose integer is of size 4-bits, a number has 2’s complement representation x 2' 1010sx = ,

how can we know its decimal value? (Hint: do 2’s complement for 2'sx again)

Exercise 2: read page 153~155 in textbook to know conversion specification, we usually use
character Argument type ; printed as
d int; decimal number
c int ; single character
s char * ; print characters from the string until a ‘\0’
f double, fixed representation
e,E double, scientific representation

Exercise 3 (limit of integer type): use Visual Studio to create a project, named as limit_test, and
write codes to test size and limits of data type in Table 1. You can refer codes in Figure 1. Explain
how do you why the minimum value you fill-in is actual minimum.

Table 1: fill-in the blanks by writing code in your computer, note that data type is implementation
defined, just take data in MSDN library as reference, you must confirm them in your computer.

Case 1: your PC
CPU =
OS (operating system) =
Compiler =
Type Bytes Minimum value Maximum value
(signed) short (int)

 1

(signed) int
(signed) long (int)
unsigned short
unsigned int
unsigned long

Figure 1: codes to test size and limits

of data type “short”.

Case 2: workstation
CPU =
OS (operating system) =
Compiler =
Type Bytes Minimum value Maximum value
(signed) short (int)
(signed) int
(signed) long (int)
unsigned short
unsigned int
unsigned long

Exercise 4 (escape sequence): read section 2.3 (page 37~38) to know escape sequence and use
Visual Studio to create a project, named as char_test, and write codes to find out integral value of
escape sequence, like Figure 2.
(1) What is execution result, are the results consistent with ASCII table?
(2) If we change NUM_ESCAPE_CHAR = 6 and sweep 12 elements in array “word”, like Figure

3. Compare these results with results of (1), what’s the difference? Can you find out potential
bug of this code?

 2

Figure 2: display character and

hexadecimal value of escape

sequence.

Figure 3: array size is declared

too small to contains all escape

sequences.

Exercise 5 (string constant): use Visual Studio to create a project, named as string_const, and

(d)

ation): use Visual Studio to create a project, named as strcat_test,

write codes to find relationship between string constant and character array, like

(a) why second “printf” does not print “hello, world!”, could you explain this?
(b) May you modify second “printf” such that you can print “hello, world!”? Hint: you can print

Figure 4: string constant versus

character array.

character by character if you know size of the string.
(c) Why we need string terminator ‘\0’ ?

Read A2.6 in page 194

Exercise 6 (string concaten

 3

and search for “strcat” in MSDN library, find theme “strcat,wcscat” as following figure, copy the

xercise 7 (convert single precision binary format to decimal value)
onvert following binary representation into normalized decimal value

source code in that theme, see Figure 5, verify the result.

How about if we modify statement “char string[80];” to “char string[10];”? Can you explain the
execution result?

Figure 5: example code in theme

“strcat,wcscat”

E

2Ev s m= × × c

Exercise 8 (transformation between string and integral/floating)
In the course, we draw a picture to show transformation between string and integral/floating as

 4

Figure 6, we know that convert string to integral/floating is easy since standard C support library

e accept

uch coding style, try to invert “x = 1” to “1 = x”, what is compilation error in g++ and icpc?

 and what is and ? write a program to demonstrate this
nd interpret the result.

tion, for example ?

tor): in the course, we define type of a_left_shift_1 (which is

function atoi, atof, atol to do this.

(1) use MSDN library to search for atoi, atof and atol, and test example shown in MSDN library,

what do you learn in these examples.
(2) Can you implement the converse way, that is, convert integral/floating to a string?

Exercise 9 (potential bug of equality operator): Test the code in Figure 7, C-languag
s

Exercise 10 (bitwise operator): consider 8-bit operation,
(1)

Figure 6: convert string to integral/floating

is easy by standard library.

Figure 7: x == 1 or 1 == x, which one is

better

' 'a a= 1b = − &a b , |a b ^a b
a

 % 4a(2) Can you use AND operation to implement modulo opera

Exercise 11 (shift opera 1a <<)

nce? as int, why? Can we define it as char as you see in Figure 8, what’s the differe

 5

Figure 8: define a_left_shift_1 as char.

Exercise 12 (shift operator versus multiplication): Can you use shift operator to implement
multiplication or division on an integer number? Write program to test your idea.

Exercise 13 (type conversion): try all combination of rules of type conversion in textbook, do
you thank that explicitly casting done by program himself is a good habit?

 6

