An interesting application, for the *-Sylvester equation

$$AX \pm X^*B^* = C$$
, $A, B, X \in \mathbb{C}^{n \times n}$

arises from the eigensolution of the palindromic linearization

$$(\lambda Z + Z^*)x = 0$$
, $Z = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathbb{C}^{2n \times 2n}$.

Appying congruence, we have

$$\begin{bmatrix} I_n & 0 \\ X & I_n \end{bmatrix} (\lambda Z + Z^*) \begin{bmatrix} I_n & X^* \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} \lambda A + A^* & \lambda (AX^* + B) + (XA + C)^* \\ \lambda (XA + C) + (AX^* + B)^* & \lambda \mathcal{R}(X) + \mathcal{R}(X)^* \end{bmatrix}$$

with

$$\mathcal{R}(X) \equiv XAX^* + XB + CX^* + D. \tag{0.1}$$

If we can solve the *-Riccati equation

$$\mathcal{R}(X) = 0$$

the palindromic linearization can then be "square-rooted". We then have to solve the generalized eigenvalue problem for the pencil $\lambda(AX^*+B)+(XA+C)^*$, with the reciprocal eigenvalues in $\lambda(XA+C)+(AX^*+B)^*$ obtained for free.

It is easy to show from the \star -Riccati equation that its solution corresponds to the (stabilizing) deflating subspaces of $\lambda Z + Z^{\star}$ spanned by

$$(S_1, S_2) \equiv \left(\left[\begin{array}{c} X^* \\ I \end{array} \right], \left[\begin{array}{c} I \\ -X \end{array} \right] \right).$$

It turns out that the palindromic symmetry in the problem leads to the orthogonality property $S_1^*S_2 = 0$, allowing the above congruence to annihilate the lower-right corner of the transformed pencil, thus square-rooting the problem.

Solving the \star -Riccati equation is of course as difficult as the original eigenvalue problem of $\lambda Z + Z^{\star}$. The usual invariance/deflating subspace

approach for Riccati equations leads back to the original difficult eigenvalue problem.

Let

$$R = AX^* + B,$$

$$S = A^*X^* + C^*,$$

then we have

$$Z \begin{bmatrix} X^* \\ I \end{bmatrix} = \begin{bmatrix} X^* \\ I \end{bmatrix} R$$
$$Z^* \begin{bmatrix} I \\ -X \end{bmatrix} = \begin{bmatrix} I \\ -X \end{bmatrix} S,$$

thus,

$$Z^{-*}Z \begin{bmatrix} X^* \\ I \end{bmatrix} = \begin{bmatrix} X^* \\ I \end{bmatrix} S^{-1}R$$
$$Z^*Z^{-1} \begin{bmatrix} I \\ -X \end{bmatrix} = \begin{bmatrix} I \\ -X \end{bmatrix} SR^{-1}.$$

Some Observation:

• Let $W\equiv Z^*Z^{-1}$, if $\lambda\in\sigma(W)$ then $\frac{1}{\overline{\lambda}}\in\sigma(W)$ since $\det(W-\lambda I)=(-\lambda)^n\det(Z^*Z^{-1})\overline{\det(W-\frac{1}{\overline{\lambda}}I)}.$

• In CARE, the Hamiltonian matrix $\mathcal{H} \in \mathbb{C}^{2n \times 2n}$ is satisfying

$$(\mathcal{HJ})^* = \mathcal{HJ},$$

where $\mathcal{J} = \begin{bmatrix} & -I \\ I & \end{bmatrix}$. We can get the partition of \mathcal{H} as the form

$$\mathcal{H} = \begin{bmatrix} H_1 & H_2 \\ H_3 & -H_1^* \end{bmatrix},$$

where $H_2 = H_2^*$ and $H_3 = H_3^*$. It is corresponding to the CARE

$$XH_2X + XH_1 + H_1^*X - H_3 = 0.$$

What is the similar results for the T-Rittati equation?, What is the structure of $W = Z^*Z^{-1}$?

Another obvious application of Newton's method lead to the iterative process

$$\delta X_{k+1}(AX_k^* + B) + (X_k A + C)\delta X_{k+1}^* = -\mathcal{R}(X_k)$$

which is a \star -Sylvester equation for δX_{k+1} .

Algorithm of Newton's iteration for T-Riccati Eq. Set

$$X_0$$
 is given

For k = 0, 1, ..., compute X_{k+1} until convergence Solve the T-Sylvester Eq.

$$(C + X_k A)X_{k+1}^{\top} + X_{k+1}(B + AX_k^{\top}) = X_k A X_k^{\top} - D.$$
 (0.2a)

End of algorithm

Algorithm of Fixed-point iteration for T-Riccati Eq. Set

 X_0 is given

for $k = 0, 1, \ldots$, compute X_{k+1} until convergence Solve

$$X_{k+1}(AX_k^{\top} + B) = -(CX_k^{\top} + D),$$
 (0.3a)

or

$$(X_k A + C)X_{k+1}^{\mathsf{T}} = -(X_k^{\mathsf{T}} B + D),$$
 (0.3b)

End of algorithm

Example 0.1. We generating the coefficient matrices A, B, C, D and the solution X by the Matlab command

$$A = randn(n),$$

$$B = randn(n),$$

$$C = randn(n),$$

$$X = randn(n)$$

and

$$D = -(XAX^{\top} + XB + CX^{\top}).$$

We compare the numerical behavior of the Fixed-point algorithm and the Newton's method with respect to the numbers of iterations (ITs), the CPU times in seconds, and the "normalized" residuals (NRes):

$$NRes = \frac{\|\widetilde{X}A\widetilde{X}^{\top} + \widetilde{X}B + C\widetilde{X}^{\top} + D\|_{\infty}}{\|\widetilde{X}\|_{\infty}(\|A\|_{\infty}\|\widetilde{X}^{\top}\|_{\infty} + \|B\|_{\infty}) + \|C\|_{\infty}\|\widetilde{X}\|_{\infty} + \|D\|_{\infty}},$$

where \widetilde{X} is the approximate solution to the solution of (0.1).

• Fixed-point Iteration: iteration number: 200-300. Newton Iteration: iteration number: 8-20.

Figure 0.1: The graph of FPI and NM w.r.t $X_0 = aX$.

- Figure 0.1: Let $X_0 = a * X$, where a = 1 1e 3 : 1e 6 : 1 + 1e 3, res_f and res_n are the residuals of FPI and NM, respectively.
- In this test, we let $X_0 = aX$, then NTI and FPI are converge to two different solution of $X_n = X$ and X_f of (0.1), respectively.

We take n = 5, 10, 15, 20, 25, 30. The IT counts, CPU times and NRes for FPI and NTI are listed in Table 1.

Table 1: Numerical results for n increase

Table 1: Numerical results for n increase.							
Methods		FPI	NTI	Methods		FPI	NTI
n=5	IT			n=10	IT		
	CPU				CPU		
	NRes				NRes		
n = 15	IT			n=20	IT		
	CPU				CPU		
	NRes				NRes		
n = 25	IT			n=30	IT		
	CPU				CPU		
	NRes				NRes		