2008 summer course, C-language Homework 2

Exercise 1 (2’s complement): we have shown that signed integer of 2’s complement under size =
4-bits ranges from -8 to 7, the complete mapping between decimal and 2’s complement is

decimal 2’s complement (binary) decimal 2’s complement (binary)
0 0000 -8 1000
1 0001 -7 1001
2 0010 -6 1010
3 0011 -5 1011
4 0100 -4 1100
5 0101 -3 1101
6 0110 -2 1110
7 0111 -1 1111

Now answer the following questions
(1) 2’s complement representation of O is unique

(2) for general n-bhits, signed integer of 2’s complement ranges from —2"* to 2"*'-1.
(3) Suppose integer is of size 4-bits, a number X has 2’s complement representation x,.,=1010,

how can we know its decimal value? (Hint: do 2’s complement for x,. again)

Exercise 2: read page 153~155 in textbook to know conversion specification, we usually use

character Argument type ; printed as

d int; decimal number

c int ; single character

S char * ; print characters from the string until a ‘\0’
f double, fixed representation

e,E double, scientific representation

Exercise 3 (limit of integer type): use Visual Studio to create a project, named as limit_test, and
write codes to test size and limits of data type in Table 1. You can refer codes in Figure 1. Explain
how do you why the minimum value you fill-in is actual minimum.

Table 1: fill-in the blanks by writing code in your computer, note that data type is implementation
defined, just take data in MSDN library as reference, you must confirm them in your computer.

Case 1: your PC

CPU =

OS (operating system) =
Compiler =

Type Bytes Minimum value Maximum value

(signed) short (int)

(signed) int

(signed) long (int)

unsigned short

unsigned int

unsigned long

#include <stdio.h>
#include <limits_h>

int main{ int argc, char =argu[] }
) short x_sint ; // x_sint is signed short integer
printf{“size of short = %d bytes\n", sizeof(short)); Figure 1: codes to test size and limits
%_sint = SHRT_MAX ; /7 SHRT_MAX is defined in file limits.h of datatype “short”.
- printf{mazimum of short = %d\n", x_sint);
%_sint = SHRT_MAX + 1 ;
printf{mazimum{short) + 1 = %d\n", x_sint);

printf{"maximum{short) + 1 = %dwn", SHRT_MAX + ﬂ ¥;:

return 8 ;

Case 2: workstation
CPU =

OS (operating system) =
Compiler =

Type Bytes Minimum value Maximum value

(signed) short (int)

(signed) int

(signed) long (int)

unsigned short

unsigned int

unsigned long

Exercise 4 (escape sequence): read section 2.3 (page 37~38) to know escape sequence and use

Visual Studio to create a project, named as char_test, and write codes to find out integral value of

escape sequence, like Figure 2.

(1) What is execution result, are the results consistent with ASCII table?

(2) If we change NUM_ESCAPE_CHAR = 6 and sweep 12 elements in array “word”, like Figure
3. Compare these results with results of (1), what’s the difference? Can you find out potential
bug of this code?

ftinclude <{stdio.h>
#define NUM_ESCAPE_CHAR 12

int main{ int argc, char= argu[])

i
int i ;
char word[HUM_ESCAPE_CHAR] ;
word[B8] = *\a' ; word[1] = *\b' ; word[2] = *\f" ; word[3] = ‘\n' ;
word[4] = "\ o5 word[5] = ALY 5 word[6] = \w' ; word[7] = "\
word[8] = A%’ ; word[9] = '\'' 5 word[18] = '\TYO G word[11] = 'h@°
For { i = @ ; i < NUM_ESCAPE_CHAR ; i++){
printf{"%c = Bx%x\n", word[i] , word[i]);
H
return 8 ;
H

#include <{stdio.h>
Hdefine HNUM_ESCAPE_CHAR 6

int main{ int argc, char= argu[])

{
int i ;
char word[HUM_ESCAPE_CHAR] ;
word[@] = "\a® ; word[1] = °"\b° ; word[2] = "\F' word[3] = 'wn° ;
word[4] = *\r' ; word[5] = "At' o5 word[6] = “\w' o word[7] = AN
word[8] = *\?' ; word[9] = *A\'C O word[18] = A" 5 word[11] =
for (1 =8 ;i <12 ; i++){
printf{"%c = Bx%x\n", word[i] , word[i]);
H
return B8 ;
H

e ;

Figure 2: display character and
hexadecimal value of escape

sequence.

Figure 3: array size is declared
too small to contains all escape

sequences.

Exercise 5 (string constant): use Visual Studio to create a project, named as string_const, and
write codes to find relationship between string constant and character array, like

#tinclude <{stdio.h>

int main{ int argc, char= argu[])

{

char p1[] = “hello, world” ; /= compiler would decide size of p1 =/

printf(“%s\n", p1); /* %s : print string |/
pi[12] = *t* ; /* remove \@ of p1 =/
printf{"%s\n", p1);

return 8 ;

Figure 4: string constant versus

character array.

(a) why second “printf” does not print “hello, world!”, could you explain this?
(b) May you modify second “printf” such that you can print “hello, world!*? Hint: you can print

character by character if you know size of the string.
(c) Why we need string terminator \0” ?
(d) Read A2.6 in page 194

Exercise 6 (string concatenation): use Visual Studio to create a project, named as strcat_test,

and search for “strcat” in MSDN library, find theme “strcat,wcscat” as following figure, copy the
source code in that theme, see Figure 5, verify the result.

streat, wescat Search
shrcat

| Language: C++
»| Technology: C++ Libraries (Mative)
w| Content Twpe: Al

Searched for: steeat Sortby: Renk 1

strcat, wescat, _mbecat (CRT)

Fun- Time Library Eeference streat, woscat, _mbscat See Also Example Collapse 410 Expand A1 Language ... are deprecated becavss more secure
versdnns are available; see streat_s, woseat_s, _mbscat_s. char #streatt char *strDestination, const ..

Souree: C Bun-Time Library Reference

E strcat, woscat
Platform Builder for Microsoft Windows CE 5.0 streat, wescat Lppend a string. char *steat(char *stcDestination, const char *stelource); wehar_t
*yreacat wehar t *strDestination, const wehar_t *stifowree); Parameters strDestination ..

Source: Windows CE 5.0: Developing an Application

Example

f* SIRCPY.C: This program uses Strcpy
* =nd to build = phrase.
* i

Figure 5: example code in theme

“strcat,wcscat”

ginclude <string.h*
#include «<stdio.h>»

wold mein{ wvoid)

{
char string[B80];
strcpy{ string, "Hello world from ™);
Eiddat=8d (| string, "strcpy " 17

Eiddattd | string, "and ");
Ejfasi-8d | string, "! "o
printf({ "String = %s3\n", string };

How about if we modify statement “char string[80];” to “char string[10];”? Can you explain the
execution result?

Exercise 7 (convert single precision binary format to decimal value)
convert following binary representation into normalized decimal value v=sx2%xm

sign exponent (8 bits) fraction (23 bits)
| | Il |
1|1|ololojo|1|o]1|1{1|ol1]1|o|1|0]1|0|0|0|0|0|0|0fO|OlOOfOl0lO] = =118.625
31 23 0

Bit values for the IEEE 754 32bit float -118.625

Exercise 8 (transformation between string and integral/floating)
In the course, we draw a picture to show transformation between string and integral/floating as

Figure 6, we know that convert string to integral/floating is easy since standard C support library
function atoi, atof, atol to do this.

string
_ atol Figure 6: convert string to integral/floating
atof atoi
is easy by standard library.
float / double int long
~ 7
- ~ ‘/
? \\\ G e
P
\ S A’/
string

(1) use MSDN library to search for atoi, atof and atol, and test example shown in MSDN library,
what do you learn in these examples.
(2) Can you implement the converse way, that is, convert integral/floating to a string?

Exercise 9 (potential bug of equality operator): Test the code in Figure 7, C-language accept
such coding style, try to invert “x = 1” to “1 = x”, what is compilation error in g++ and icpc?

#include <stdio.h>

int main{ int argc, char= argu[])
{

int x =5 ; Figure 7: x == 1 or 1 == x, which one is
if (x=-1XM better

printf("x (=%d) is equal to 1un", %);
relsef

printf{"x (=%d) is HOT equal to 1\n", x };
H

return 8 ;

Exercise 10 (bitwise operator): consider 8-bit operation,

(1) a='a' and b=-1 whatis a&b, a|b and a”b? write a program to demonstrate this
and interpret the result.

(2) Can you use AND operation to implement modulo operation, for example a % 4?

Exercise 11 (shift operator): in the course, we define type of a_left_shift_1 (whichis a <<1)
as int, why? Can we define it as char as you see in Figure 8, what’s the difference?

#tinclude <{stdio.h>

int main{ int argc, char =argv[])
{

char a = ‘a* ; Figure 8: define a_left_shift 1 as char.
char a_right_shift_1 = a >> 1 ;
char a_left_shift_1 = a << 1 ;
printf(" a =%, a) ;

printf({™ a >> 1
printf{" a << 1

%pAn”, a_right_shift_1) ;
%pAn", a_leFt_shift_1) ;

return @ ;

Exercise 12 (shift operator versus multiplication): Can you use shift operator to implement
multiplication or division on an integer number? Write program to test your idea.

Exercise 13 (type conversion): try all combination of rules of type conversion in textbook, do
you thank that explicitly casting done by program himself is a good habit?

