
An interesting application, for the ?-Sylvester equation

AX ±X?B? = C , A, B, X ∈ Cn×n

arises from the eigensolution of the palindromic linearization

(λZ + Z?)x = 0 , Z =

[
A B
C D

]
∈ C2n×2n.

Appying congruence, we have

[
In 0
X In

]
(λZ + Z?)

[
In X?

0 In

]
=

[
λA + A? λ(AX? + B) + (XA + C)?

λ(XA + C) + (AX? + B)? λR(X) +R(X)∗

]

with

R(X) ≡ XAX? + XB + CX? + D. (0.1)

If we can solve the ?-Riccati equation

R(X) = 0

the palindromic linearization can then be “square-rooted”. We then have to
solve the generalized eigenvalue problem for the pencil λ(AX? +B)+(XA+
C)?, with the reciprocal eigenvalues in λ(XA + C) + (AX? + B)? obtained
for free.

It is easy to show from the ?-Riccati equation that its solution corresponds
to the (stabilizing) deflating subspaces of λZ + Z? spanned by

(S1, S2) ≡
([

X?

I

]
,

[
I

−X

])
.

It turns out that the palindromic symmetry in the problem leads to the
orthogonality property S?

1S2 = 0, allowing the above congruence to annihilate
the lower-right corner of the transformed pencil, thus square-rooting the
problem.

Solving the ?-Riccati equation is of course as difficult as the original
eigenvalue problem of λZ + Z?. The usual invariance/deflating subspace
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approach for Riccati equations leads back to the original difficult eigenvalue
problem.

Let

R = AX∗ + B,

S = A∗X∗ + C∗,

then we have

Z

[
X∗

I

]
=

[
X∗

I

]
R

Z∗
[

I
−X

]
=

[
I
−X

]
S,

thus,

Z−∗Z
[
X∗

I

]
=

[
X∗

I

]
S−1R

Z∗Z−1

[
I
−X

]
=

[
I
−X

]
SR−1.

Some Observation:

• Let W ≡ Z∗Z−1 , if λ ∈ σ(W ) then 1
λ
∈ σ(W ) since

det(W − λI) = (−λ)n det(Z∗Z−1)det(W − 1

λ
I).

• In CARE, the Hamiltonian matrix H ∈ C2n×2n is satisfying

(HJ )∗ = HJ ,

where J =

[ −I
I

]
. We can get the partition of H as the form

H =

[
H1 H2

H3 −H∗
1

]
,

where H2 = H∗
2 and H3 = H∗

3 . It is corresponding to the CARE

XH2X + XH1 + H∗
1X −H3 = 0.

What is the similar results for the T-Rittati equation?, What
is the structure of W = Z∗Z−1?
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Another obvious application of Newton’s method lead to the iterative
process

δXk+1(AX?
k + B) + (XkA + C)δX?

k+1 = −R(Xk)

which is a ?-Sylvester equation for δXk+1.

Algorithm of Newton’s iteration for T-Riccati Eq.
Set

X0 is given

For k = 0, 1, . . ., compute Xk+1 until convergence
Solve the T-Sylvester Eq.

(C + XkA)X>
k+1 + Xk+1(B + AX>

k ) = XkAX>
k −D. (0.2a)

End of algorithm

Algorithm of Fixed-point iteration for T-Riccati Eq.
Set

X0 is given

for k = 0, 1, . . . , compute Xk+1 until convergence
Solve

Xk+1(AX>
k + B) = −(CX>

k + D), (0.3a)

or

(XkA + C)X>
k+1 = −(X>

k B + D), (0.3b)

End of algorithm

Example 0.1. We generating the coefficient matrices A,B, C,D and the
solution X by the Matlab command

A = randn(n),

B = randn(n),

C = randn(n),

X = randn(n)
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and
D = −(XAX> + XB + CX>).

We compare the numerical behavior of the Fixed-point algorithm and the
Newton’s method with respect to the numbers of iterations (ITs), the CPU
times in seconds, and the “normalized” residuals (NRes):

NRes =
‖X̃AX̃> + X̃B + CX̃> + D‖∞

‖X̃‖∞(‖A‖∞‖X̃>‖∞ + ‖B‖∞) + ‖C‖∞‖X̃‖∞ + ‖D‖∞
,

where X̃ is the approximate solution to the solution of (0.1).

• Fixed-point Iteration: iteration number:200-300. Newton Iteration: it-
eration number: 8-20.
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Figure 0.1: The graph of FPI and NM w.r.t X0 = aX.

• Figure 0.1: Let X0 = a ∗X, where a = 1− 1e− 3 : 1e− 6 : 1 + 1e− 3,
resf and resn are the residuals of FPI and NM, respectively.

• In this test, we let X0 = aX, then NTI and FPI are converge to two
different solution of Xn = X and Xf of (0.1), respectively.
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We take n = 5, 10, 15, 20, 25, 30. The IT counts, CPU times and NRes
for FPI and NTI are listed in Table 1.

Table 1: Numerical results for n increase.
Methods FPI NTI Methods FPI NTI

IT IT
n = 5 CPU n=10 CPU

NRes NRes

IT IT
n = 15 CPU n=20 CPU

NRes NRes

IT IT
n = 25 CPU n=30 CPU

NRes NRes
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