An interesting application, for the x-Sylvester equation

AX+X*B*=C, A DB,XeC™"

arises from the eigensolution of the palindromic linearization
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Appying congruence, we have
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with

R(X)=XAX"+XB+CX*+ D. (0.1)

If we can solve the x-Riccati equation
R(X)=0

the palindromic linearization can then be “square-rooted”. We then have to
solve the generalized eigenvalue problem for the pencil \(AX*+ B) + (X A+
C)*, with the reciprocal eigenvalues in A(XA + C) + (AX* + B)* obtained
for free.

It is easy to show from the x-Riccati equation that its solution corresponds
to the (stabilizing) deflating subspaces of AZ + Z* spanned by

swsa=(17 ][ 1 ]):

It turns out that the palindromic symmetry in the problem leads to the
orthogonality property 5752 = 0, allowing the above congruence to annihilate
the lower-right corner of the transformed pencil, thus square-rooting the
problem.

Solving the x-Riccati equation is of course as difficult as the original
eigenvalue problem of AZ + Z*. The usual invariance/deflating subspace



approach for Riccati equations leads back to the original difficult eigenvalue
problem.
Let

R=AX* + B,
S = A*X* + O,

then we have
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Some Observation:
o Let W=2*Z""if A€ o(W) then ; € o(W) since

det(W — AI) = (=\)" det(Z2* Z~")det(W — %1).

e In CARE, the Hamiltonian matrix H € C?*"*?" is satisfying

(HIT)" =HJT,
where J = [ 7 _11. We can get the partition of H as the form
_|Hy Hy
=i )

where Hy = Hj and Hs = Hj. It is corresponding to the CARE
XHyX + XH,+H{X — Hs = 0.

What is the similar results for the T-Rittati equation?, What
is the structure of W = Z*Z-1?



Another obvious application of Newton’s method lead to the iterative
process

which is a x-Sylvester equation for 0 Xy, .

Algorithm of Newton’s iteration for T-Riccati Eq.

Set
X is given
For £k =0,1,..., compute X, until convergence
Solve the T-Sylvester Eq.
(C+ XpA) X+ Xen(B+ AX)) = X, AX] — D. (0.2a)

End of algorithm

Algorithm of Fixed-point iteration for T-Riccati Eq.
Set

Xp is given
for k=0,1,..., compute X, until convergence
Solve
Xe1(AX] + B) = —(CX,] + D), (0.3a)
or
(XrA+ )X} = — (X, B+ D), (0.3b)

End of algorithm

Example 0.1. We generating the coefficient matrices A, B,C, D and the
solution X by the Matlab command



and

D=—(XAXT+XB+CX").

We compare the numerical behavior of the Fixed-point algorithm and the
Newton’s method with respect to the numbers of iterations (ITs), the CPU
times in seconds, and the “normalized” residuals (NRes):

|IXAXT + XB+CXT 4+ D|
[ X oo ([Alloa 1X oo + 1 Blloc) + ICHloc 1 X Moo + 10|

where X is the approzimate solution to the solution of (0.1).

o Fixed-point Iteration: iteration number:200-300. Newton Iteration: it-
eration number: 8-20.
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Figure 0.1: The graph of FPI and NM w.r.t Xy = aX.

o Figure 0.1: Let Xo=a*x X, wherea=1—1le—3:1le—6:14 le — 3,
resy and res, are the residuals of FPI and NM, respectively.

o In this test, we let Xo = aX, then NTI and FPI are converge to two
different solution of X, = X and Xy of (0.1), respectively.
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We take n = 5,10, 15,20,25,30. The IT counts, CPU times and NRes
for FPI and NTI are listed in Table 1.

Table 1: Numerical results for n increase.

Methods FPI NTI Methods FPI NTI
IT IT
n=>5 | CPU n=10 | CPU
NRes NRes
IT IT
n=15| CPU n=20 | CPU
NRes NRes
IT IT
n=25| CPU n=30 | CPU
NRes NRes




