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Abstract

We consider the solution of the ?-Sylvester equations AX±X?B? = C, for ? = T, H and
A, B,∈ Cn×n, and the related linear matrix equations AXB?±X? = C, AXB?±CX?D? =
E and AX±X?A? = C. Solvability conditions and stable numerical methods are considered,
in terms of the (generalized and periodic) Schur and QR decompositions. We emphasize on
the square cases where m = n but the rectangular cases will be considered.
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1 Introduction

In [3], the Lyapunov-like linear matrix equation

A?X +X?A = B , A,X ∈ Cm×n (m 6= n)

with (·)? = (·)T was considered using generalized inverses. Applications occur in Hamiltonian
mechanics. At the end of [3], the more general Sylvester-like equation

A?X +X?C = B , A,C,X ∈ Cm×n (m 6= n)

was proposed without solution. The equation (with ? = T ) was studied, again using generalized
inverses, in [10, 14]. However in [14], the necessary and sufficient conditions for solvability may
be too complicated for most applications. The formula for X for the special case, assuming
m = n, BT = B and the invertibility of A ± CT , may not be numerically stable or efficient (see
Appendix III for the main result). In [10], some necessary or sufficient conditions for solvability
were derived. A (seemingly wrong) formula for X in terms of generalized inverse was also proposed
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(see Section 2.2 for more details on the approach taken in [10]). Consult also [4, 16], where
solvability conditions for the ?-Sylvester equations with m = n were obtained, without explicitly
considering the numerical solution of the equations.

In this paper, the (numerical) solution of the ?-Sylvester equation (with ? = T,H; the latter
indicating the complex conjugate transpose), as well as some related equations, will be studied.
Our tools include the (generalized and periodic) Schur, singular value and QR decompositions
[11]. We are mainly interested in the square cases when m = n.

Our interest in the ?-Sylvester equation originates from the solution of the ?-Riccati equation

XAX? +XB + CX? +D = 0

from an application related to the palindromic eigenvalue problem [4, 6, 16] (where eigenvalues
appears in reciprocal pairs λ and λ−?). The solution of the ?-Riccati equation is difficult and the
application of Newton’s method is an obvious possibility. The solution of the ?-Sylvester equation
is required in the Newton iterative process. Interestingly, the ?-Sylvester and ?-Lyapunov equa-
tions behave very differently from the ordinary Sylvester and Lyapunov equations. For example,
from Theorem 2.1 below, the ?-Sylvester equation is uniquely solvable only if the generalized
spectrum σ(A,B) (the set of ordered pairs {(ai, bi)} representing the eigenvalues of the matrix
pencil A− λB or matrix pair (A,B) by λi = ai/bi) does not contain λ and λ−? simultaneously,
some sort of apalindromic1 requirement. For more detail of this application, see Appendix I.

Another application of the ?-Sylvester equation involves the generalized algebraic Riccati
equations (GARE) in [5, 17], whose solutions by Newton’s method require the solution of a
coupled set of two T-Lyapunov equations, which is equivalent to a T-Sylvester equation, as
described in Section 2.3. See Appendix II for more detail for this application.

The paper is organized as follows. After this introduction, Section 2 considers the ?-Sylvester
equation, in terms of its solvability, the proposed algorithms and the associated error analysis.
Section 3 contains several small illustrative examples. Section 4 considers some generalizations
of the ?-Sylvester equation — AXB? ± X? = C, AXB? ± CX?D? = E and the ?-Lyapunov
equation AX ± X?A? = C. (Similar equations like AX ± BX? = C can be treated similarly
and will not be pursued here.) We conclude in Section 5 before describing two applications (in
addition to those in [4, 16]) in the Appendices.

2 ?-Sylvester Equation

Consider the ?-Sylvester equation

AX ±X?B? = C , A,B,X ∈ Cn×n . (1)

This includes the special cases of the T-Sylvester equation when ? = T and the H-Sylvester
equation when ? = H.

With the Kronecker product and for ? = T , (1) can be written as

P vec(X) = vec(C) , P ≡ I ⊗A± (B ⊗ I)E (2)

where vecX stacks the columns of X onto a column vector and E is the permutation matrix
which maps vec(X) into vec(XT ). The matrix operator on the left-hand-side of (2) is n2 × n2

1Not being palindromic, with “anti-palindromic” already describing something different.
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and the application of Gaussian elimination and the like will be inefficient. In addition, the
approach ignores the structure of the original problem, introducing errors to the solution process
unnecessarily.

For the ? = H case, (1) can be rewritten as an expanded T-Sylvester equation:

AX ±X TBT = C , A,B,X ∈ R2n×2n

where

A ≡
[

Ar Ai
−Ai Ar

]
, B ≡

[
Br Bi
−Bi Br

]
, C ≡

[
Cr Ci
−Ci Cr

]
, X ≡

[
Xr Xi

−Xi Xr

]
;

with the original matrices written in their real and imaginary parts:

A = Ar + iAi , B = Br + iBi , C = Cr + iCi , X = Xr + iXi .

The above Kronecker product formulation for T-Sylvester equations can then be applied. Such a
formulation will be less efficient for the numerical solution of (1), but may be useful as a theoretical
tool.

Another approach will be to transform (1) by some unitary P and Q, so that (1) becomes:

PAQ ·QTXPT ± PXTQ ·QTBTPT = PCPT (3)

or, for ? = H:
PAQ ·QHXPH ± PXHQ ·QHBHPH = PCPH . (4)

Note that minimum residual and minimum norm solutions are possible with the unitary P and
Q. Let (QHAHPH , QHBHPH) be in (upper-triangular) generalized Schur form [11]. The trans-
formed equations in (3) and (4) then have the form[

a11 0T

a21 A22

] [
x11 x?12
x21 X22

]
±
[
x?11 x?21
x12 X?

22

] [
b?11 b?21
0 B?22

]
=
[
c11 c?12
c21 C22

]
. (5)

Multiply the matrices out, we have

a11x11 ± b?11x?11 = c11 , (6)
a11x

?
12 ± x?21B?22 = c?12 ∓ x?11b?21 , (7)

A22x21 ± b?11x12 = c21 − x11a21 , (8)

A22X22 ±X?
22B

?
22 = C̃22 ≡ C22 − a21x

?
12 ∓ x12b

?
21 . (9)

From (6) for ? = T , we have
(a11 ± b11)x11 = c11 (10)

Let (a11, b11) ∈ σ(A,B). The solvability condition of the above equation is

a11 ± b11 6= 0⇔ λi = a11/b11 6= ∓1 (11)

Obviously, when n = 1, (11) is the only solvability condition.
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From (6) when ? = H, we have

a11x11 ± b11x11 = c11 (12)

Let x11 ≡ xr + ixi, a11 ≡ ar + iai, b11 ≡ br + ibi and c11 ≡ cr + ici. The above equation becomes

(ar + iai)(xr + ixi)± (br − ibi)(xr − ixi) = cr + ici

or
arxr − aixi ± brxr ∓ bixi = cr , arxi + aixr ∓ brxi ∓ bixr = ci .

These imply [
ar ± br −ai ∓ bi
ai ∓ bi ar ∓ br

] [
xr
xi

]
=
[
cr
ci

]
. (13)

Let λ = a11/b11 ∈ σ(A,B). The determinant of the matrix operator in (13):

d = (a2
r − b2r)− (b2i − a2

i ) = |a11|2 − |b11|2 6= 0⇔ |λ| 6= 1 (14)

requiring that no eigenvalue λ ∈ σ(A,B) lies on the unit circle. Again, (14) is the solvability
condition when n = 1.

Another way to solve (12) is to write it together with its complex conjugate in the composite
form [

a11 ±b?11
±b11 a?11

] [
x11

x?11

]
=
[
c11
c?11

]
which produces the equivalent formula

x11 =
a?11c11 ∓ b?11c?11
|a11|2 − |b11|2

.

From (7) and (8), we obtain[
a?11I ±B22

±b?11I A22

] [
x12

x21

]
=
[
c̃12
c̃21

]
≡
[
c12
c21

]
+ x11

[
∓b21
−a21

]
(15)

With a11 = b11 = 0, x11 will be undetermined. However, (A,B) then forms a singular pencil,
σ(A,B) = C and this case will be excluded by (19). If a11 6= 0, (15) is then equivalent to[

a?11I ±B22

0 A22 − b?
11
a?
11
B22

] [
x12

x21

]
=
[
c̃12
ĉ21

]
≡

[
c̃12

c̃21 ∓ b?
11
a?
11
c̃12

]
. (16)

The solvability condition of (15) and (16) is

det Ã22 6= 0 , Ã22 ≡ A22 −
b?11
a?11

B22

or, with (a11, b11) ∈ σ(A,B), (b?11, a
?
11) cannot be another eigenvalue of (A,B). Note that Ã22 is

still lower-triangular, just like A22 or B22.
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If b11 6= 0, (15) is equivalent to[
0 B22 − a?

11
b?
11
A22

b?11I ±A22

] [
x12

x21

]
=
[

ĉ12
±c̃21

]
≡

[
±c̃12 − a?

11
b?
11
c̃21

±c̃21

]
(17)

with an identical solvability condition (19).
Lastly, (9) is of the same form as (1) but of smaller size.

Remark 2.1 Interestingly, for the ordinary Sylvester equation AX−XB = C, numerical solution
will be possible when (A,B) is transformed into quasi-triangular/triangular form (not necessarily
both of the same type) or the cheaper quasi-triangular/Hessenberg form. It is not the case for (1)
and the ? somehow alters the behaviour of the equation greatly.

Remark 2.2 We can arrange the above solution process into a large quasi-triangular linear sys-
tem. This enables us to apply the error analysis of triangular linear systems to proposed Algo-
rithms SSylvester and TSylvesterR in Section 2.2. Because x11 can be solved via a scalar or 2× 2
system and X22 can be treated recursively, we only need to consider the solution of (15) for x12

and x21. The equation has the form, for some right-hand-side R1:

r11 r12
s11 ∗ s12

. . . ∗ ∗
. . .

r21 r22
s21 ∗ s22

. . . ∗ ∗
. . .





zr1
zs1
...
zr2
zs2
...


= R1 . (18)

This is equivalent to a series of 2× 2 systems, for known right-hand-sides Rr, Rs, · · · :

Mrzr = Rr , Mszs = Rs , · · ·

where
Mr ≡ [rij ] , Ms ≡ [sij ] , · · · ; zr ≡ [zr1, zr2]T , zs ≡ [zs1, zs2]T , · · · .

Consequently, (18) is a quasi-lower-triangular linear system with at most 2 × 2 diagonal blocks.
By implication, so is (5). This comment still holds when a11 and b11 are replaced by 2× 2 blocks,
as in Section 2.1. In that case, the diagonal blocks in the corresponding quasi-triangular matrix
will be at most 4× 4.

We summarize the solvability condition for (1) in the following theorem:

Theorem 2.1 The ?-Sylvester equation (1):

AX ±X?B? = C , A,B ∈ Cn×n

is uniquely solvable if and only if, for {(aii, bii)} = σ(A,B), the following conditions are satisfied:

aiia
?
jj − biib?jj 6= 0 (∀i 6= j) ; (19)

and, for λi ≡ aii/bii and all i,

aii ± bii 6= 0 (for ? = T ) , |λi| 6= 1 (for ? = H) . (20)
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Remark 2.3 Condition (11) or (14) actually imply in (19). However, these conditions are only
sufficient for (19) and have to be restated in (20) in Theorem 2.1. In terms of the eigenvalues
λi ≡ aii/bii, (19) means that λj 6= λ−?i (i 6= j), and (20) means that λi 6= ∓1 (? = T ) or
|λi| 6= 1 (? = H). Consequently, λ = ±1 can be an eigenvalue of (A,B) but must be simple for
the corresponding ?-Sylvester equation to be uniquely solvable.

The solution process in this subsection is summarized below:

Algorithm SSylvester (for the unique solution of AX ±X?B? = C; A,B,C,X ∈ Cn×n)
if (A,B) is not in lower-triangular generalized Schur form, then
compute the lower-triangular generalized Schur form (PAQ,PBQ) using QZ algorithm [11]

store (PAQ,PBQ,PCP ∗) in (A,B,C)
solve (10) for ? = T , or (13) for ? = H; if fail, exit
if n = 1 or |a11|2 + |b11|2 ≤ tolerance, exit
if |a11| ≥ |b11|, then
if Ã22 ≡ A22 − b?

11
a?
11
B22 has any negligible diagonal elements, then exit

else compute x21 = Ã−1
22 ĉ21 by backsubstitution, x12 = (c̃12 ∓B22x21) /a?11 (from (16))

else if B̃22 ≡ B22 − a?
11
b?
11
A22 has any negligible diagonal elements, then exit

else compute x21 = B̃−1
22 ĉ12 by backsubstitution, x12 = (±c̃21 ∓A22x21) /b?11 (from (17))

apply Algorithm SSylvester to A22X22 ±X?
22B

?
22 = C̃22 (from (9)), with n← n− 1

output X ← QXP for ? = T , or X ← QXP for ? = H

end of algorithm

Let the operation count of the Algorithm SSylvester, in addition to the 66n3 complex flops
for the QZ procedure [11] for the generalized Schur decomposition of (A,B), be f(n) complex
flops, mainly involving the solution of (9) and (16) or (17). This involves forming and inverting
Ã22 or B̃22 (n2 flops), computing x12 ( 1

2n
2 flops) and forming C̃22 (2n2). Thus f(n) ≈ f(n −

1) + 7
2n

2, ignoring O(n) terms. This implies that f(n) ≈ 7
6n

3 and the total operation count for
Algorithm SSylvester is 67 1

6n
3 complex flops, ignoring O(n2) terms.

From the above analysis and Theorem 2.1, the condition of (1) will be bad if the separation
λiλ

?
j − 1 is narrow (or when the assumption for unique solvability is nearly violated). The same

conclusion can also be drawn from the analogous analysis in Section 2.1 below. For error analysis,
see Section 2.2 for more detail.

2.1 The real case or divide-and-conquer

When A, B and C are all real, the solution X, judging from (2), will be real. To guarantee a
real solution X, the generalized real Schur form [11] for (A,B) has to be used. The transformed
equation in (3) or (4) has the form[

A11 0T

A21 A22

] [
X11 X?

12

X21 X22

]
±
[
X?

11 X?
21

X12 X?
22

] [
B?11 B?21
0 B?22

]
=
[
C11 C?12
C21 C22

]
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or

A11X11 ±X?
11B

?
11 = C11 , (21)

A11X
?
12 ±X?

21B
?
22 = C̃?12 ≡ C?12 ∓X?

11B
?
21 , (22)

A22X21 ±X12B
?
11 = C̃21 ≡ C21 −A21X11 , (23)

A22X22 ±X?
22B

?
22 = C̃22 ≡ C22 −A21X

?
12 ∓X12B

?
21 ; (24)

where A11 and B11 may be 1× 1 or 2× 2. The former case will be trivial as in (6) and the latter
can be handled using the Kronecker product. The theory leading to the conditions in (11) and
(19) from the complex Schur form still holds. We shall assume that A11 and B11 are not scalar
in the rest of this subsection.

Again, the Kronecker product can be applied to (22) and (23). A better approach is to consider
(22)? and (23):

±B22X21 +X12A
?
11 = C̃12 , A22X21 ±X12B

?
11 = C̃21 .

A linear combination of these equations will be

(βA22 ± αB22)X21 +X12(αA?11 ± βB?11) = αC̃12 + βC̃21 . (25)

Assume regularity of the pencil (A,B), there exists real α and β such that αA?11 ± βB?11 is
nonsingular (or well-conditioned). We then have

X12 = −(βA22±αB22)X21(αA?11±βB?11)−1+Ĉ12 , Ĉ12 ≡ (αC̃12+βC̃21)(αA?11±βB?11)−1 . (26)

Substitute X12 in (26) into (23), we have a generalized Sylvester equation [7] for X21:

A22X21 − (αB22 ± βA22)X21(αA?11 ± βB?11)−1B?11 = C̃21 ∓ Ĉ?12B?11 . (27)

From [7], (27) is uniquely solvable when there is no intersection of the spectra σ(A22, αB22±βA22)
and σ(B?11, αA

?
11 ± βB?11). Let (A11, B11) and (A22, B22) be transformed into generalized real

Schur forms with diagonal elements (αi, βi) and (αj , βj) respectively. For α 6= 0, the solvability
condition is

αj
αβj ± βαj

6= β?i
αα?i ± ββ?i

⇔ α?iαj 6= β?i βj ,

exactly condition (19). The same conclusion is reached when α = 0, which implies that B11 is
invertible, and X12 in (26) should then be substituted into the ? of (22) to produce a similar
generalized Sylvester equation for X21:

B22X21 −A22X21B
−?
11 A

?
11 = ±C̃12 + Ĉ12A

?
11 . (28)

Also X12 is retrievable from (26) in a numerical stable and efficient manner. Note that the matrix
operator αA?11 ± βB?11 in (26) is 2× 2 with (α, β) controlling its condition. In (27), A22 and B22

are block-lower triangular with (αA?11 ± βB?11)−1B?11 being at most 2 × 2, enabling X21 to be
easily calculated as in the generalized Bartels-Stewart algorithm in [7]. (For illustration, let us
consider (28). With B22 and A22 being lower-triangular and B−?11 A

?
11 being 2 × 2, the first row

and column of X21 can be computed easily, leaving a smaller but similar system. This can then
be solved recursively and similarly.) A slightly more efficient alternative will be to consider the
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rows of (27) consecutively from the top, solving a 2×2 system for each row of X21. Equation (28)
can be solved analogously, also one row at a time.

We can then solve recursively (24), a smaller equation similar to (9).
Lastly, the procedure discussed in this subsection can be applied as a divide-and-conquer

strategy, with A11 and B11 being [n2 ] × [n2 ]. After transforming (1) using the (real) Schur form
of (A,B), the resulting equation can be split up in the middle, with the sizes of A11 and A22

roughly equal. Subsequent systems in terms of (Aii, Bii) (i = 1, 2) can then be treated recursively
in the same divide-and-conquer fashion, yielding a more efficient version of our algorithm. We
summarize the procedure in this subsection in the following algorithm, with the subscripts “R”
for “Real”.

Algorithm TSylvesterR (for the unique solution of AX ±XTBT = C; A,B,C,X ∈ Rn×n)
if (A,B) is not in quasi-lower-triangular generalized real Schur form, then
compute the quasi-lower-triangular generalized real Schur form (PAQ,PBQ) by QZ

store (PAQ,PBQ,PCPT ) in (A,B,C)
solve (21) for X11; if fail, exit
if last block reached with n = 1, 2, exit
if A11 and B11 are scalar, solve (22) and (23) for X12 and X21 as in Algorithm TSylvester
if fail, exit; else solve (27) or (28) with appropriate α, β for X21 row-wise,

using Gaussian elimination on the 2× 2 systems; if fail, exit
retrieve X12 from (26)
apply Algorithm TSylvesterR to A22X22 ±XT

22B
T
22 = C̃22 (c.f. (24)), n← n− 1 or n− 2

output X ← QXP

end of algorithm

The operation count of Algorithm SSylvesterR is approximately equal to 67 1
6n

3 complex flops,
similar to Algorithm SSylvester and overwhelmed by the initial QZ process.

Remark 2.4 Similar to Remark 2.2, Algorithms TSylvesterR is equivalent to solving quasi-lower-
triangular linear systems after the initial QZ step. The equations for the scalar (or 2 × 2) X11

can be written as a 2× 2 (or 8× 8) linear system for the real and imaginary parts of the elements
of X11. For X12 and X21, expanding (22) and (23) using the Kronecker product yields a linear
system with matrix operator [

In−2 ⊗A11 B22 ⊗ I2
In−2 ⊗B11 A22 ⊗ I2

]
assuming without loss of generality that ? = T . The matrix has the same form as the one in
(18), except the elements may be 2× 2 blocks, producing a series of 4× 4 linear systems. Similar
arguments as those in Remark 2.2 thus follows.

2.2 Error analysis

We shall discuss the condition and error associated with Algorithms TSylvester and TSylvesterR,
following the development in [12, Chapter 16] and [13].
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Condition

The condition of (1) is obviously identical to that of (2). However, E reshuffles the columns of
B⊗I, making the analysis of the matrix operator P difficult. We shall investigate the eigenvalues
of P, collaborating Theorem 2.1. First consider the trivial example when n = 2, A = [aij ] and
B = [bij ], we have

P =


a11 ± b?11 a12 ± b?12
±b?21 a11 ±b?22 a12

a21 ±b?11 a22 ±b?12
a21 ± b?21 a22 ± b?22

 .

To make things easier, let (A,B) be in lower-triangular generalized Schur form after some QZ
procedure. We then have a12, b12 = 0 and the eigenvalues of the corresponding P̃ are aii ± b?ii
(i = 1, 2) and those of the middle block W12 where

Wij ≡
[

aii ±b?jj
±b?ii ajj

]
.

The characteristic polynomial of Wij , identical to that for Wji, is λ2− (aii+ajj)λ+ detWij with
detWij = aiiajj − b?iib?jj , and the eigenvalues are

λWij =
1
2

[
aii + ajj ±

√
(aii − ajj)2 + 4b?iib

?
jj

]
.

Note that some λWij
or detWij = 0 if and only if (19) in Theorem 2.1 is violated. For larger

values of n, the equivalence of our algorithms and quasi-triangular linear systems (after the initial
QZ step), as mentioned in Remarks 2.2 and 2.4, means that P̃ in (2) is quasi-triangular with
the correct permutation of the variables and equations. The ordering considers the first diagonal
element x11, then the first components in x12 and x21, and then their second components etc. until
exhaustion, and then recursively ordering X22 in the same fashion. From (18), the eigenvalues of
P̃ thus consists of aii±b?ii (n of them, for i = 1, · · · , n) and the eigenvalues λWij

(nC2 = n(n−1)/2
of them, for j > i and i, j = 1, · · · , n). Notice that, as expected, there are exactly 2(nC2)+n = n2

eigenvalues for P̃. It is conceptually simple but operationally tedious to reorder P̃ to show this
result even for n = 3 and that will be left as an exercise.

Residual

As indicated in Remarks 2.2 and 2.4, Algorithms SSylvester and SSylvesterR can be arranged
into quasi-triangular linear systems. We can then apply the error analysis for triangular linear
systems in [12, Theorem 8.5] to obtain

‖R‖F ≡ ‖C − (AX̂ ± X̂?B?)‖F ≤ cnu(‖A‖F + ‖B‖F )‖X̂‖F (29)

for a computed solution X̂ from our algorithms, where cn is a constant dependent on n and u
is the unit round-off (typically O(10−16)), when the condition of the 2× 2, 4× 4 or 8× 8 linear
systems in (27), (28) and Remarks 2.2 and 2.4 are not bad. Note that the QZ transformation of
(A,B) is backward stable, similar to the QR process in [12, Equation 16.9]. Consequently, the
relative residual is bounded by a modest multiple of the unit round-off u. See the collaborating
numerical examples in Section 3.
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Backward error

Like for ordinary Sylvester equations, the numerical solution of (1) is not backward stable in
general. Similar to [12, §16.2] and with “δ” indicating perturbation, we can define the normwise
relative backward error of an approximate solution Y by

η(Y ) ≡ min {ε : (A+ δA)Y ± Y ?(B + δB)? = C + δC, ‖δA‖F ≤ εα, ‖δB‖F ≤ εβ, ‖δC‖F ≤ εγ}

where α ≡ ‖A‖F , β ≡ ‖B‖F and γ ≡ ‖C‖F . With Y = UΣV H in singular value decomposition
(SVD) [11], the Y ? terms do not affect the analysis in [12, §16.2]. With Σ = diag{σ1, · · · , σn}, it
can be shown that

η(Y ) ≤ µ ‖R‖F
(α+ β)‖Y ‖F + γ

(30)

where

µ ≡ (α+ β)‖Y ‖F + γ

[(α2 + β2)σ2
n + γ2]1/2

, R ≡ δAY ± Y ?δB? − δC .

Consequently, η(Y ) can be large when Y is ill-conditioned, and a small residual R does not
always imply a small backward error η(Y ). This phenomenon has been observed in Example 3.3,
where Y is ill-conditioned. However, from our experience, severely backward unstable ?-Sylvester
equations are rare and have to be artificially constructed. This suggests that our algorithms may
well be conditionally backward stable. Similar to the Sylvester equation [12, §16.2], we do not
know the conditions under which a ?-Sylvester equation has a well-conditioned solution.

Perturbation and practical error bounds

For perturbation, the usual results for linear systems apply. In terms of the ?-Sylvester equation
(1), consider the perturbed equation

(A+ δA)(X + δX)± (X + δX)?(B + δB)? = C + δC .

Define the ?-Sylvester operator
S(X) ≡ AX ±X?B? ,

we then obtain
S(δX) = δC − δAX ∓X?δB? − δAδX ∓ δX?δB? .

Application of norm gives rise to

‖δX‖ ≤ ‖S−1‖ {‖δC‖+ (‖δA‖+ ‖δB‖)(‖X‖+ ‖δX‖)} .

When ‖δS‖ ≡ ‖δA‖+‖δB‖ is small enough so that 1 ≥ ‖S−1‖ · ‖δS‖, we can rearrange the above
result to

‖δX‖
‖X‖

≤ ‖S−1‖
1− ‖S−1‖ · ‖δS‖

(
‖δC‖
‖X‖

+ ‖δS‖
)
.

With ‖C‖ = ‖S(X)‖ ≤ ‖S‖ · ‖X‖ and the condition number κ(S) ≡ ‖S‖ · ‖S−1‖, we arrive at the
standard perturbation result

‖δX‖
‖X‖

≤ κ(S)
1− κ(S) · ‖δS‖/‖S‖

(
‖δC‖
‖C‖

+
‖δS‖
‖S‖

)
.
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Thus the relative error in X is controlled by those in A, B and C, magnified by the condition
number κ(S).

As indicated in [12, §16.4], practical error bounds can be estimated, just like for other linear
matrix equations. Several applications of the solution algorithm will be required. More work has
to be done along this direction.

2.3 An alternative formulation

We can consider the sum/difference of (1) and its ?, producing

(A+B)X +X?(A+B)? = C + C? , (A−B)X −X?(A−B)? = C − C? . (31)

The pair of equations represent the symmetric/Hermitian and skew-symmetric/Hermitian parts
of (1) and can be solved using the generalized Schur form of (A+B,A−B). Identical solvability
condition as (19) can be derived. In terms of the eigenvalues λ̃i ∈ σ(A + B,A − B), (1) and
(31) are uniquely solvability if and only if λ̃i + λ̃j 6= 0, with λ̃i = (λi + 1)/(λi − 1) for some
λi ∈ σ(A,B). It is easy to see that mapping between (A,B) and (A+B,A−B) corresponds to
some (inverse) Cayley transformations.

In [10], a formula for the solution X of (1) (for ? = T and the “+” case) was derived using
the first equation in (31) only, throwing away the information in the second equation. We cannot
see how the formula can be correct using only half the information of (1) in the first half of (31).
In the extreme case with A = −B, the first equation in (1) will be degenerate and the solution
X will be totally free. Anyway, X is a solution of (1) if and only if it is also a solution of (31),
but a solution of half of (31) in general does not satisfy (1).

3 Numerical Examples

In this section, we apply Algorithm SSylvester (denoted by ASS) and the Kronecker product
approach in (2) (denoted by KRP) to some examples for illustrative and comparative purposes.
All computations were performed in MATLAB/version 7.5 on a PC with an Intel Pentium-
IV 4.3GHZ processor and 3GB main memory, using IEEE double-precision.

Example 3.1 We choose Â, B̂ ∈ Rn×n to be real lower-triangular matrices with given diagonal
elements (specified by a, b ∈ Rn) and random strictly lower-triangular elements. They are then
reshuffled by the orthogonal matrices Q,Z ∈ Rn×n to form (A,B) = (QÂZ,QB̂Z). In MATLAB

[15] commands, we have

Â = tril(randn(n),−1) + diag(a) , B̂ = tril(randn(n),−1) + diag(b) , C = randn(n) .

To guarantee condition (19), let b = randn(n, 1), a = 2b. In Table 1, we list the CPU time ratios
of the ASS and the KRP approaches as well as the corresponding residuals and their ratios, with
increasing dimensions n = 16, 20, 25, 30, 35, 40. Note that the operation counts for the SSA and
KRP methods are approximately 67n3 and 2

3n
6 flops respectively (the latter for the LU decom-

position of the n2 × n2 matrix in (2)). The results in Table 1 show that the advantage of ASS
over KRP in CPU time grows rapidly as n increases, as predicted by the operation counts. Even
with better management of sparsity or parallellism, the O(n6) operation count makes the KRP
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approach uncompetitive even for moderate size n. The residuals from ASS is also better than
that from KRP, as (2) is solved by Gaussian elimination in an unstructured way. See the other
examples for more comparison of the residuals of ASS and KRP.

n tKRP

tASS
Res(ASS) Res(KRP) Res(KRP)

Res(ASS)

16 1.00e+00 1.8527e-17 2.1490e-17 1.16
25 1.31e+01 2.3065e-17 2.8686e-17 1.24
30 2.61e+01 3.1126e-18 5.7367e-18 2.20
35 6.48e+01 7.0992e-18 1.2392e-17 1.75
40 1.05e+02 1.7654e-18 6.4930e-18 3.68

Table 1: Results for Example 3.1

Example 3.2 With the same construction as in Example 3.1 and n = 2, let a = [α + ε, β]T ,
b = [β, α]T . Here α, β are two randomly numbers greater than 1, with the spectral set σ(A,B) =
{α+ε

β , βα}, and |λ1λ2 − 1| = ε
α . Judging from (19), (1) has worsening condition when ε de-

creases. We report a comparison of absolute residuals for the ASS and KRP approaches for
ε = 10−1, 10−3, 10−5, 10−7 and 10−9 in Table 2. The results show that if (2) is solved by Gaus-
sian elimination, its residual will be larger than that for ASS especially for smaller ε. Note that
the size of X (the last column in Table 2) reflects partially the condition of (1), as indicated in
(29). The residuals will be worsen for large values of ‖X‖F , with the quotient of res(ASS) and
‖X‖ approximately equal to the unit round-off u. The KRP approach copes less well than the ASS
approach for an ill-conditioned problem.

ε Res(ASS) Res(KRP) Res(KRP)
Res(ASS) O(‖X‖)

1.0e-1 2.0673e-15 2.4547e-15 1.19 101

1.0e-3 8.6726e-13 4.3279e-13 0.50 103

1.0e-5 2.3447e-12 2.4063e-12 1.03 103

1.0e-7 5.9628e-10 1.1786e-09 1.98 106

1.0e-9 5.8632e-08 3.4069e-07 5.81 108

Table 2: Results for Example 3.2

Example 3.3 With n = 2 and let Q ∈ Rn×n be orthogonal and the exact solution be Xe, where

Xe ≡ QT
[
10−m 0

0 10m

]
Q , A =

[
randn 0
randn 10−m

]
Q , B =

[
randn 0
randn 2 ∗ 10−m

]
Q

and C = AXe +XT
e B

T . Solving the corresponding T-Sylvester equation by Algorithm SSylvester
produces the results in Table 3, using symbols from Section 2.2. The column for the backward error
η(Y ) (estimated using the bound (30)) confirms that our algorithm is not numerically backward
stable. The problem is increasingly ill-conditioned for increasing values of m and the large values of
µ worsen the backward errors η(Y ), although the relative residuals RRes(ASS) = Res(ASS)/‖X‖
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m Res(ASS) RRes(ASS) |XASS−Xe|
|Xe| O(‖X‖) µ η(XASS)

0 1.0129e-16 10−16 2.6624e-16 100 3.2440e+00 2.7169e-16
2 1.5268e-14 10−16 2.0519e-15 102 9.7188e+01 5.8991e-15
4 2.4170e-12 10−16 5.0599e-13 104 7.3715e+03 1.0410e-12
6 1.6955e-10 10−16 2.4933e-11 106 9.0423e+05 6.8488e-11
8 3.7545e-09 10−17 2.7786e-09 108 8.4485e+07 1.2658e-09

Table 3: Results for Example 3.3

are of machine accuracy. On the other hand, from our experience, badly behaved examples are
rare and have to be artificially constructed.

4 Related Equations

4.1 Generalized ?-Sylvester equation I

Consider the more general version of the ?-Sylvester equation (1):

AXB? ±X? = C (32)

with A,B?, X? ∈ Cm×n and m 6= n. The generalized Kronecker canonical form [8, 9] for (A,B?)
may be used to analyze and solve the equation. We shall not pursuit this line of attack further.

For A,B,C ∈ Cn×n, the equation is equivalent to the ?-Sylvester equation in Section 2 when
either A or B is nonsingular. In general, consider the periodic Schur or PQZ decomposition [2]
for BHAH so that (QHAHPH , PBHQ) is in upper triangular form.

Consider the transformed equation, for ? = H:

PAQ ·QHXPH · PBHQ± PXHQ = PCQ

or for ? = T :
PAQ ·QHXPT · PBTQ± PXTQ = PCQ .

The case when (A,B) are real and ? = T with a real PQZ decomposition is similar but will be
ignored here.

With (QHAHPH , PBHQ) or (QHAHPH , PBTQ) being upper-triangular, the transformed
equations look like[

a11 0T

a21 A22

] [
x11 x?12
x21 X22

] [
b?11 b?21
0 B?22

]
±
[
x?11 x?21
x12 X?

22

]
=
[
c11 c?12
c21 C22

]
.

We then have

a11b
?
11x11 ± x?11 = c11 , (33)

a11x
?
12B

?
22 ± x?21 = c?12 − a11x11b

?
12 , (34)

b?11A22x21 ± x12 = c21 − b?11x11a21 , (35)
A22X22B

?
22 ±X?

22 = C22 − x11a21b
?
12 −A22x21b

?
12 − a21x

?
12B

?
22 . (36)



14 C.-Y. CHIANG, E. K.-W. CHU & W.-W. LIN

Inspection of (33)–(36) shows the solvability condition

aiib
?
ii 6= ∓1 , a?iib

?
iiajjbjj 6= 1 (∀i 6= j) ; (37)

analogous to (19) and (20) and a special case of (41). Algorithms can easily be constructed from
(33)–(36) but will be ignored here.

4.2 Generalized ?-Sylvester equation II

Consider the more general version of the ?-Sylvester equation (1) and (32):

AXB? ± CX?D? = E (38)

with the complex matrices A? and C?, B? and D?, B and C, and A and D possessing the same
number of columns. This is a more general equation than the rectangular ?-Sylvester equation in
Section 2.4. It is also a special case of the equation in Section 4.5. We do not know how to tackle
this equation.

For A,B,C,D,E ∈ Cn×n, the equation is equivalent to the ?-Sylvester equation in Section 2,
when A and D (or B and C) are nonsingular. In general, we can transform the equation to, for
? = H:

PAR ·RHXS · SHBHQ± PCS · SHXHR ·RHDHQ = PEQ (39)

or, for ? = T :

PAR ·RTXS · SHBTQ± PCS · STXTR ·RHDTQ = PEQ . (40)

These equation have the form

ÃX̃B̃? ± C̃X̃?D̃? = Ẽ .

The transformation can be realized using the periodic Schur or PQZ decomposition [2] for
B−1DA−1C (or other similar formations), where P , Q, R and S are unitary, and Ã, B̃, C̃
and D̃ are (quasi-)lower-triangular (with diagonal elements αi, βi, γi and δi, respectively). Con-
sequently, similar solution procedure as in Section 2 applies, with both minimum norm and
minimum residual solutions feasible. The transformed equations give rise to equations in the
form, for i 6= j = 1:

(αiβ?i ± γiδ?i )xii = ẽii ,

[
αiβ

?
j ±γiδ?j

±γjδ?i αjβ
?
i

] [
xij
xji

]
=
[
ẽij
ẽji

]
for some known ẽii, ẽij and ẽji, with xii and xij solved in the correct order. The equation will
then be uniquely solvable if and only if

αiβ
?
i ± γiδ?i 6= 0 , αiαjβ

?
i β

?
j 6= γiγjδ

?
i δ
?
j (∀i 6= j) ; (41)

conditions more general than but similar to (19) and (20), or (37).
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4.3 ?-Lyapunov equation

Consider the ?-Lyapunov equation

AX ±X?A? = C , A ∈ Cn×n .

With unitary P and Q, the equation can be transformed to, for ? = T :

PAQ ·QHXPT ± PXTQ ·QTATPT = PCPT

or, for ? = H:
PAQ ·QHXPH ± PXHQ ·QHAHPH = PCPH .

Note that the unitary transformation of A allows for minimum norm or residual solutions of the
equations. We can choose P and Q from the SVD of A. This is more suited to the case when A is
rectangular and this line of attack will be pursued later. For a square A, we can choose Q = PH

using the Schur decomposition of A, solving the equation in a similar fashion as in Section 2. The
transformed equation has the form[

a11 0T

a21 A22

] [
x11 x?12
x21 X22

]
±
[
x?11 x?21
x12 X?

22

] [
a?11 a?21
0 A?22

]
=
[

c11 c?12
±c12 C22

]
.

Multiply the matrices out, we have

a11x11 ± a?11x?11 = c11 , (42)
a11x

?
12 ± x?21A?22 = c̃?12 ≡ c?12 ∓ x?11a?21 , (43)

A22X22 ±X?
22A

?
22 = C̃22 ≡ C22 − a21x

?
12 ∓ x12a

?
21 . (44)

Because of the (anti-)symmetry of the ?-Lyapunov equation, we only need to consider the above
three equations, with the fourth containing redundant information.

For ? = T , x11 is free for the “−” case, requiring c11 = 0 for consistency. For the “+”
case, x11 = c11

2a11
when the eigenvalue λ1 = a11 ∈ σ(A) is nonzero. For ? = H, we have the

underdetermined equation <e(a11x11) = c11 (for the “+” case) or =m(a11x11) = 0 (for the “−”
case). For x12 and x21, we have the equation

[
a?11I A22

] [ x12

x21

]
= c̃12

which is underdetermined when c̃12 is in the span of [a?11I, A22] (always holds if A is nonsingular).
The equation for X22 is smaller but similar to the original ?-Lyapunov equation.

4.3.1 Symmetric/hermitian solution

With the transformed equations, for ? = T :

PAPH · PXPT ± PXTPT · PATPT = PCPT

or for ? = H:
PAPH · PXPH ± PXHPH · PAHPH = PCPH ,



16 C.-Y. CHIANG, E. K.-W. CHU & W.-W. LIN

we can impose the (anti-)symmetry constraint X? = ±X. Equations (42)–(44) then imply similar
equations for x11 and X22 as in the non-symmetric/Hermitian case. For x12 = x21 (and similarly
for the anti-symmetric/Hermitian case), we have

(a?11I ±A22)x12 = c̃12

retrieving the solvability condition for the ordinary Sylvester/Lyapunov equation. This requires
the eigenvalues λj and λj of A to satisfy λ?i ± λj 6= 0. When i = j and ? = T , this indicates that
we cannot have zero eigenvalues for the “+” case and the “−” case gives rise to an undetermined
x11, with c11 = 0 automatically from the anti-symmetry of C. When i = j and ? = H, no
eigenvalue λi can be purely imaginary/real. Note that x11 is underdetermined and so are all the
diagonal elements of X.

4.3.2 Rectangular A

The T-Lyapunov equation with rectangular A has been studied in [3] using generalized inverse
(which can only be realized using the SVD). Please consult [3] for solvability conditions and
the formula for the general solution. Here we construct the solution, and implicitly derive the
solvability conditions, using the SVD. In the next subsection, the cheaper QR decomposition [11]
is used instead to derive the same solution.

When A is rectangular, the SVD of A:

A = UDV H =
[
U1 U2

] [ Σ 0
0 0

] [
V1 V2

]H (45)

gives rise to the transformed T-Lyapunov equation:

UDV HX ±XTV DTUT = C ⇔ D(V HXU)± (UHXTV )D = UHCU

or the transformed H-Lyapunov equation:

UDV HX ±XHV DTUH = C ⇔ D(V HXU)± (UHXHV )D = UHCU .

We then have[
Σ 0
0 0

] [
X11 X12

X21 X22

]
±
[
X?

11 X?
21

X?
12 X?

22

] [
Σ 0
0 0

]
=
[

C11 C12

±C?12 C22

]
(46)

or

ΣX11 ±X?
11Σ = C11 ,

ΣX12 = C12 ,

X21, X22 = free ;

requiring C22 = 0 for consistency. With σk being the singular values of A, the first equation has
the form

σixij ± σjx?ji = cij .
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For i 6= j, we can solve these equations in the least squares sense:[
xij
x?ji

]
=

cij
σ2
i + σ2

j

[
σi
±σj

]
,

or let xji (j > i) be free and express xij in terms of xji:

xij =
cij ∓ σjx?ji

σi
.

For i = j, we have
σi(xii ± x?ii) = cii .

When ? = T , xii = cii

2σi
for the “+” case, or xii is free requiring cii = 0 (from the anti-symmetry

of C) for consistency for the “−” case. When ? = H, <e(xii) = cii

2σi
with =m(xii) free for the

“+” case, or =m(xii) = cii

2σi
with <e(xii) free for the “−” case.

Note that minimum norm and minimum residual solutions are feasible from the above formu-
lation.

Applying the formula in [3] with A in SVD, we obtain

X̃ ≡
[
X11 X12

X21 X22

]
=
[

1
2Σ−1C11 + Z11Σ Σ−1C12

Y21 Y22

]
(47)

where Y21 and Y22 are arbitrary and Z11 = ∓Z?11. The solutions are identical except the (under-
determined) calculations involving X11 is handled differently in [3] by the choice of Z11. For a
general A, we have to choose an arbitrary Z such that

(PT2 ZP2)T = ∓PT2 ZP2 (48)

where P2 = ATG with G satisfying ATGAT = AT . To choose Z using the SVD in (45), we have
P2 = V1V

H
1 and (48) becomes

V 1V
T
1 (ZT ± Z)V1V

H
1 = 0⇔ V T1 V (Z̃T ± Z̃)V HV1 = 0 , Z̃ ≡ V TZV =

[
Z11 Z12

Z21 Z22

]
;

implying the same condition for Z11 (= ∓Z?11) as in (47). Consequently, we might as well use the
SVD of A to solve the T-Lyapuniov equation as in (46).

4.3.3 QR

The SVD in Section 4.3.2 can be replaced by the cheaper but equally effective QR decomposition.
Let

A = QRΠ = Q

[
R11 R12

0 0

]
Π

for some nonsingular R11 and permutation matrix Π. The transformed equation is, for ? = T :

R(ΠXQ)± (ΠXQ)TRT = QHCQ

or, for ? = H:
R(ΠXQ)± (ΠXQ)HRH = QHCQ .
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These have the form[
R11 R12

0 0

] [
X11 X12

X21 X22

]
±
[
X?

11 X?
21

X?
12 X?

22

] [
R?11 0
R?12 0

]
=
[

C11 C12

±C?12 C22

]
.

Then we have

R11X11 ±X?
11R

?
11 = C11 −R12X21 ∓X?

21R
?
12 ,

R11X12 = C12 −R12X22 .

with X21 and X22 free. We can obtain X12 from the second equation and then retrieve X11 from
the first. The first equation can be solved using the techniques in Section 4.2.

Alternatively, let A? = QRΠ, then we have R?(Q?X) ± (X?Q)R = ΠTCΠ and similar pro-
cedures follow. Minimum norm and minimum residual solutions are feasible from the above
formulation.

Note that the solution of the ?-Lyapunov equation, with more symmetry, is easier than that
of the Lyapunov equation, which requires the more expensive Schur decomposition.

5 Conclusions

We have considered the solution of the ?-Sylvester equation which has not been fully investigated
before. For the square case, solvability conditions have been derived and algorithms have been
proposed. Preliminary numerical results shows that the algorithms behave promisingly. The
rectangular case and some related equations, especially the ?-Lyapunov equation, have also been
considered.

It is interesting and exciting that the ? above the second X in (1) makes the equation behave
very differently. The solvability condition in terms of non-intersecton of the spectra σ(A) and
σ(B), for the ordinary Sylvester equation AX ±XB = C, is shifted to (19) for the generalized
spectrum σ(A,B). In addition, (1) looks like a Sylvester equation associated with continuous-
time but (19) is satisfied when σ(A,B) in totally inside the unit circle, hinting at a discrete-time
type of stability behaviour.

For numerical solution, the varying levels of difficulty and complexity for various equations
are also intriguing. In terms of increasing complexity, the ?-Lyapunov, Lyapunov, Sylvester,
?-Sylvester and generalized ?-Sylvester equations require, respectively, the QR, Schur, Schur-
Hessenberg, generalized Schur and periodic Schur decompositions. The ? makes the Lyapunov
equation easier (by creating more symmetry) yet forces the Sylvester equation the opposite di-
rection.

On future work, we are interested in the solution of the ?-Riccati equation (Appendix I)
and the generalized algebraic Riccati equations (Appendix II). Preliminary numerical results by
Newton’s method are encouraging but also reveal several problems. The related work will be
published elsewhere. Other possible future research problems include the estimation of practical
error bounds and condition numbers, the conditions which guarantee good condition of X in (1),
(32) and (38), more thorough numerical tests and a cheaper algorithm (preferably involving the
Schur/Hessenberg decomposition of (A,B)) for (1), as well as the detailed analysis and numerical
solution of the rectangular case of the ?-Sylvester equation and the other related equations in
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Section 4 and Appendix II, and the behaviour of the alternative sep functions

sep2(A,B) = min
X 6=0

‖AX −X?B?‖
‖X‖

, sep3(A,B) = min
X 6=0

‖AXB? −X?‖
‖X‖

and

sep4{(A,C); (B,D)} = min
X 6=0

‖AXB − CX?D‖
‖X‖

for A,B,C,D ∈ Cn×n.

Appendix I: Palindromic Linearization λZ + Z?

An interesting application, for the ?-Sylvester equation (1)

AX ±X?B? = C , A,B,X ∈ Cn×n

arises from the eigensolution of the palindromic linearization [6]

(λZ + Z?)x = 0 , Z =
[
A B
C D

]
∈ C2n×2n .

Applying congruence, we have[
In 0
X In

]
(λZ+Z?)

[
In X?

0 In

]
=
[

λA+A? λ(AX? +B) + (XA+ C)?

λ(XA+ C) + (AX? +B)? λR(X) +R(X)∗

]
with

R(X) ≡ XAX? +XB + CX? +D .

If we can solve the ?-Riccati equation
R(X) = 0 ,

the palindromic linearization can then be “square-rooted”. We then have to solve the generalized
eigenvalue problem for the pencil λ(AX? + B) + (XA + C)?, with the reciprocal eigenvalues in
λ(XA+ C) + (AX? +B)? obtained for free.

It is easy to show from the ?-Riccati equation that its solution corresponds to the (stabilizing)
deflating subspaces of λZ + Z? spanned by

(S1, S2) ≡
([

X?

I

]
,

[
I

−X

])
.

It turns out that the palindromic symmetry in the problem leads to the orthogonality property
S?1S2 = 0, allowing the above congruence to annihilate the lower-right corner of the transformed
pencil, thus square-rooting the problem.

Solving the ?-Riccati equation is of course as difficult as the original eigenvalue problem of
λZ + Z?. The usual invariance/deflating subspace approach for Riccati equations leads back to
the original difficult eigenvalue problem. The obvious application of Newton’s method lead to the
iterative process

δXk+1(AX?
k +B) + (XkA+ C)δX?

k+1 = −R(Xk)

which is a ?-Sylvester equation for δXk+1.
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Appendix II: Generalized Algebraic Riccati Equations

In [5], the numerical solution of the following generalized algebraic Riccati equation (GARE) was
investigated:

ATaXa +XT
a Aa + (CTa JCa −BaJ ′BTa )−XT

a Ba(J ′)−1BTaXa = 0 such that ETa Xa = XT
a Ea

where

Ea =
[
E 0
0 0

]
, Aa =

[
A B
0 I

]
, Ca =

[
C D

]
, Ba =

[
0
−I

]
and some E,A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×n, D ∈ Rp×m, J ∈ Rp×p, J ′ ∈ Rm×m, E is singular
and J, J ′ are symmetric and nonsingular. Applying Newton’s method, each iterative step will
involve the solution of the coupled set of two T-Lyapunov equations

(ÃX̃ + X̃T ÃT , ẼX̃ − X̃T ẼT ) = (B̃, C̃)

with some square Ã, B̃, C̃, Ẽ and X̃ with B̃ (and C̃) being (anti-)symmetric. This coupled set of
equations is equivalent to a T-Sylvester equation, as described in Section 2.3. Numerical solution
can be achieved through the equivalent T-Sylvester equation, or directly through the generalized
Schur decomposition of (Ã, Ẽ).

There is also a similar GARE in [17]:

ATX +XTA+ CTC +XTBBTX = 0 such that ETX = XTE

in the H∞ control of the descriptor system

Eẋ = Ax+Bu , y = Cx

where E,A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. This GARE may also be solved similarly.

Appendix III: Solution of T-Sylvester Equations using Gen-
eralized Inverses

In [14], the solution of

AX +XTC = B ; A,C ∈ Cm×n (m 6= n) (49)

was investigated using generalized inverses. We shall only quote the main result, ignoring some
special cases.

Let G ≡ A(1), the 1-inverse which satisfies AGA = A, with AP1 = P2A = A and the
projections P1 = GA and P2 = AG. In addition, let A1 ≡ AT + C, A2 ≡ AT − C, A3 ≡
(I−P22)A1, B1 ≡ B+BT , B2 ≡ B−BT , B3 ≡ 2B−AT1 PT22Z2P22A2−AT2 PT22Z2P22A1, G1 ≡ A(1)

1 ,
G2 ≡ A

(1)
2 , G3 ≡ [(I − P22)A1](1), P11 ≡ G1A1, P12 ≡ A1G1, P21 ≡ G2A2, P22 ≡ A2G2,

P31 ≡ G3(I − P22)A1, and P32 ≡ [(I − P22)A1](1). We have the following result for the solution
of (49):



?-Sylvester Equation AX ±X?B? = C 21

Theorem 5.1 [14, Extension 2] The necessary and sufficient conditions for the solvability of
(49) are:

(I − PT11)B1(I − P11) = 0 , (I − PT21)B2(I − P21) = 0 , (I − PT31)B3(I − P31) = 0

and

B3 = B2 −
{

1
2
PT11B1P11 +AT2 G

T
1 B1(I − P11) + PT12Z1P12A1−[

1
2
PT11B1G1 + (I − PT11)B1G1 −AT1 (PT12Z1P12)A2

]}
, (50)

where ZT1 = −Z1 and ZT2 = Z3.
When the above conditions are satisfied, the general solution to (49) is

X =
1
2
GT1 B1P11 +GT1 B1(I − P11) + (PT12Z1P12)A1+

(I − PT12)
[

1
2
GT3 B3P31 +GT3 B3(I − P31) + (I − PT31)Y + PT32ZP32A3

]
,

with Y and Z being arbitrary.

(The first G1 inside the square brackets in (50) was mistaken to be an undefined G11 in [14].)
It is obvious that the above result is so complicated that it is virtually impossible to implement.
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