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Abstract

This dissertation is consisted of two parts. The first part treats of applications of the
structure-preserving doubling algorithm (SDA) to solve various algebraic Riccati equa-
tions, while the second part concerns with the problem of balanced realization for discrete-
time periodic descriptor systems.

In the first part, we investigate structure-preserving algorithms for computing the
symmetric positive semi-definite solutions to the periodic discrete-time algebraic Riccati
equations (P-DARESs), continuous-time algebraic Riccati equations (CAREs) and gener-
alized discrete-time algebraic Riccati equations (G-DARESs), respectively. All are based
on the SDA algorithm for solving the discrete-time algebraic Riccati equations (DARES).
In Section 2 of Chapter 1, we develop the SDA algorithm from a new point of view and
show its quadratic convergence under assumptions which are weaker than stabilizability
and detectability. With several numerical results, the algorithm is shown to be efficient,

out-performing other algorithms on-a large set of benchmark problems.
n & lazge set of

In the second part, necessaryw;@,r;d
ability and observability of pefid§13¢ i
conditions, the symmetric positi‘\;’et‘: ermi-defi f‘jreéchability/ observability Gramians are
defined and can be shown to satisf&" sc;:rrmléf“’p’r‘ébjected generalized discrete-time periodic
Lyapunov equations. We propose a numerical method for solving these projected Lya-
punov equations, and an illustrative numerical example is given. As an application of our

results, the balanced realization of periodic descriptor systems is discussed.
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Chapter 1

Structure-Preserving Algorithms for
P-DAREs

1 Introduction

In this chapter we investigate structure-preserving algorithms for computing the sym-
metric positive semi-definite (s.p.s.d.) solutions {X;}7_; to the periodic discrete-time

algebraic Riccati equations (P-DARESs) of period p > 1:

XNjo1 = AN A; — (B X;A; + S7C)) (R; + Bj X;B;) 1 (Bj X;A; + S5 Cj) + C7 Q4.
(1.1)
Here, for all j, A; = A;, € R"WXW-1L with'n; = nj,, X; = X;4, € R, R; =
Rjip € R™*™ and Q; = Qj4p € R are symmetric positive definite (or s.p.d.; i.e.
R;,Q; >0), Bj = Bjp, € R"*™i | S;= S;.,€ R and C; = Cjyp, € R, with
B, CjT being of full column rank. Furthermore, the matrix ¢); — SjRj_lSjT is supposed
to be symmetric positive definite. Throughout this chapter, the indices j for all periodic
matrices are chosen in {1,---,p} modulo p.
Equations in (1.1) arise frequently in the periodic discrete-time linear optimal control

problem for the periodic systems
Tjy1 = Ajl‘j + B]'Uj, T; € RmM-1,
yj = Cjz;

with the controls {u;} chosen through optimizing the cost function:

min J =
uj

o0
S (yFQyy; + ul Ryus + yl Syuy +uT STy,
j=1

N | —

The periodic optimal feedback controls u} are given by [32]

uj = —(R; + B X;B))" (B X;A4; + S{ Cj)v; (j=1,---,p) (1.2)

where {X;}7_, are s.p.s.d. solutions to (1.1).



Definition 1.1. [32]. The periodic matriz pairs {(A;, B;) Y, are said to be p-stabilizable
(P-S) if the pairs (Aj, B;) are stabilizable (S), for j =1,--+ ,p, where Aj = Ar, )+ + Ax, 1)

and
B = [Any) - Ar; ) Bry ) [ Amy )+ Ary3) By |+ | Ay () By (0-1) [ Bry )
with the permutation 7; defined by

k_.]+1+p7 fOT’kzl,"',j—l,
(k) = , _
k_j+1v fOTk:],"',p-
Definition 1.2. [32]. The periodic matriz pairs {(A;, C;)}Y,_, are said to be p-detectable
(P-D) if the pairs (A;,C;) are detectable (D), for j = 1,--- ,p, where A; and m; are

defined as in Definition 1.1, and
T
C; = |:CT(1)|A71'](1 2)|A7r](1 Q)ij(3| A7 (1) Agr;(p—l)cg;(p)] :

Note that the pair (A4, B) is stabilizable (S) if w”B = 0 and w’A = \w’ for some
constant A implies |A\| < 1 or w = 0; and the pair (4, C) is detectable (D) if (AT,CT)
is stabilizable. Under assumptions of (P-S) and (P-D), P-DAREs have been proved to
possess unique s.p.s.d. solutions [31;-32].

Via elementary matrix calculation; one ¢an show that the P-DAREs (1.1) are equiva-

lent to the following form
X;_1 = (A; — B;R; 'S C;)" X;(A; — B;R;'S] C;)

— (A; — B;R;'S]C))"X;B,(R; + Bf X;B;) ' B] X;(A; — B;R;'S] C})

+C1(Q; — S;R;1 ST, (1.3)
for j = 1,...,p. Tt is easily seen that the periodic matrix pairs {(4;, B;)}j_, are p-
stabilizable if and only if {(A; — B; 1STC’], Bj)}i_, are p-stabilizable. Similarly, the pe-
riodic matrix pairs {(A4;, C;)}5_, are p-detectable if and only if {(4;,— B, R; 'STC;, C;)}5_,
are p-detectable, where 6?6j is a full rank decomposition (FRD) of CT(Q;—S;R;'ST)C;

with C; € R™*™-1. Consequently, with the following FRDs

G;:=B;R;'Bl >0, H;:=C;C; >0, (1.4)



there is no loss of generality to consider, instead of (1.3), the following P-DARESs
X; 1= ATX;A; — ATX;B)(R; + B] X;B;)"'B] X;A; + H;

or

X; 1 =ATX;(I,, + G;X;)"A; + H;. (1.5)

Note that (1.5) is obtained using Sherman-Morrison-Woodbury formula (SMWF; see, e.g.,
59, p. 50]) when (I, + G;X;) " exists.

We now consider the periodic matrix pairs { (M;, L;) }?_, associated with the P-DAREs
in (1.5) with
A; 0 I, G

M, = € Rmi-1+n)x2njy i e Rmj-1+n)x2ni (1 6)
_Hj I 0 AJT

-1
where I,,; denotes the identity matrix of compatible order. It is easily seen that the matrix

pair (M;, L;) is symplectic, that is,

0 I,

1

M;J;M] = L iS5 S 0 ol (1.7)

—1, 0

nj_1
The matrix pair in the form of (1.6); with H,; G being s.p.s.d., is said to be a standard
symplectic form (SSF). Being in SSF is-a central concept in this chapter and is stronger
than being a symplectic form as defined in (1.7). Being in SSF is the structure we try to
preserve in the numerical algorithm.
From (1.6), the P-DAREs in (1.5) can be written, for all j, as
nj—1

M, =L;| 7 |9® (1.8)

Xj,1 Xj

for some appropriate ®; € R™*™. In the case when all A; have equal size and are
nonsingular, the s.p.s.d. solutions X to (1.5) can be easily obtained through the invariant
subspaces, associated with the eigenvalues inside the unit disk, of the periodic matrices
62)

M = Ly My a Ly oMy o Ly M.

Jt+p—1 J J (1.9)



Under the (P-S) and (P-D) assumptions, each II; has exactly n such stable eigenvalues. If

7.
the columns of & spans the stable invariant subspace of II;, then Z;; is nonsingular
Zyj

and X; = ZQjijl for j = 1,---,p. Note that these relations still hold in a generalized
sense if some of the A; are singular or not squared [19, 20, 32, 62, 120]. The theory and
algorithms for this general case will be considered in Section 3.

Periodic linear systems arise naturally from continuous linear systems, when multi-rate
sampling is performed [55]. These systems have many interesting and practical applica-
tions, with notable examples such as the helicopter ground resonance damping problem
and the satellite altitude control problems [25, 30, 126]. Large state-space dimensions or
large periods appear in different circumstances. The analysis and design of such systems
have received much attention in recent years [30, 32, 105, 107, 122, 126]. A numerically
backward-stable periodic QZ algorithm for the P-DARESs, which relies on an extension of
the generalized Schur method, has been proposed in [33, 62]. Reliable parallel algorithms
for solving the P-DARESs based on the swap-and collapse technique have been developed
in [18, 19, 20, 23, 24, 74].

For the case of p = 1, the P-DARESs (1.1)'become a single DARE. A well-known back-
ward stable approach, utilizing the QZalgorithm for computing the unique s.p.s.d. so-
lution to a DARE, has been proposed in [88, 96, 119]. Algorithms using symplectic
orthogonal transformations for solving DAREs have been proposed in [2, 90]. The dou-
bling algorithms with second-order convergence have been developed in [3, 69]. Matrix
sign function-type methods, which solves DAREs implicitly by transforming the sym-
plectic pair into a Hamiltonian matrix, have been developed in [84, 85]. More recently,
a matrix disk function method has been developed in [18, 20] based on an inverse-free
iteration [7, 86] for computing the unique s.p.s.d. solution of DAREs while preserving the
symplectic structure (1.7) in each iterative step.

The QZ-type algorithms [33, 62, 83, 96, 119] (Periodic QZ or QZ) are numerically
backward stable, but do not take into account the symplectic structure of (M}, L;). Non-

structure-preserving iterative processes loosen the symplectic structure, thus may cause



the algorithms to fail or to lose accuracy in adverse circumstances. This will be more se-
rious for ill-conditioned problems, when errors corrupt the stabilizing invariant subspaces
and the solution process based on it. The inversion of some potentially ill-conditioned
matrices cannot be avoided in the matrix sign function-type methods [84, 85], leading to
possible loss of accuracy. The symplectic structure in the algorithms in [2, 90] is preserved
only for systems with single input or output. For the general case, the symplectic structure
is only retained in exact arithmetic. Similarly, in the matrix disk function/inverse-free
methods [7, 18, 19, 20, 23, 24], the symplectic structure can only be preserved in exact
arithmetic. The aforementioned problems in non-structure-preserving algorithms will still
occur, probably to a lesser extent.

In this chapter, we first revisit the doubling algorithm [3, 69] for solving DAREs
while keeping the associated symplectic matrix pairs in SSF in each iterative step. This
algorithm attracted much attention but somehow went out of favor in the last decade.
We develop the doubling algorithm from a_new point of view, which is referred as to
the structure-preserving doubling algorithm (SDA), and show the quadratic convergence
of the SDA under assumptions which are weaker than (S) and (D). More details can be
found in Section 2. Second, we develop-a structure-preserving swap and collapse algorithm
(SSCA) to reduce the P-DARESs toa single DARE while keeping the associated symplectic
matrix pairs in SSF. The P-DARESs can then be solved via the single DARE by SDA.

This chapter is organized as follows. In Section 2, we revisit the doubling algorithm for
solving a single DARE, based on the disk function approach [18]. Convergence and error
analysis are also presented. The relationship between the disk function method and the
doubling algorithm will be discussed. Section 3 contains a structure-preserving algorithm
which swaps and collapses the associated symplectic matrix pairs as in (1.6) to a single
matrix pair in SSF. In Section 4, we report some numerical results for DAREs selected
from [21, 27, 60, 82, 97, 99], comparing the SDA algorithm with the disk function/inverse-
free methods [7, 18, 20] and the method associated with dare in the MATLAB control
toolbox [88]. Section 5 reports the numerical performance of the SSCA+SDA for P-

DAREs sampled from [62, 100, 126]. Concluding remarks are given in Section 6.



2 Structure-Preserving Doubling Algorithm for
DAREs

40 I G
M= , L= (2.1)
“H I 0 AT

where A € R™" R € R™ ™ iss.p.d., B € R"™™ and CT € R™" are of full column rank,
G = BR'BY > 0and H = CTC > 0. The pairs (4, B) and (A, C) are assumed to be
stabilizable (S) and detectable (D), respectively. Then the DARE

X=A"XA-ATXB(R+ B*XB) 'B"XA+H

or

X=A"X(I+GX)"'A+H (2.2)

has a unique s.p.s.d. solution [96]. In this Section, we apply a swap and collapse procedure
to derive the structure-preserving doubling algorithm (SDA) for solving the DARE (2.2),
and prove the quadratic convergence of the-SDA. Note that the quadratic convergence of
the doubling algorithm is proven in {69] for (A4, G, H) which is stabilizable and detectable.
Below, in Theorem 2.2 we shall prove the quadratic convergence of the SDA under weaker
conditions.

Given M and L as in (2.1), we construct

10[00 10]0 0 1000
T -1
po_ |0 L0 0 ey |0 1[0 ATULHG)T | ) | 0001
A 0T 0 0 0|1 AG( + HG)™ 0010
~H 0]0 I 0 0]0 I 0100
] . ] ) (2.3)



and

I 0]0 0
T — OO _ Ty, Tio _ —-H 00 I
Ty Too A(I + GH)™! 0|1 AG(I+HG)™!
~AT(I+HG)'H 1|0 AT(I+HG)!
(2.4)
We then have ) )
1 G
I 0 —(/+ HG)
T = . (2.5)
—-M 0 0
. 0 0 -
The transformation T represents row operations on and is obtained as follows:

-M

(1) Use the identity matrix in the (1,1)-blockin L to annihilate submatrices beneath it.

(2) Then use the resulting (4,2)-bloek {=(f.+ HG)] to eliminate the (2,2)- and (3,2)-
blocks.

(3) Permute the row-blocks to the block-upper triangular form on the right-hand-side
in (2.5).

Ignoring how T is constructed, the above factorization (2.5) can easily be checked by
direct multiplication with the help of the SMWEF.
From (2.4), we define

. AL+ GH)™" 0 - [ AG(I + HG)™
M= T21 = s L= TQQ = s (26)
_AT(I+ HG)'H 1 0 AT(I+HG)

and consequently deduce that

ML = LM. (2.7)



We then compute LL and MM and apply the SMWF to produce

-~ |1 @G - — A 0 _
L= | =LL and M= R = MM, (2.8)
0 AT —H I
where
A = A(I+GH) A, (2.9)
G = G+AG( +HG) AT, (2.10)
H = H+AT(I+HG) 'HA (2.11)

with \hat = denoting the result of one iterative step. Then by (2.8), (M, L) is again in
SSF and satisfies

—_~ A~

M™'L=(M"L)? (2.12)

provided that M and M are invertible. Otherwise, please refer to the detailed proof in
Lemma 2.1 below.

Equations (2.9)-(2.11) have exactly the same form as the doubling algorithm [3, (4)-
(5)] (see also the references therein; as-well as [69, 74]). However, the original doubling

algorithm was derived as an acceleration-schemeé for the fixed-point iteration from (2.2):
Xpp1 = ATX (I +GXp) *A+ H.

Instead of producing the sequence {Xj}, the doubling algorithm produces {X,x}. Fur-
thermore, the convergence of the doubling algorithm was proven when A is nonsingular
(3], and for (A, G, H) which is stabilizable detectable [69]. Our convergence results in
Theorem 2.2 are stronger under weaker conditions (which are implied by (S) and (D)).
The preservation of stabilizability and detectability is shown in Lemma 2.3. The inter-
esting relationship between the SDA and the swap and collapse procedure in Section 3 is
also new. Problems arising from R being ill-conditioned are tackled in [44].

We now describe the SDA for solving the DARE.



SDA Algorithm

Input : A, G, H; 7 (a small tolerance);
Output : s.p.s.d. solution X for DARE.
Initialize j <+ 0, Ag + A, Gy < G, Hy < H;
Repeat W « I + G;H;,
Solve for Vi, V; from WV, = Aj, VoWT = Gj;
Ajpr — AV, Gy < G+ AjVo AT Hjy < Hj + VP HjAj;
Stop when ||Hj., — Hjl|p < 7||Hj1|F;
Set X « Hj.

End of SDA Algorithm

Convergence of SDA

LetM{ 2 2},L {é ;},WhereG—GT,HHT. Suppose M — AL has

no eigenvalues on the unit circle and there exist nonsingular @), Z such that

J, 0 I 0
QM7 = . QLZ = (2.13)
0 I 0

S

where the spectrum A(J;) € Oy = {\: |A| < 1}. For the convergence analysis, we first

prove the following Lemma.

Lemma 2.1. Let T be any 4n X 4n nonsingular matrix such that

L 0 0 M L L 0 M
T<A — =\ H - - . (2.14)
-M L 0 0 0 Lo 0 My

Then

(i) the pencil My — ALay is uniquely determined up to a left transformation.



(i) The pencil M- L is equivalent to the pencil

J2 0 I 0 B
r — A Z
0 I 0 J2

where I = ZL, M= MM are given by (2.8), for some nonsingular matriz T.

. .. Ty Tio _ _ _ L 0
Proof. (i) Partition T' = . Since M — AL is regular, so is A -
Ty, Too —-M L
0 M| . : L. : . .
, implying that is of full column rank. An inspection of (2.14) indi-
0 0 -M
cates that the rows of [Ty1, Tsy] form a basis of the null space of . Therefore, the
-M

pencil Moy — ALgy = Toy M — XI5 L is uniquely determined up to a left transformation.
(ii) From (2.6)—(2.8), we have

Ty The L0 TwL — T oM TioL
M L T 0 L
TH T12 0 M 0 T11M
M L 070 0 M

where M, L are given in (2.6). From the definition of 7" in (2.4), we have

T11:’7 IO-‘ Tu:[o 0]‘
R

Routine manipulations show that

1 G A 0
TnwL =T oM = , TuM =
0 —(I+HG) —HA 0
0 I Js 0
Recall that J = . From (2.4), (2.5) and (2.13), we can choose © =
-1 0 0 0

10



so that

I 010
e L, J'eJ I, 0 QR 0 L 0 Z 0 [0 =10 Js
0 I @ Ln||0oQ||-ML||0 z 0 o[l 0|
0 0[0 J?
0 0|Js O
T@[Jﬁ 701 | [ Lo o [[@ o] lom]|[z o] |oo|lo o
0 o ||e m|loa]loo]lez]| [vo[r
0 0|0 I
By (i) we have
— J?2 0 I 0 L
M—-AL=T — -
0 I 0 J2
for some nonsingular matrix I'. ]
We now prove the following convergence theorems.
Al L G
Theorem 2.2. Let M = e e , where G = GT, H = HT.
—H I 0 AT
Suppose M — AL has no eigenvalues on-the unit circle and there exist nonsingular @,
Zy Zs

Z such that (2.13) holds. Denote Z = , Zi € R™™ for i =1,2,3,4. If Z,

Zy 2y
and Zy are invertible, then the sequences {Ag, Hy, Gy} computed by the SDA algorithm

satisfy
(i) 114l = O(IJZ"[) = 0 as k — oo,
(it) Hp — X, where X solves the DARE (2.2):

X=A"X(I+GX)'A+H,

(i1i)) Gy —Y, where Y solves the dual DARE

Y =AY (I + HY)'AT + G. (2.15)
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Moreover, the convergence rate in (i)-(iii) above is O (|)\n|2k), where |A\| < -+ < |A,] <
L< A7t <ees < N7 with Ay AT being the eigenvalues of M — \L (including 0 and

00).

Proof. LetMO:M:{ Ao OW,LO:L:[I GO-‘.Then
|0 A7 |

A 0 A (I + G 1Hp 1) A 0
M, = k _ k1( k-1Hp 1) k-1 (2.16)
—H, I — [Hyo1 + A (I + Hy 1G1) "Hyo1 Ag ] 1
and
I G I G4+ A 1Gei(I+Hp 1Gy_y) AT
L, = Bl k-1 k—1Gr—1( k—1Gr-1) k=1 | (2.17)
0 Az 0 Agﬁl(l + kale,l)flAill

From Lemma 2.1(ii) and the SDA, we have

J0 I 0 .,
My — ALy =T — A i A (2.18)
i F 0 J?
. , | |
where 'y, = , k= 1,2, dre suitable nonsingular matrices. Let
[ Lop DTag J
X =277, Y=-Z377 (2.19)

Z Z
From (2.13), it follows that the spans R ' and R ’ respectively form
Zy Zy

the stable invariant subspaces of M — AL and (JTLJ) — A(JTMJ). By the result of [96],
it is clear that the symmetric X and Y solve the DAREs (2.2) and (2.15), respectively.

Now, by row-block elimination using Z; as pivot, we can compute

ZUMI-Y(I +XY)'X] Z7'Y (I + XY)™!
~Z I+ XY)TIX Z I+ XYy)™!

Zt =

ZIMIT+Y X))t ZrWW (I 4+ XY) ! (2.20)
ZOI+XY)TIX Z7 T+ XYY | '

12



Substituting Z ' in (2.20) into (2.18), we obtain

A 0| | Ty Tx JEZI+YX)" JEZ7Y(I+ XY) !
—H, I Pop Ty | | ~Z,'I+XY)T'X ZM(I+ XY)!
and
I Gy | | T Ty ZTW I+ YX) ! Z7W(I+ XY) !
0 A7 Cop Tup | | T2 2 (T 4+ XY)'X J2 2, (T +XY)™!

From the (2,1)-block of (2.22), we obtain
TopZy (I +YX) ' =Ty 2, X(T+ Y X) !

implying that
Top = D2 27X 2y,

Consequently, (2.24) and the (2,2)-block of (2.21) lead to

Lap [Zgl(f +XY) P RZA X 2 Y (T + XY)”} =1.

It then follows from (2.24) and (2.25) that
P = (1 + XV)Zy +O([250) . Twe =0 (172

for sufficiently large k.
Similarly, from the (1,2)-block of (2.21), we have

Ty, = D> Z7'Y 2.

From the (1,1)-block of (2.22), we obtain

Ty | 27N I+ Y X)) + J2 20 Y 2,07 27T + XY)—lx} =T

It follows from (2.27) and (2.28) that

= (1 +YX)Z+0 (17271) . Toe=0 (172

13
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for sufficiently large k. From (2.26) and the (2,1)-block of (2.21), we obtain
Hy =Ty Z I+ XY) X T d? Z7 (I +YX) ' =X+ 0 (||J3’““ ||) (2.30)
for sufficiently large k. Equation (2.29) and the (1,2)-block of (2.22) then lead to
Gr=TuZ (I +YX) WY + T2 Z I+ XY) ' =Y + O (||J§’““ ||) (2.31)

for k sufficiently large.
Finally, (2.29) and the (1,1)-block of (2.21) imply

A =Ty 20T+ Y X) ™ =T Z7 (T + XV)7'X = (1 +VX) 272 Z7 = 0 (||Jfk ||) .
(2.32)

Since the spectral radius of J; equals to |\, < 1, (2.30)—(2.32) imply the results in
(i)—(iii), as well as the O <|)\n|2k> rate of convergence. O

The following Lemma proves that. the-stabilizability and detectability properties are
preserved by the SDA throughout its iterative process.

Lemma 2.3. The stabilizability of (A; B) implies that (ﬁ, E) is stabilizable, where G =
BBT > 0 is a FRD of G. The detectability of (A, C) implies that (ﬁ, 6) is detectable,
whereflzaTaz 0 is a FRD offI.

Proof. See Appendix. O

A 0 I G
Theorem 2.4. Let M = and L = with G = BR™'BT > 0 and
—-H 1 0 AT

H = C"C > 0. Assume that (A, B) is stabilizable and (A, C) is detectable. Then the
sequences { Ay, Hy, G} computed by the SDA satisfy (i), (ii), (iii) as in Theorem 2.2.

Proof. Tt is well-known that these reasonable assumptions implies that M — AL has no
eigenvalues on the unit circle, and that Z; and Z; are invertible (see, for example, [84, 95],

for details). Thus the conditions in Theorem 2.2 are satisfied. O
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Remark. Theoretically, the convergence behavior for the SDA and the algorithms in
[7, 18, 20] are similar. Nevertheless, Theorem 2.2 directly proves, under the as-
sumptions that M — AL have no unit modulo eigenvalues and 7, 7, are invertible,
that the sequences {Ay, Hy, G} generated by the SDA converge to zero and the
unique s.p.s.d. solutions of the DAREs in (2.2) and (2.15), respectively. Lemma 2.3
shows the preservation of stabilizability and detectability of the iterates (A, Gy, Hy)
generated by the SDA. Furthermore, in Theorem 2.4, we see that the assumptions
in Theorem 2.3 are weaker than the conditions (S) and (D). This distinction of
preserving the symplectic structure in SSF, as well as the difference in operation

counts, are responsible for the superior performance of the SDA.

Computation of 121\, G and H

We now propose a structured and efficient procedure for the computation of A\, G and
H in (2.9)-(2.11), respectively, where' G = BBT > 0, H = CTC > 0 are FRDs. Let
W = (I +GH)™L. 1t is easily seen that HW-=WTH and GWT = W@ are s.p.s.d.. By
the SMWF we can derive the formulae

W=(I+GH) ' =TI~ B({+B"HB) 'B"H, (2.33)
GW' =G -GCT(I+CcGC)™'CG = B(I + BP"HB)'B, (2.34)
WT'H=H - HB(I+B"HB) 'B"H=C"(I +CcGC")'C. (2.35)

When B and C start with low ranks, we can improve the efficiency of our computation
further by the following compression process. Compute the Cholesky decomposition of
We=(I+BTHB) = KLKp and Wy = (I + CGCT) = KcKL. Apply (2.33)-(2.35) to
(2.9)-(2.11), we compute

A=A2— AB(I + B'THB) 'BTHA, (2.36)
G =G+ AB(I + BTHB) 'BT AT

BT

K BT AT

Il
ss))
o)
N
V4
(@)
)
=
S

= [ B, ABKj' ] (2.37)
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and
H=H+A"C"(I+CGC") 'CA

C PN
= [ cT, ATCTK." ] =C"C >0 (FRD), (2.38)
K,'CA

where B and C7 are the full column rank compressions of matrices | B, ABK'
and [ cT, ATCTK;" ], respectively. In general, rank(g) > rank(B) and rank(a) >
rank(C'), and the compression process becomes unprofitable when the ranks of B and O

reach n.

Remark. From (2.34) and (2.35), it is necessary to compute the Choleskey decomposi-
tions of the symmetric positive definite matrices Ws and Wy when updating G and
H. This requires m?®/3 +r3/3 flops. If, instead of Cholesky factors, we compute the
square roots of Wi and Wy in (2.34) and (2.35), then an additional 12(m? + r?)

flops are required. Here the square roots of W and Wy are obtained from

We = KEKp = VaSpVi = (VeSpViE) (VeSpVE) = X2

Wy = KoK =UeSeUL = (UcXcUL) (UeSeUL) = X2,

and the SVDs Kz = UgXpVy and Ko = UcSc V. Cheaper methods for calculat-
ing the square roots are available but the corresponding implications on numerical
stability and cost benefits are questionable. As a result, we do not choose the square

root alternative in our algorithm.

Error Analysis of SDA

We now consider the errors in calculating A, G and H as in (2.9)—(2.11), respectively.
From (2.9)—(2.11) we see that the matrix W = (I + GH)™! occurs frequently in the SDA
algorithm, for some generic s.p.s.d. matrices G and H. From (2.33)—(2.35), instead of
inverting the nonsymmetric (I +GH), we can invert the s.p.d. matrices (I + BT HB) and

16



(I + CGCT), when updating of A, G and H. The conditioning of (I + BTHB) in (2.33)
and (2.34) (or (I + CGCT) in (2.35)) is well-known, with the condition number being

1+ o2, (CB)
K= 1522 (Ch) 22 (CB) (2.39)

and o denoting the singular values. The error analysis in the updating (A, G, H) to
(A, G, H) in (2.9)(2.11) is thus reduced to the routine discussion about the accumulation
of errors in forming sums and products. With § indicating errors, |F'| denoting the matrix
with all signs of elements in F' ignored and A denoting the maximum error in the starting

data A, G and H, we typically have the asymptotic inequalities
[HOA[ [[[6GI]], [I[0H][] = (e1 + mez) A

with ¢; and ¢y being polynomials in n of low degrees. Note that the coefficients ¢; and ¢,y
are dependent on the sizes of A, G and H.

When the condition number  in (2.39) is bounded by an acceptable number, the
accumulation of error will be dampened by the.fast rate of convergence at the final stage
of the iterative process. Danger; if any; lies in-the early stage of the process before the
)\?f convergence factor dominates. It is unlikely-to have any ill-effect, as the accumulated
error in the matrix additions and multiplications'should be of magnitude around a small
multiple of the machine accuracy.

As the SSF properties are preserved in the SDA, any error will be a structured one,
only pushing the iteration towards a solution of a neighboring SSF system. Thus the
algorithm is stable in this sense, when the errors are not too large and when stabilizability
and detectability are maintained. For large ks, as Ay — 0, G} and Hj converge to the
unique s.p.s.d. solutions of (2.15) and (2.2), respectively. Danger again will only comes at

the initial stage of the iteration. Corresponding checks may be prudent in the algorithm.

Operation Counts

The matrix disk function method in [18, 20] is developed to solve the DARE (2.2) by using

a swapping technique built on the QR decomposition. We refer the algorithm presented in
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[18, 20] as QR-SWAP. We shall perform a flop-count for the SDA as well as the QR-SWAP
algorithm. For the counts for components like LU- and QR-decompositions, consult [59]

for details. For the SDA, we have the following count for one iteration:

Calculation in SDA Flops
GH n?
LU decomposition of I + GH | 2n®
(I+HG)™ AT n?
A=A(I+GH)'A n3
(I+GH)'A n3
AG n?
G=G+AGUI + HG) AT 1n?
HA n?
H=H+A"(I+HG)"HA | ln?
The total count = 23—3713

There is a small saving by (2.33)+(2.35).at the early stage of the iteration, when G
and H have low ranks. We ignore this-saving in the above count. Note that the symmetry
in G and H saves n® flops. We have also ignored any O(n?) operation counts and the
memory counts.

For the QR-SWAP algorithm [18, 20], we have the following count for one iteration:

18



Calculation in QR-SWAP Flops

— 80,3
Q = 3N

Qu Q2

Forming () = 3
Qa1 Q2

Qa1 L 8n?

QoM 8n?

The total count = 3523

3

There is some saving for the QR-SWAP algorithm in the first iteration, making use
of the structure in M and L. This structure is lost in the later stages. There is also
some saving in the accumulation of Householder factors when forming @, as only part of
@ is later required. This accounts for part:of:the over-estimation in the table above, as
compared to the operation count of *22n? flops from [18, 20].

The operation count for the SDA-is about 7%:of that for QR-SWAP. This is mainly due

L
to the fact that the main steps in QR-SWAP-involve the QR decomposition of €

-M
RA*2m and the formation of ) € R***"_all in higher dimensions. The operations in the

SDA are all within R™*™.

It is difficult to conduct an operation count for dare, mainly because of the itera-
tive nature of the Schur decomposition before invariant subspaces and solutions can be
obtained. Operation counts per iteration should be of the same order as QR-SWAP. Pe-
ripheral operations in MATLARB itself also add heavily to the count and making a detailed

comparison difficult.
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3 Swap and Collapse

Recall that the s.p.s.d. solutions {X;}}_, to the P-DAREs (1.5) can be obtained from the
invariant subspace associated with the stable eigenvalues for IT; in (1.9) when all A; are
nonsingular. In general, the representation of II; in (1.9) can also be applied when some
of A; are singular or even not squared as in (1.4). The swap and collapse process [19, 20],
which does not form the product II; in (1.9) explicitly, can be used to compute X,_; by
swapping the order of the products and collapsing them into a single symplectic matrix
pair (]\//.7], EJ) such that IT; = /L\J-_IJ\/I\]-, where Zj, M\J € R?%i-1%2n-1_ The process relies on

the following Lemma [20, Lemma 1]:
Lemma 3.1. Consider E € R**Y, F € R™ and let

Qu Q2 E R
Qa1 Q2 —-F 0

be a QR factorization of [ET, —FT]T where R € R, Q1 € RY*%, Q19 € R, Qq €
REFDXS and Qg € RETDX T Then,

O R (3.1)

Here, the inverse of E or ()95 is purely notational. In fact, the relation in (3.1) denotes
the relation Q21 E = Qo F. We use the relation Q5 Q21 = FE~! in the swap and collapse
process even when E or (Qys are singular or not squared. Using Lemma 3.1, the order of
the products in (1.9) can be swapped, with all Ls collapsed together to form E;l As an

illustration, let us consider the following II; for a period p = 4:
Hl == LZIM4L§1M3L;1M2L;1M1. (32)

Note that the sizes of matrices M; and L; are given in (1.6) with n; = n;;4. Applying
Lemma 3.1, we can swap the order in the product ML, ' = (LP)*MS) to obtain

I, = L, "MLy ' M;Ly (L) M8V by
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Collapsing Lgl)LQ and Mél)Ml into, respectively, Li., and Mi.5, we obtain

H1 - L21M4L§1M3LE%M1:Q.
Repeat the process, swapping MsLjs = (LS%)*IM?EI) and then collapsing the resulting

terms, we obtain, with Ly My = Ly (L)1 MSY M,
Iy = L "MLy (L) M My = Ly MLy My,
A final swap for ML, 3 = (LS;)_IMS) and the associated collapse step will produce
My = Ly (L))~ M) My = LM,

where L4, M, € R?*>*?"  The solution X, can then be calculated via the stable
invariant subspace of (Mj.4, L1.4), with other X (k # 1) obtained from (1.1).

As indicated in [19, 20], notice that the swap and collapse step can be performed for
different products in IT; in parallel. For example in (3.2), we can swap and collapse M, L,

and M,L7" simultaneously to obtain

T, = L7 MLy My Ly ' My L My = LA @) ~ MY v £ (L)~ MY gy

= Lg?;zl;MSAL;%Ml:Q-
A final swap and collapse associated with Ms,4L;3 then produces
I, = L;i(Lg%)_lMé;lzi)Mm = Ly M.

More importantly, notice that the QR factorization in Lemma 3.1 can be replaced by
other factorizations. We now develop a structure-preserving procedure, which is closely
related to the QR-SWAP algorithms [19, 20], based on the LU-like factorization as in
(2.3)-(2.5) to reduce the periodic symplectic matrix pairs {(M;, L;)}}_; in (1.6) to a
single symplectic matrix pair (M., Ly,,) € R*™*?™ x R*™»*2"e in SSF.

Given My, Ly, M, and Ly as in (1.6), we have the factorization
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or

Iy 010 0 L, G
—Hy 00 I, 0 AT
Ag(Iny + GiHy) ™" 0 | Ly, AyGi(l,, + HG) ™' | | =4, 0
] —AT(I,, + H,G,) 'H, I,,| 0 AT(I,, + H,G,) ! || H -1, |
[ 1., G, ]
|0 -+ Gy .
0 0
| 0 0 |

L

Again, similar to (2.5), the transformation 7" represents row operations on ’V ' , and
M,

the factorization (3.3) can easily be checked by direct multiplication with the help of the

SMWE.

Similar to Lemma 3.1, it is then ebvious, after the swap, that we have
ML HE ) TS = Q37 Qan

with Qg = L being the bottom-right (ny47) X (n;+n) block in T of (3.3), Q1 = MY
being the bottom-left (ny 4+ n4) x (ny + ny) block in 7', and

In2 AQGl([nl + HQGl)il AQ(Inl + GlHQ)il 0

0 — MY =
1 T 1 ’ 2 T -1
0 AT(I,, + H,Gy) —AT(I,, + HyGy)"'Hy I,
(3.4)
Consequently, we obtain
I, Go+ AsGi(In, + HoGy) T AT I, G
Lio=L"L, = : o = - (3.5)
0 Al (I, + HyGy) T A] 0 A
and
Ay(I, + G Hy) LA 0 A, 0
Mo = MYM, = 2l + C1H2) " A =| (3.6)
—[Hl + A,{(Inl + HQGl)ilHQAl} In4 —H, In4
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Notice that (Mi.2, L1.2) is again in SSF and satisfies
LZ%MLQ - LglMQLflMl . (37)

In (3.4)—(3.6), we have performed the transformation

—-M,| L * * *
—M; Ly M2 |0 Lo
—
—Ms Ls T —M; Ls
—M, L, —M, Ly

using row operations in 7', with Ly and M., given in (3.5) and (3.6).
The calculation in the structure-preserving swap and collapse algorithm (SSCA), con-
tinuing the swaps and collapses in (3.4)—(3.6), can then be summarized as:

FOI'j:2,3,"',p,

4 = AT, H Gy Hy Ay € R, (3.9)
G = G+ AGialy FH;Gioy) AT € R, (3.10)
ﬁj = E[jfl + A\]rfl(lnj,l == Hj@jfl)_lHjA\j,1 € RMrxme (311)

with A\l = A, @1 = (G4 and fIl = Hi, and the \hat = denoting the result of a swap and
collapse step.
Finally, the following SSCA reduces the periodic symplectic matrix pairs {(M;, L;)}i_,

as in (1.6) into a single symplectic matrix pair in SSF

(M\a E) = (Mlzp; Ll:p) =

SSCA Algorithm
Input : A;;G;, H;>0,5=1,---,p;

Output : /Tp; @p, ﬁp > 0;
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Initialize A, « Ay, Gy « Gy, H, « Hy;
For j =2,3,---,p

Compute W «+ I,,,_, + Hj@j_l;

Solve WV, = AjT, WV, = Hj for Vi, Vs;

A\j — VlTA\j,l, @j — G+ Ajaj,ﬂ/l, flj — f[jq + A\ﬁl‘@gjfl;
End

End of SSCA Algorithm

Remarks. (i) It is vital to preserve the SSF property of the symplectic matrix pairs
in the SSCA, by maintaining the symmetry of @j and ﬁj for j = 2,3,...,p. For
solving P-DARESs, applying the SDA to the collapsed system produces X, = X,
from which the other X; (j =p=1,...,1).can be found through (1.1). We call this
combination as SSCA+SDA.

(ii) It can be observed that the operations.in the SSCA are closely related to those in
the SDA in Section 2. (The iterative process in the SDA is like the swapping and
collapsing in the SSCA, with periodicity p = 1.) The error analysis of the SDA in
the previous Section can be shared with that for the SSCA.

(iii) In Lemma 3.1, an orthogonal reduction technique, based on the QR-factorization, is
used to swap and collapse two matrix pairs. However, the process is not backward
stable because only the lower half part of the orthogonal transformation is involved.
Consequently, the swap and collapse procedure of the QR-SWAP algorithm [19, 20]
is not backward stable and the final collapsed matrix pair (M., Ly,,) is generally

not in SSF.

On the other hand, the swapping and collapsing of two matrix pairs using GSVD has

been proven to be numerically backward stable [19]. However, the computational
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cost of the GSVD is much higher than that of the QR-factorization. Also, the
question of stability for the collapsing of products of more than two matrix pairs
is still open. Thus, the swapping and collapsing procedure using GSVD is not

considered here.

In the SSCA, non-orthogonal transformations are used and matrix products are
computed in each step. However, the nice structures in the standard symplectic
form (SSF) are preserved in each step. Furthermore, the SSCA only involves inverses
of s.p.d. matrices, with little error accumulation. For solving P-DARESs, applying
the SDA to the collapsed system produces X, = X, from which the other X;
(j=p—1,...,1) can be found through (1.1). Accumulation of error for moderate
values of p should be acceptable. A good check of accuracy will be to calculate )?p

again by substituting X, into (1.1) and compare that with the X, from the SDA.

(iv) The SSCA is utilized a Gaussian-like decomposition to perform the swaps in (3.3),
in contrast with the QR decompositions used in [18, 19, 20]. Although important
differences in structure-preserving set.the' algorithms apart in performance, they
share the same parallelism.'  Swaps and collapses can be carried out at different
point in (3.8) simultaneously (see [20] for-details of parallelism, and the related

remarks in Section 6). This parallelism is obvious in the SSCA.

Preservation of Positivity, Stabilizability and Detectability

The following Lemma proves that the important stabilizability and detectability are pre-
served by the SSCA.

Lemma 3.2. The (P-S) property of the {(A;, B;)Yi_, implies that (le\p, Ep) is stabilizable,
where G, = EI,EZ > 0 is the FRD of G,. The (P-D) property of the {(A;, Cj) }i=, implies
that (A,,C,) is detectable, where H, = @,T@p > 0 is the FRD of H, .

Proof. See Appendix. O
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4 Numerical Experiments for DAREs

The aim of this Section is to illustrate the superior performance of the SDA algorithm, as
compared to the QR-SWAP algorithm [20] and the MATLAB control toolbox command
dare [88]. The solution of a small number of difficult DARESs, some from the benchmark
set of problems in [21], are considered. Some problems have parameters which control
their degree of difficulty and conditioning. Tables of residuals, relative errors and iteration
numbers are presented for selected values of the parameter. For examples with varying
dimensions, graphs of accuracies, CPU-times and efficiency ratios against the problem
size are also presented.

Numerical results confirm the accuracy and efficiency of the SDA as predicted in
Section 2. In particular, the SDA is up to ten times more efficient than the QR-SWAP, as
predicted by the flop-counts in Section 2. The SDA also seems to be more efficient than
dare but the comparison with part of a general purpose package cannot be done on a
equal footing. All in all, the SDA is efficient without equal comparing to other methods,
for the difficult problems we have tested: We.see no reason why it should be performing
differently for other problems in general, especially after other refinements, such as the
possibilities in parallel computing discussed. in Section 6, are implemented.

Now some details in the numerical experiments are listed. When the exact solution,
denoted by X, is known, the relative error of an approximate solution X is calculated by

X — Xllr

Rel. err. =
| X |

The associated residual is calculated by
Residual = |[ATX (I +GX) " A+H - X||p .

We try our best to compare the CPU time used by different methods for approximate
solutions of similar accuracies. Often, it is impossible to match these accuracies and we
have been forced to compare more accurate results from the SDA with less accurate ones

from other methods. The opposite situation of comparing less accurate results from the
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SDA seldom occurs. This issue of relative accuracies in the comparison for DARES is less
severe than for P-DARESs in Section 5.

For the Tables in the following examples, data for various methods are lists in columns
with obvious headings. The heading “dare” is for the dare command in MATLAB [88],
“QR” is for the QR-SWAP method in [20], and “SDA” stands for the SDA algorithm.
There is no iteration numbers to report for dare and an ‘*’ in the Tables indicates a failure
of convergence. Failures occur frequently for dare for difficult problems. In the graphs,
“ratio_dare” is the ratio between the CPU-times for dare and the SDA, and “ratio_QR”
is defined similarly. Notice the logarithmic scales used in these graphs.

Here we only reported some representative numerical examples and retained the num-
bering of examples in [46], where more numerical examples are presented. In order to
demonstrate the behavior of quadratic convergence for the SDA and QR-SWAP algo-
rithms, we display the relative errors (deA and d?R in Frobenius norm) in two examples.
Note that all examples are "square”, with n; and m; being invariant of j.

All computations were performed usinge MATLAB/Version 6.0 on a Compaq/DS20

workstation. The machine precision is‘ey;, & 2.22 x 10716,

Example 4.2. Let

P L L T,

ool )

The stabilizing solution is given by

1 0
0 1+4¢2

and the closed-loop spectrum is {0,0}. For ¢ = 100, this is Example 2 from [60]. As
e — 00, this becomes an example of a DARE which is badly scaled in the sense of [99],
due to the fact that ||A||x > ||G||s, ||H]|#. The numerical results with e = 100, 10%, 10°
are given in Table 1. For e = 100, the behavior of quadratic convergence for the QR-SWAP
algorithm and SDA is shown in Table 2.
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dare QR SDA

£ =100 | Residual 6.72 x 1072 3.25 x 107 0.00 x 10°
Rel. err. 6.72 x 10 3.25 x 1072 0.00 x 10°

Iter. no. - 4 2

e =10* | Residual 4.40 x 10°% 2.98 x 10~%  0.00 x 10°
Rel. err.  4.40 x 107 2.98 x 107 0.00 x 10°
Iter. no. - 4 2

e =10% | Residual 6.11 x 107 1.22 x 10=*  0.00 x 10°
Rel. err.  6.11 x 107 1.22 x 107'®  0.00 x 10°

Iter. no. - 4 2

Table 1: Results for Example 4.2.

Example 4.3. The following example is identical to Example 13 of [21] which was
presented originally in [99]. Let

2
Ay = diag(0,1, 3), V:I—gva, UTZ[l 1 1}-

Then
1
A:VA(]‘/, G = g_[g, H:€_[3.

The factorization H = CTC with C = /eV, and similarly, G = BR™'B? with B = I;

: QR SDA
J d; d;

1] 1.00x10°2 1.00 x 10°
2| 1.41x10°% 0.00 x 10°
3] 1.42x 107 0.00 x 10°
4 <éem 0.00 x 10°

Table 2: Results for Example 4.2 with € = 100.
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and R = el3. The exact solution is given by
X=V diag(wl, T2, 1'3) Vv

where

(1+V5) (9+ V/85)

T1 =€, T zeT, T3 zaf.

The numerical results with ¢ = 1.0, 10%, 10 are given in Table 3. For ¢ = 1.0, the behavior

of quadratic convergence for the QR-SWAP algorithm and SDA is shown in Table 4.

dare QR SDA

£=1.0 | Residual 2.57 x 10~ 3.09 x 10715 2.23 x 10715
Rel. err.  2.01 x 10716 4.04 x 1076 1.86 x 10716
Iter. no. - 7 6

e =10* | Residual 2.18 x 107" 1.79x 102 193 x 10!
Rel. err. 239 %1016 211 x 108 1.72x 1016
Iter. no. g 7 6

e =10° | Residual = '2:66%-107? 1.22 x 10° 1.47 x 107°
Rel. err. 2.80°%. 101 142 x 107* 1.64 x 10716
Iter. no. - 6 6

Table 3: Results for Example 4.3.

Example 4.5. The following example is identical to Example 15 of [21] which was
presented originally in [96, Example 3]. Consider the DARE defined by

01 0 -0 -
0
A=|: . . oler™, B=||, R=r, H=I,
0
0 0 1
1
0 0 0 -
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QR SDA
dj dj

1]607x10" 487x10°!
541 x 1072 3.83 x 107!
7.02 x 1073 4.93 x 1073
1.41 x 107*  3.24 x 1077
6.52 x 1078 2.65 x 10~
1.35 x 107 0.00 x 10°
<étm 0.00 x 10°

N O Ot = W N

Table 4: Results for Example 4.3 with ¢ = 1.0.

The stabilizing solution has a very simple form, namely,
X = diag(1,2,--- ,n).

Note that the choice of r does not influence the stabilizing solution X but for r» < 1, the
condition number of DARE behaves like 1 /7. In Figure 1, we report the comparison of
CPU times and its ratio with respect to:the, SDA for n = 50, 100, 150, 200, 250, 300. We
also list the residuals (res) and relative errors (RE) in Table 5. Note that the residuals
and relative errors for the SDA are in machine accuracy.

For smaller parameter 7, say r = 107'2, the report of CPU times, residuals and relative
errors are given in the Figure 2 and Table 6, respectively. Again, the residuals and relative

errors for the SDA are in machine accuracy.

Example 4.6. In this example we consider a linear system (A, B,C) such that the
corresponding symplectic matrix pair (M, L) has a pair of eigenvalues close nearly to the
unit circle in the complex plane. In the following the system matrices are constructed

step by step via some symplectic structure-preserving equivalence transformations.
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n

res_dare

res_ QR

res_.SDA

RE_dare

RE.QR

RE_SDA

50
100
150
200
250
300

3.50 x 10712
3.55 x 10711
1.04 x 1010
2.58 x 10710
5.31 x 10710
1.03 x 107

5.11 x 1012
7.17 x 1071
2.32 x 10710
5.67 x 10~10
1.39 x 107
2.78 x 1077

0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°

4.99 x 10714
2.46 x 10713
1.04 x 1012
2.66 x 10712
4.91 x 10712
1.03 x 10~

4.33 x 10~
1.80 x 10713
5.06 x 1013
8.41 x 10713
9.08 x 10713
1.67 x 10712

0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°

Table 5: Results for Example 4.5 with » = 1.

res_dare

res QR

res_SDA

RE_dare

RE_.QR

RE_SDA

50
100
150
200
250
300

1.20 x 10~
8.13 x 1011
2.17 x 10710
5.68 x 1010
1.32 x 107°
2.23 x 1077

5.12 x 10712
6.34 x 1011
2.50 x 10710
6.34 x 1010
1.75 x 107
2.82 x 102

0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00.x 10°
0.00 % 10°

0.00-x10°

2.25 x 10713
4.93 x 10713
2.67 x 10712
4.88 x 10712
1.33 x 10711
200 x 1011

4.36 x 10714
1.82 x 10713
5.43 x 10713
8.53 x 1013
8.99 x 10713
1.44 x 10712

0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°
0.00 x 10°

Table 6: Results for Example 4.5 with r = 1072,

Let Ay, Gy and Hy be 10 x 10 matrices defined by

where

A03

Ay = diag(l, Ap1, Aoz, Aoz, Aos, 1)7

Gy = diag(107*,0,---,0,107?),

H, = diag(1072,0,---,0,107?)

_ ry cos(m/3) rysin(m/3) Ay
B! sin(m/3) rycos(m/3) |

_ r3cos(m/4) rssin(m/4) A
| —rssin(7/4) rzcos(m/4) |
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Figure 1: The comparison of CPU times with r» = 1.

and
r=14+3x107"% 719 =rs=1410"% ry,=1+107°.
Let
Ay 0 ¥/
My = R "
—Hy I 0 Al

Vi = diag(0,0.5, -+ ,0.5,0), Vs =diag(0,1.5,---,1.5,0),

and define nonsingular matrices Y; and Z; by

[J AgVi(I + Hovl)ﬂ

1= ) 1=
@ (I + HoVi) ™t J [o I
A simple calculation gives
A O I G,y
YiMoZ, = =M, Y LZ = = Ly,
—H, I 0 AT

Where A1 = Ao(.[ + ‘/‘1H0)—1, H1 = (I+ H(]‘/l)_lH(), and G1 = (G() — ‘/1) + Ao‘/i(j +
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Figure 2: The comparison of CPU times with r = 10712,

HyV;)7t AL, Furthermore, if we define nonsingular matrices Y, and Z» by

(I 4 leg)_l 0 I 0
}/2 — ) Z2 - )
—A{VQ(I + G1V2)_1 vl Vo I
then it follows that
Ay 0 I Gy
YoM, Zy; = =My, Y.L Zy= = Lo,
—Hy 1 0 AQT

where Ay = (I + G\V3) 7' Ay, Hy = —Hy +Vy — ATVR(I + G1Va) 7' Ay, and Gy = (1 +
G1V,) 'Gy. Let Gy = ByBY > 0 and Hy, = CTC,y > 0 be the FRD, respectively. Then

the system matrices are given by
A:=UTAU, B:=UT'B,, C:=CyU, R:=1I.
where U := I — 2uu’ with v = [1,1,---,1]7/v/10 € R. Tt is easy to check that

A 0
min{||]A| — 1| : X is an eigenvalue of (M,L)} ~ 3 x 107", where M = { -‘ and
|—c7c 1|
I BBT

L= - | The numerical results are shown in Table 7.
0 A
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dare QR SDA

Residual * 568 x 10°° 6.01 x 1013
Iter. no. - 54 54

Table 7: Results for Example 4.6.

Example 4.7. For r > 0, consider a parameterized symplectic pair (M (r), L(r)) with

0.4323 —0.2582 —-1.2863  1.8430  0.2553 —0.2746
0.5969 —1.8618  0.0046  0.7127  0.3544  1.7583
—0.8750 —1.5715 —1.3551 0.4912  0.9922  2.1640

A= —1.0347 —-1.1935 —-0.3797 0.8341  0.7323  1.8743 7
—0.2771 —0.8410  1.1405 —1.3839 —0.2333 —0.3544
i —0.8080 0.9526  1.2224  1.2405 —1.5662 1.5694 |
G(r) == B,B; = :QBlBlT, H(r) = C{ C,
where
[ 0.3447  0.6321. =0:4592-/.'1.0773  0.2610 1.3565-
1.7938 —0.9404 =1.1726" 0.3441 -0.1703 —0.1008
B — 0.6840  0.4660  1.0479  0.1899 —1.0075 —0.4529 |
0.7424  0.6171 —-1.7952 —0.0011 1.7101 —0.5320
—0.6319  0.8059 —0.6623  0.4091  0.7990  1.4504
i —1.7719  0.0055  0.6855  0.0057 —0.2926 —0.1119 |
[ 03107 —0.4471 0.1384 0.7207 —1.3962 —0.7315 |
0.5037 —0.9720 0.7164 —0.3462  0.3193  1.6300
B, —1.5449 —3.0129 1.2720 —1.8523 —0.4305  0.0600 |
0.6068  0.6410 0.1884 —0.4436 —1.5227 —0.1858
0.2213 —1.0175 0.5326  0.2597  0.0057 —0.4042
| —0.9153  0.1943 0.6435 —1.1077 —0.1157  0.6489 |
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and

—2.2752  2.1534 09038 —1.8451  1.4674  1.0841
—0.4996 —1.0463  0.6970 1.7412 —1.5000 —1.6086
1.7526 —0.5329 —1.0929 —-0.6429  0.0580  1.2661
0.9504  0.4575 —0.3857 1.1104 0.1943  0.1205
1.5133 —0.6674  0.5427 —0.8445 —1.2548 1.3334

| —0.7063  1.1925 —0.0400  0.4600 —1.5304 —-0.4101

01:

This example involves H,, norm computation (details in [82]). By applying the bisection
method, we can obtain the smallest 7* &~ 1.08324 such that X (r*) := Ric(M(r*), L(r*))
exists, I + G(r*)X (r*) is invertible, and X (r*) > 0. Moreover, a pair of real eigenval-
ues (A, %) = (—0.9999999999998726, —1.000000000000128) of the symplectic matrix pair
(M (r*), L(r*)) approach to the unit circle with the distance 1.2745 x 10~!3. The numeri-
cal results are given in Table 8. As the s.p.s.d. assumption for G(r*) is violated for this

Example, dare cannot be used. This leads to the ‘x’ in Table 8.

dare QR SDA

Residual = ' = 5.07-x 1078 1.29 x 10713
Iter. no. L 37 22

Table 8: Results for Example 4.7.

Example 4.8. The following example is identical to Example 2.1 of [1], which has
been presented originally in [75, Example 2] and [115]. This is an example of stabilizable-

detectable, but uncontrollable-unobservable data. We have the following system matrices:

i
w
—
Ne)
D

A= . | B= ., R=6 H=
_ -1 6 4
The stabilizing solution is
v 1tVi+d 9 6
2 6 4
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The parameter of R was introduced in [115] to construct ill-conditioned DAREs. Small
values for ¢ will not affect the condition number of DARE much while it grows with

increasing values . The numerical results with § = 1 and § = 10° are shown in Table 9.

dare QR SDA
=1 Residual 1.34 x 107" 857 x 107 1.66 x 10~
Rel. err. 9.22 x 1076 854 x 1076 1.46 x 106
Iter. no. - 7 6
d = 10°% | Residual 8.86 x 10719 3.62 x 10™° 5.58 x 1010
Rel. err. 398 x 107 1.39x 107%¢ 2.75 x 10712
Tter. no. - 17 16

Table 9: Results for Example 4.8.

The following three examples come from proportional-plus-integral (PI) control prob-
lems. The design includes the original system with coefficient matrices Ay, By, C1, Q1
and R;. Additionally, there are r error integrators/that are concatenated with the original

system. The coefficient matrices of the DARE to be solved is

a0 g [erea o

R0 I ) B A

Example 4.10. This example is identical to Example 1.11 of [1], which has been presented

A R;.

originally in [104, Section 1.2.2], [54]. The actual data are defined by

0.222 0.778 0 0 0
0o 0
0.4 0 0.6 0 0
Ar=1I, 0|, An= )
0 0 0 1.372 —-047
- 0 0 0 1 0
- T
1 00 00O0O 0 0
B1: )
0 000 0 0 0 0.098 0]
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and

o 000 O0O0 150 0 0
1 p—
000 00 0 7 =537 —3.943
05 0 400 0
Ql = QQ = 3 Rl =
0 5 0 700

The numerical results are given in Table 10.

dare QR SDA

Residual 2.68 x 10719 238 x 10°* 1.64 x 10~ 1!
Tter. no. - 9 8

Table 10: Results for Example 4.10.

Comments

The Tables show that the approximate selutions from the SDA is either as accurate as
or more accurate than those from' the:QR-SWAP method and dare. For the examples
considered, the SDA converges to a comparable accuracy, in the same number of iterations
or in one less iteration, when compared to the QR-SWAP method. The graphs show
the relative efficiencies more clearly, for examples with a parameter reflecting varying
degrees of difficulty or conditioning. The efficiency ratios “ratio_dare” and “ratio_QR”
stay between 3 and 10. The real ratios should be bigger, as solutions from the SDA
are generally more accurate. For example, the residuals and relative errors for SDA for
Example 4.5 are virtually zero. Notice that several problems investigated are extremely
ill-conditioned. Others have eigenvalues extremely close to the unit circle, numerically
violating the assumptions of our theory. The SDA solves them efficiently and accurately
without failure.

Example 4.7 comes from an application of the SDA in H,, norm computation. The

family of examples is dependent on the parameter r, which we would like to minimize
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before some stabilizability, detectability and s.p.s.d. constraints are violated. The mini-
mization in this example was carried out by bisection. For r near its minimum, the DARE
involved becomes ill-conditioned. This challenging problem was solved in 22 iterations
to near machine accuracy. For QR-SWAP, the residual converged to around 10~% in 27
iterations and did not improve further even after 100 more iterations. This behavior, and
the similar behavior in Example 4.6, illustrate the importance of the SSF property and
the consequent superior convergence, in addition to the better operation count.

There seemed to be a lack of numerical results involving the doubling algorithms,
which might have led to the neglect of this class of methods. The preservation of (S)
and (D) properties in Lemma 2.1, the convergence results in Theorems 2.3 and 2.4, the
superior operation count and the above numerical examples suggest that the neglect has

been unjustified.

5 Numerical Experiments for P-DAREs

Similar convention as in Section 4 is atilized in'this Section, except the PQZ method
[33, 62] replaces dare for P-DAREs: In PQZ, QZ decompositions are applied to a 2pn x
2pn matrix pair containing the p matrix pairs defining the P-DAREs. This makes PQZ
extremely unattractive in terms of operation counts and efficiency, comparing with the
other methods. Also, the method failed when the periodicity p is greater than 10, because
of difficulties in the deflation processes involved [33, 62]. Thus, the superiority of the
SSCA+SDA for P-DARESs are even more marked than that shown in Section 4 for DAREs.
In terms of QR-SWAP for P-DAREs [19, 20], this superiority may be explained by the
accumulation of errors in the QR-SWAP method, due to the relative lack of structure
preserving properties and the consequent slower convergence.

For the residual of approximate solutions {)? i}j=1, the PQZ method produces p resid-

uals 7; for each )?j as defined in

rj = |AYX,(1+ Gy X)) ™ Ay + Hy — X[
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The total residual is thus defined as

» 1/2
Residual = (Z r?) .

=1

The situation is different in QR-SWAP and SSCA+SDA, as these methods solve for )?p
via a collapsed matrix pair, generating a residual r, as in the DARE case. The other Xs

are obtained through substitutions using the Riccati equation
Xjo1 = ATX (I +G;X;)7 Ay + H;.

This substitution process generates very little error and virtually no residuals. Conse-
quently, it is difficult to compare the residuals of the PQZ solution with others. From the
definition of the residuals and numerical experience, we consider a PQZ solution as equiv-
alent in accuracy if its residual is approximately /p times the residuals from QR-SWAP
or the SSCA+SDA. For the Tables in the following examples, data for various methods
are lists in columns with obvious headings:=The heading “PQZ” is for the periodic QZ
algorithm [33, 62], “QR” is for the QR-SWAP method in [20], and for simplicity, the
SSCA-+SDA algorithm is abbreviated to-“SDA™.

Example 5.1. As in Example 2-0f:{62], we consider periodic discrete-time algebraic

Riccati equations with n = p = 3. The system matrices are

-3 2 9 6 -3 0 2 -3 -3
A= 0 0 —4 |, A=1]4 -2 2|, A3= 4 —15 =3 |,
3 -2 3 2 -1 4 -2 9 1

B 0] [0

Bi=|1|, By=1|1|, B3=|1|, Ri=R;=1, Ry,=2,
0 0] 1

Hj=eje;, j=1,2,3,

where e; denotes the jth column of the identity matrix. The numerical results are reported

in Table 11.
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PQZ QR SDA

Residual 1.48 x 1076 1.66 x 1077 2.18 x 108
Iter. no. - 5 4

Table 11: Results for Example 5.1.

Example 5.2. In [126], the authors considered an optimal periodic output feedback
control problem with n = 4 and p = 120. This periodic discrete-time model was generated
from a continuous-time linearized state space model of a spacecraft system [100]. For

j=1,...,p, the system matrices are

0.9506860  0.0429866  0.4827320 —2.5564383
—0.0409684  0.9721628  1.3617382  0.5081454

A= ,
’ —0.0122736 0.0363280 —0.8671394 —0.6014295
—0.0346225 —0.0072209 0.3203622 —0.8456626
0.2220925 0.5035620
.| —0.1300536 : . |0.4241087|
B; =10 cos(wgiT )+ 10 sin(woyT),
0.1877217 0.1218290
—0.0271167 0.3583826
V2 000
Cj: , Rjzl()*n.
0O 1 00

where wy = 0.00103448 rad/s is the orbital frequency and 7" = 27/(wpp) is the sampling

period. The numerical results are reported in Table 12.

Example 5.3. In this example, we tested the three methods on the randomly generated
periodic matrix pairs {(Mj, L;)}_,. Entries of A; are distributed normally in the interval
[—2, 2], and entries of matrices B; , C; are distributed normally in the interval [—1, 1]
(j=1,...,p). We set rank(B;) = rank(C;) = 0.7n, for all j.

Figure 3 reports the comparison of CPU times for n = 50, 100, 150, 200, 250, 300, all
with p = 8. Figure 4 reports the comparison of CPU times for p = 4,8, 16, 32, 64, 128,
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PQZ QR SDA
Residual * 243 x 1072 2.00 x 104
CPU time * 0.133 0.083
Iter. no. - 3 2

Table 12: Results for Example 5.2 with n = 4 and p = 120.

with n = 30. In these two cases, the numerical results of residuals are shown in Table 13.
10° ¢ 10°¢
+ PQZ + ratio_PQZ
3
—*— SDA
4 5
10 ¢ + 10" F
+
+
10° b * 10°F
— +
g 3
£ =
= _ 2T = 3T
g 10° b . é 10 + " N . .
2 _o e
(&} -
_o
1 _ 2
10" b o - * 10° ¢
/O/ - He
-
10 L7 s 10'F
/ * - — O - -9 - -6 - -6 - -0
P 7/
e
1071 L L L L J 100 L L L L J
50 100 150 200 250 300 50 100 150 200 250 300
n n

Figure 3: The comparison of CPU times for n = 50, 100, 150, 200, 250, 300 and p = 8.

Comments

For Example 5.1, the SDA produced the most accurate solution in 3 iterations, as com-
pared to 4 for QR-SWAP. The solution from PQZ is two order of magnitude worse than

those from the SDA.
The PQZ method failed for Example 5.2, probably because of the small elements in I;

41



10° ¢ 10°-

+ PQZ +  ratio_PQZ
+ © QR ©- ratio_QR
—— SDA
+
10" | 10°F
S
<<
o
. o e
= 10° - = 2
o 10° b - < 10°F
£ e 2
2 - * s
3] e o7
- e
/g /*
- -
- ~
-1 O * 1
105~ - 10"+
K
-
-
9977*/ //o“ﬂf‘e’fe‘—‘o
1072 L L L L J 100 L L L L J
2 3 4 5 6 7 2 3 4 5 6 7
m (Period = 2™) m (Period = 2™)

Figure 4: The comparison of CPU times for p = 2,4, 8,16, 32,128 and n = 30.

and C;. Near-machine accuracy was achieved by the SDA in 2 iterations. The QR-SWAP
method produced a solution one order of magnitude worse in one more iteration.

Example 5.3 contains several randomly-generated examples, with varying values of n
and p. The graphs show that the SDA is around 3 to 5 times more efficient than QR-
SWAP, and around 1000 times more efficient-than PQZ, which failed for large values of
p. This can be explained by the well-known fact that the shift and deflate approach in
PQZ fails when p is large. Notice that the efficiency advantage should be higher because
of the smaller residuals for solutions from the SDA.

The examples illustrated that the SDA is more efficient than the PQZ and QR-SWAP

algorithms.

6 Conclusions

We conclude this chapter with a summary of results and a few comments.

SDA and QR-SWAP In this chapter, we investigate structure-preserving algorithms
(SDA and SSCA) for solving DAREs and P-DARESs and prove the quadratical con-
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D n | res_ PQZ res_.QR res_.SDA
8| 50 |1.29x107° 3.94x10°% 3.64x 1076
100 | 5.72 x 107* 413 x 10~* 2.08 x 10~*
150 | 6.03 x 1073 4.30 x 10~ 2.56 x 1073
200 | 3.47 x 1072 2.48 x 1072 1.41 x 1072
250 | 1.21 x 107" 9.91 x 1072 4.39 x 102
300 | 3.42x 107! 217 x 107" 1.30 x 10"
41 30|4.99x10"7 7.42x1077 220 x 1077
8 8.56 x 1077 9.34 x 1077 4.04 x 1077
16 * 413 x 1077 242 x 1077
32 * 3.19 x 1077 2.03 x 1077
64 * 1.12 x 107 3.17 x 1077
128 * 6.51 x 1077 2.79 x 1077

Table 13: Results of Example 5.3 for various p and n.

vergence of the SDA under assumptions which are weaker than stabilizability and
detectability. P-DAREs are first reduced to a DARE by the SSCA. The resulting
DARE is then solved by the iterative SDA. The algorithm looks, on the surface, very
similar to the QR-SWAP algorithm in [20]. The algorithms SDA and QR-SWAP
are obviously closely related, sharing similar theoretical background and conver-
gence analysis. However, there are some important differences in the details. The
main difference is in the stronger SSF properties in the SDA, preserving the sym-
plecticity in standard symplectic form as well as the stabilizability and detectability
properties, through the iterative process. In addition, the SDA allows the iteration
to be carried out with far fewer flops. It is interesting that the swap and collapse
steps in QR-SWAP are forward stable numerically, as compared to the structure-
preserving steps (SSF) in the SDA are numerically efficient and reliable (recall the
inversion of the well-behaved matrix operation (I + GH) with G, H > 0). It may

43



be the case that smaller errors (in QR-SWAP) can do more harm than larger but
structured errors (in SDA). Also, the least squares step at the end of QR-SWAP is
not required in the SDA. Together with the difference in operation counts, the SDA
seems to be a superior algorithm. Notice that the PQZ algorithm (or its equivalent
dare for DARES) is never a competitor to QR-SWAP or the SDA, due to its inferior
operation count. Notice also that the SDA performs a lot better for ill-conditioned
P-DAREs. In summary, the numerical evidence we have gathered so far indicates
that the SDA is an accurate, robust and efficient algorithm for P-DAREs. The
algorithm appears to be a sound basis on which a general-purpose algorithm for

P-DARESs can be built.

Deficiency in SDA There is one advantage of QR-SWAP over the SDA that we are
aware of. Let the state equation z;., = A;x; + Bju; be replaced by a descriptor
system F;x;11 = Ajz; + Bju; with a nonsingular but ill-conditioned E;. The QR-
SWAP algorithm should still work while the SDA will founder, because the inversion

of E; is required in the SSF structure.

Parallelism It is easy to see that-all the possibilities of parallelism in QR-SWAP [20]
exist in SSCA and the SDA. Recall that the swap and collapse procedure in the SDA
and QR-SWAP can be carried out simultaneous at different points. For example for
P-DAREs with period p = 4, we can swap and collapse the first two matrix pairs
in parallel to the same operations on the last two, and then swap and collapse the

two resulting matrix pairs into the final pair.

Appendix
Proof of Lemma 2.3. Let
TA=0T, A >1 (A1)
and
vI'G = v" (G + AG(I + HG) ™' AT) = 0. (A.2)
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We need to show that v = 0 for the stabilizability of (;1\, E), where G = BB” > 0 is a
FRD. From (A.2), the FRD of G = BR™'B” > 0 and the fact that (G(I + HG)) " is
s.p.s.d. (two application of the SMWF) follows that

vIB =0, vTAB=0. (A.3)
Substituting (2.9) into (A.1), and using the SMWF and (A.3), we obtain
WTA = oTA(I + GH) A =oTA[I — G+ HG) ' H] A = o7 A% = Mo, (A.4)

From (A.4) follows that v is a linear combination of two left eigenvectors {u,us} of A
corresponding to the eigenvalues {wi,ws} (w1 # wa), Le. ul A = wjul, with w? = A,
J=1,2. Write

V= oyl + Qalls. (A.5)

Substituting (A.5) into (A.3) and eliminating cowqus B, we obtain that u! B = 0. From
the stabilizability of (A4, B) and the relation u] A = w A, |wi| > 1, it follows that u; = 0.
Similarly, we can also show that-us/= 0. These.imply v = 0.

The detectability result of (g, 6) can be proved similarly. 0

Proof of Lemma 3.2. Let
TA, =0T A >1 (A.6)

and
TGy = 0" [Gy + AGyi (I, + H,G,oy) AT = 0. (A7)

~

We need to show that v = 0 for the stabilizability of (4,, B,), where G, = B, T >0 is
a FRD.

It can be shown from (3.9)—(3.11) that the FRDs of G, , = Ep,lég_l > 0 and
@p,l(In%l + H,G, 1) is s.p.s.d. (two applications of the SMWF). From (A.7) and the
FRD of G, = B,R,' B}, it then follows that

p

v'B,=0, v"A,B, 1 =0. (A.8)
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Substituting (3.9)-(3.11) into (A.6) and using the SMWF, we obtain

~

VA, =0T ALy, + Gy Hy) YA,y = 0" A, L, — Gpoi (I, + Hp@p_l)*lﬂp} Ay
= vTApgp,l =’ (A.9)
Repeating the argument in (A.8)—(A.9) using (3.9)—(3.11), we arrive at
vl A, Ap = T with A >1

and

UTBp = UTApo—l == UTApAp—l o ABy = 0.

These imply v = 0 because of the (P-S) property of the original periodic system. The

(P-D) can be proved similarly. O
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Chapter 2

Structure-Preserving Doubling Algorithm for
CAREs

1 Introduction

In this chapter we investigate a structure-preserving doubling algorithm for the compu-
tation of the symmetric positive semi-definite (s.p.s.d.) solution X (i.e. X > 0) to the

continuous-time algebraic Riccati equation (CARE):
~XGX +A"X + XA+ H =0, (1.1)

where A € R X € R¥™ R € R™™ is symmetric positive definite (or s.p.d.; i.e.
R>0),G=BR'B" >0and H=C"C > 0.with B € R"™™ and CT € R"? being of
full column rank.

Equation (1.1) arises frequently in solving the continuous-time linear optimal control

problem:
. 1 o T T T . .
min.J = 5 (' C"Cx +u' Ru)dt  subject to % = Az + Bu. (1.2)
v 0
The optimal feedback control u* for (2) is given by
u* =R 'B"Xu, (1.3)

where X is the s.p.s.d. solution to the CARE (1.1). We assume that the pair (4, B)
is stabilizable (S) (i.e. if w'B = 0 and wT'A = Aw” for some A € C, then Re()\) <
0 or w = 0) and that the pair (A4, C) is detectable (D) (i.e. (A*,CT) is stabilizable).
Under assumptions (S) and (D), the CARE (1.1) has been proved to possess a unique
s.p.s.d. solution [75].

47



Consider the 2n x 2n Hamiltonian matrix H associated with the CARE (1.1):

A -G
"= (1.4)
~H —AT

which satisfies
0o I,

-1, 0

HI=—JH", J=

with I,, denoting the identity matrix of order n. By (1.4), the CARE (1.1) can be written

as

I I
H - @, (1.5)
X X

where ® € R™" and the spectrum o(®) is on the stable left half plane C_. Under
assumptions (S) and (D), the Hamiltonian matrix H has exactly n eigenvalues on C_. If
the columns of [X], X" span the stable invariant subspace of #, then X is nonsingular
and X = Xy X' > 0 solves the CARE (1.1) (see, e.g., [75, 95]).

A numerically backward stable algorithm-care, proposed by Laub [75], computes X
by applying the QR algorithm: with reordering [5, 34, 108] to the eigenvalue problem
Hx = Ax. Unfortunately, the QR algorithm preserves neither the Hamiltonian struc-
ture of A nor the associated splitting of eigenvalues. A structure-preserving algorithm
has been proposed by Ammar and Mehrmann [2] which utilizes orthogonal symplectic
transformations in computing a basis for the stable invariant subspace of H. A sta-
ble symplectic orthogonal method has been suggested by Byers [39] but applied only to
systems with single input or output. Many iterative methods have been suggested for
solving CAREs over the past 20 years. Newton’s method has been applied in extensive
literature [51, 61, 71, 91, 103]. A defect correction method for modifying an approximate
solution has also been proposed by Mehrmann and Tan [93]. These methods require a
good starting approximate solution, and can therefore be regarded as iterative refinement
methods, to be combined with other direct methods (see Bunse-Gerstner et al [36, 38]

or Mehrmann [91] for details). The structure-preserving matrix sign function methods
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(MSGM) [9, 13, 14, 15, 16, 40, 41, 50, 64, 102] have been extended by Barraud [10, 11]
and Cardiner and Laub [56].

A class of methods, referred to as the doubling algorithms (DA), has attracted much
interests in the 70s and 80s (see [3] and the references therein). These methods originate
from the fixed-point iteration derived from the discrete-time algebraic Riccati equation
(DARE):

Xps1 = ATX,(I +GXp) "A+H .

Instead of producing the sequence { X} }, doubling algorithms produce { X,+}. CAREs can
be tackled after being transformed to DAREs via the Cayley transform. However, the
convergence of the algorithm was proven only when Ais nonsingular [3], and for (ﬁ, G, H )
which is stabilizable and detectable [69]. DAs were largely forgotten in the past decade.
Recently, DAs have been revived for (periodic) DARESs, because of a better theoretical
understanding. Stronger convergence results have been proved for (//1\, @, H ) under weaker
assumptions than stabilizability and detectability (see Section 2 of Chapter 1). Superior
numerical results, in comparison to ‘State-of-the-art methods on a wide range of test
problems, have been obtained because of the “stronger structure-preserving properties
and the superior operations count.

In this chapter, we propose a doubling algorithm for CAREs. The CAREs are trans-
formed to DARESs, with the corresponding Hamiltonian matrix transformed into a sym-
plectic matrix pair by the Cayley transform. Nice convergence properties are inherited
from the structure-preserving doubling algorithm (SDA) applied to the corresponding
DARE. The SDA preserves matrix pairs in SSF which is a stronger property than symplec-
ticity. In the CARE setting, the matrix sign function methods preserve the Hamiltonian
structure in A while the SDA preserves, in each iterative step, the associated symplectic
matrix pair (./\77 E) in SSF. Although under the influence of numerical errors, the matrix
pairs through the SDA retain their stabilizability, detectability as well as eigenstructures
(with exactly half of the spectrum being stable; see details in Section 2 of Chapter 1).
This stronger structure-preserving property is its main strength and the reason of its ac-

curacy. In Section 4, a modified version of the SDA (SDA_m) is developed, for “doubly
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symmetric” DAREs, where A, G = H are symmetric and persymmetric. The SDA_m
preserves the symplectic and doubly symmetric structures of the DARE, resulting in bet-
ter accuracy than the SDA. We have extensively tested the SDA against the MSGM and
care. Numerical results showed that the doubling algorithm for CARESs is competitive
and promising.

Finally, it is important to stress that matrix sign functions can be applied to more
general Hamiltonian matrices in other applications, such as those from H,, control with
G and H being indefinite. A scaling strategy [41] may also accelerate its convergence.
Also, the SDA requires the transformation of the CARE by the Cayley transform, which

requires the estimation of the parameter 7 (see §3 below).

2 SDA and Matrix Sign Function Method

In this section we propose a structure-preserving doubling algorithm (SDA) for solving
the CARE (1.1) based on the doubling algerithm proposed in Section 2 of Chapter 1. In
addition, the well-known structure-preserving matrix sign function methods [9, 13, 14, 15,
16, 40, 41, 50, 64, 102] are also reviewed from the point of view of preserving Hamiltonian
structure.

Let H be the set of 2n x 2n Hamiltonian matrices, i.e.,

A -G
H=<H|H=  AJH GeRY™™, HG>0,. (2.1)
—-H —AT

Note that if H € H then HJ = —JH™. We call a 2n x 2n matrix pair (N, £) symplectic

if NJNT = LJLT. Let S be the set of 2n x 2n symplectic matrix pairs in the standard

symplectic form (SSF):

S={ (N, D)|L= . A H,GeRrR™™, G.H>0

" I
, N =
0

=y Q)

T

(2.2)
It is easily seen that symplecticity is weaker than symplecticity in SSF. Our proposed

algorithm preserves the stronger structure and gives rise to better numerical performance.
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We shall show how the CARE (1.1), associated with the corresponding Hamiltonian
matrix
Lo | AG | A BRUBY L,
—H —AT —CTC AT ’
can be transformed to an equivalent DARE.
By using the Cayley transform with some appropriate v > 0, the Hamiltonian matrix
‘H can be transformed to a symplectic matrix pair (N, L) = (H +~vI,H — ~I) [91, 92].
In the following, we construct an equivalence transformation from (N, £) to a symplectic
matrix pair (N, L) € S.
Let

Ay =A—~vl, A=A+l

Starting from
N A, -G - A, -G
-H —A7 -H -Al
we choose a y > 0 such that the matrices"4; and A, + GAZ"H are well-conditioned (see
Section 3 later for details). To transform the symplectic matrix pair (N, £) to (/V, Z':) €S,

let

A7L 0 I 0 I A'G
T1 = s TQ = . , T3 =
—1 —1 —1
HA' 1 0 (~HA,'G— AT) 0 I

Simple calculations produce

_ A0 AZ'A —A7'G
N = R = T3TyTWN = T:T, v v
-H I HAJ'A,—H —-HA'G— AT
1 ATTA —AT'G
(—HAJ'G — AT)""(HAJ'A, — H) I
and
~ I G I -AJ'G
E == - T3T2T1£ == T3T2 B
0 AT 0 —HA'G— AT
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I —AJ'G
=13 _
0 (-HAJ'G - AT)"Y(-HA;'G - A7)

where

A= (A, +GAJTH)(A, + GA;TH) ™,
G=-A7'G+ A'G(AT + HAT'G) (AT + HA'G),
H= (AT + HAJ'G) " (HA'A, — H).

Note that £-'N = L 'N. Since A, = A, + 271, it follows that

A=T+29(A, +GATH)™, (2.3)
G =29A7'G(AT + HAT'G)™, (2.4)
H=2y(AT + HAS'G)'HAS". (2.5)

Then we obtain the desired symplectic matrix pair in SSF, i.e.,

(N, L) = €S,

5
T

1
0

=y Q)

0
1

Ry

where A, G and H are given by (2:3)4(2.5)." Phe DARE associated with the symplectic
matrix pair (/V, Z) in SSF is

X=ATX(I+GX)'A+H (2.6)

on which the efficient SDA, proposed in Section 2 of Chapter 1, can be applied. Note that
X is the unique s.p.s.d. solution to the above DARE as well as the CARE (1.1). Moreover,
in Theorems 1 and 2 of [70], the pairs (A, B) and (A, C) are proven to be stabilizable
and detectable, respectively, where the matrices G = BBT and H = OTC are full rank
decompositions (FRD).

Using (2.3)—(2.5) to transform the CARE (1.1) to an equivalent DARE (2.6) with
the associated symplectic matrix pair (/\7, E) in SSF, the SDA proposed in Section 2 of
Chapter 1 can then be modified to the following algorithm for CAREs: (with Im denoting

the imaginary axis)
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Structure-Preserving Doubling Algorithm (SDA):

A -G
Input: H = € H with o(H#) NIm = 0; €
-H -AT

Output: the stabilizing solution X = X7 > 0 to the CARE (1.1).

Find an appropriate value 4 > 0.
Compute Ay < I +29(A; + GAZTH) ™', Gy + 29A7'G(AT + HAT'G) ™,
Hy < 29(AT + HA;'G)"\HAZ', j 05
Do until convergence:
Compute Ay « A;(I+G;H,)A;, Gy + G, + A,G,(I + H;G;) " A*
Hypy  Hy+ AT+ HiGy) "HjA;, j + j+ 1
If || H,; — Hj || < €| Hj|, Stop;
End

Set X I/’\IJ

Convergence of SDA

. Aol .~ | I @G o A .
Let N = N L= , where G = G, H = H”. Suppose N' — AL has
~H I 0 AT

no eigenvalues on the unit circle and there exist nonsingular ), Z such that

_ J, 0 . I 0
QNZ = . QL7 = (2.7)
0 I 0 J,

where the spectrum A(Jg) € Og = {\ : |A| < 1}. In the following we quote the convergence
results for the SDA algorithm from Section 2 of Chapter 1.
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_ A0 " I P
Theorem 2.1. Let N = N and L = |, where G = G, H = HT.
-H I 0 AT
Suppose N = AL has no eigenvalues on the unit circle and there exist nonsingular @, Z
Zy 23 .
such that (2.7) holds. Denote Z = , Z; € R fori=1,2,3,4. If Z1 and Z,
Zy Zy

are invertible, then the sequences {;l\j, flj, @]} computed by the SDA algorithm satisfy
(i) 14l = O JZ'|l) = 0 as j = oz,
(ii) ij — X, where X solves the DARE (2.6):
X=ATX(I+GX)'A+H,
(iii) G; =Y, where Y solves the dual DARE

Y =AY(I+HY)'AT +G. (2.8)

Moreover, the convergence rate in (i)-(iii) above.is O (|)\n|2j), where [ M| < -+ < |A\,| <
<A™t <o < A7 with X, X being the-eigenvalues of N = \L (including 0 and

00).

The following Lemma proves that the stabilizability and detectability properties are
preserved by the SDA throughout its iterative process.

Lemma 2.2. The stabilizability of (;1\, E) implies that (A\j, EJ) is stabilizable, where @j =
EJEJT > 0is a FRD of CA}j for each j > 1. The detectability of(;l\, 5) implies that (A\j, 6*])
1s detectable, where ﬁj = C"JTC*] > 01is a FRD of flj for each 57 > 1.

~

_ A0 . I G _
Theorem 2.3. Let N = R and L = |, where the matrices G =
—H I 0 AT
BBT > 0 (FRD) and H=0C"C >0 (FRD). Assume that (2, E) is stabilizable and

(Z, 6) is detectable. Then the sequences {//l\j,f[j,@j} computed by the SDA satisfy (i),
(i), (iii) as in Theorem 2.1.
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Remark. Theorem 2.1 directly proves, under the assumptions that N = AL have no unit
modulo eigenvalues and 7, Z; are invertible, that the sequences {A\j, ﬁj, @]} generated
by the SDA converge to zero and the unique s.p.s.d. solutions of the DAREs in (2.6) and
(2.8), respectively. Lemma 2.2 shows the preservation of stabilizability and detectability of
the iterates (A\j, @j, Ig']) generated by the SDA. Furthermore, in Theorem 2.3, we see that
the assumptions in Theorem 2.1 are weaker than conditions (S) and (D). This distinction
of preserving the symplectic structure in SSF, as well as the difference in operation counts,

are responsible for the superior performance of the SDA.

A -G
On the other hand, for a given H = | € H with o(#%) NIm = (), the
—-H —-A

matrix sign function of H can also be used to develop a structure-preserving method
for computing the stabilizing solution of CARE (1.1). A thorough discussion and the
details of practical implementation are given in [41, 91]. The main MSGM algorithm
is described as follows. Other modified versions can be found in [6, 10, 11, 42, 56] and

references therein.

Matrix sign function algorithm: [9; 13, 14,15, 16, 40, 41, 50, 64, 102]

Input: H = { ; _ZT } € H with o(H#) N Im = (; e.

Output: the stabilizing solution X = X7 > 0 to the CARE (1.1).
Let Ho < H, j + O.
Do until convergence:
Compute Hjyy  5(H; +H;'), jj+1;
I |[H; = Hja |l < el #;]], Stop;
End

sgn(H) « Hj;
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Xy
Solve (I —sgn(H)) =0;
Xo

Compute X < Xngl.

Remarks:
|
(i) Notice that L spans the stable invariant subspace of the .
X, |

32

3
> n” flops for each

(ii) Both the SDA and the matrix sign function algorithm require

iterative step.

(iii) When working with the Hamiltonian matrix H, a more efficient and structure-
preserving version of the classical matrix sign function iteration can be derived by

working only with symmetric matrices JH. Details may be consulted in [41, 91].

3 Practical Implementation of SDA

Selection of ¥

Here we first derived the forward error bounds of matrices ;1\0 = E, @0 =G and fIO =f
given in (2.3)—(2.5), respectively. According to these forward errors, we can design a
numerical scheme to determine an appropriate value 4 > 0. In the following roundoff
analysis, we use fI(-) to denote computed floating point values. The quantity u is the
unit roundoff (or machine precision), which is typically of order 10~ or 107'® in single
and double precision computer arithmetic, respectively. When A and B are m X n real
matrices, the matrix B := |A| if b;; = |a;;| for all 4,5, and A < B if a;; < b;; for all
i,j. The 1-, co- and Frobenius matrix norms are denoted by || - [|1, || - ||co and || - ||,
respectively.

We assume that the LU factorizations of A, and W, = A, +GAJ" H are computed by
Gaussian elimination with partial pivoting (GEPP). We write these computed LU factors
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as L4, Ua, Ly and Uy, respectively. Recall that

A+ AA, = LaUs,  |AA)| < 7ulLal |Ual, (3.1)

W+ AW, = LU, [AW,] < 7|l U (32)
with 7, := nu/(1 — nu) (see, e.g., [63, Theorem 9.3]). Then we have
W) =W+ By, B < eu [WEH [ Lw| [Ow| [FUW), (3-3)

v

where ¢, is a modest constant. From (3.3), the forward error bound in evaluating Ain

(2.3) is
fUA) = A+ By, || < dyeou [W L] [Uw| AUV +u A+ O(w?). (3.4)
Furthermore, from (3.1), we have
G, = fl27A'G) = 29A;'G + By, |Bs| < 2ycu |AS'| |La| [Ua] |G, (3.5)
hence the forward error bound in evaluating G in (2.4) is

FIG) = G+ Br, B < 2yeau (47| L] UAL G, W[

+aulfl@) Uy Ly w1 (3.6)
Finally, from (3.1), we have
H, = fl(2yHAY) = 29HA + Es, | Es| < 2yc,u [H, | |La| [Ua| |ATY, (3.7)

and the forward error bound in evaluating H in (2.5) is
fUH) = H+ Es,  |Bs| < 2ye,u [WHEH, | [Lal [Ua] |ATY
+equ [WIHTIUE | L] | fU(H). (3.8)
For GEPP, we have in practice || [La| [Ua|[|oo 2 |4, [loo and || |Ziw| [Ui] [|oe 2 [[W, ||oos
and it follows from (3.4), (3.6) and (3.8) that

1£1(A) = Alloo S denuyriog(W5) LW |l + u [|A]lo + O(u?), (3.9)
1£1(G) = Glloo S 2eauvk00(A) WGy lloo + catier (W) [|FUG) oo (3.10)
| fUH) — Hlloo < 2cquybioe(Ay) W L H, oo + couer (W) [ fIH) |, (3.11)
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where £y (Wy) = [[Wyll[WS I oo (W) = [[Wollac W5 Hloo and kise (As) = [| Ay llool AT oo
In order to control the forward error bounds of ;1\, G and H , we consider the following

min-max optimization problem, to determine an optimal value 4 > 0:

min F(y) = max {fi(v)}, (3.12)

where fi(7) 1= vhoo(W5), f2(7) = 76(A,) and f3(y) := k1(W,). Since the condition
numbers koo (W), Koo (A,) and k(W) approach 1 as v — oo, it follows that F'(y) becomes
unbounded as v — co. Extensive numerical experiments on randomly generated matrices
indicate that F'(v) is a strictly convex function in the neighborhood of the optimal ¥
where the global minimum of F'(y) occurs. For illustration, we report a sample of graphs
of f1(7), f2(7), fs(y) and F(v) in Figures 1 and 2. From Theorem 2.1, we know that if
v approaches 0 and oo, the symplectic matrix pair (Jv , Z) has eigenvalues close to one,
leading to very slow convergence of the SDA. This can be avoided through the min-max

optimization problem (3.12).

T
— o
10°F - f2(n) B
F o 13() ]

o)
©o

Coo

[ekc}

| OOOO()O |
| OOOOOOOOOOOOOOOOOO

10 I I I I I I I I I
[o] 5 10 15 20 25 30 35 40 45
r

Figure 1: The graphs of functions fi, fo and fs.

We can apply the Fibonacci search method to compute an approximate value of ¥,

see, e.g., [12, p. 272]. Our experience indicates that three to five iterations of Fibonacci
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Figure 2: The graph of F'(y).

search are adequate to obtain a suboptimal yet acceptable approximation to 4.

Symmetry of CAJO and }AIO

If the matrices G and H are of low-rank;say G = gg* > 0 and H = h"h > 0, then so are
@0 and f]o. Indeed, by using the Sherman-Morrison-Woodbury formula (SMWF) twice,

it can be seen that

Go = 29A'G(AT + HAS'G) ™!
= 2vAT gg" (AL + hh" AT gg") !
=2y [AT 99" (AT — AJThRT (I + AT ggm ATThIT) T AT ggT AT
=29 {(4,19) [I = (4 0)"hhT (I + (A7 9)(4; ) ") " (4, 1)] (4, 19)" }
=27 {(4719) (T + (47" 9) hA"(47'9)) ™" (47%9)" |
=2y {(A’lg) (KTKg)71 (A;lg)T} (Cholesky decomposition)

= 29(A 9K, ) (AT g KT
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Similarly, by applying the same techniques, we also have
Hy=2y(A" + HA]'G) ' HAS!
=2y {(hA)" (1 + (hA, g (hA,N)") " (hA) |
=2y {(hA;l)T (KhK,f)A (hA;l)} (Cholesky decomposition)

= 2y(K; th AT (K hATY.

Computation of ;1\]-, CAJJ- and [/-\Ij

We now propose a structured and efficient procedure for the computation of Ej, (A}’j and
}AIJ- in the SDA algorithm, respectively, where CAJO = BOEOT >0, ﬁo = C*OT@O > 0 are FRDs.
For j =0,1,2,..., we let W; = (I + éjﬁj)_l. It is easily seen that ﬁjo = W].Tﬁj and
@jW]T = Wj@j are s.p.s.d. for each j > 1. By the SMWF we can derive the formulae

W; = (I +G,;H,)" =1 - By(I+BTH;B;) ' BT Hj, (3.13)
G;wTI =G, - G;CM(1+ C,G,CD-1C;G, = B,(1 + BTH;B))"'BY, (3.14)
WTH; = H; — H;B;(I + BEH;B))7 ' Bl H, = CT (I + C,G;C1)7'C;. (3.15)

When the matrices B and C' start with low ranks in (1.1), we can improve the efficiency
of our computation further by the following compression process. Compute the Cholesky
decomposition of the s.p.d. matrices Wg; = (I + B\]Tfljﬁj) = K3 ;Kp; and Wy; =
(I + @@@T) = KC,ngJ, respectively. For j = 0,1,2,..., application of (3.13)—(3.15)

leads to
Aj = A§ — A;B;(I + BJ.THij)*lB}“Hj i (3.16)
Giw1 = G+ A;B;(I+ BTH,;B;) 'BT AT
BT .
- [ B. ABK: 7 | =BuBY,>0 (FRD) (3.17)
J JP34B,j Kg?B]TA;[ J J+
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and

Hj = H;+ ATCT (I + C,G;C1)7'C;

.

=C",C;s1 >0 (FRD), (3.18)

J

~ C;
= [ CT, ATCTK." P
Kc,jCjAj
where §j+1 and C+1 are the full column rank compressions of [§ A\B\K_l} and
[GT A\TaTKfT}, respectively. In general, rank(B]H) > rank(Bj) and rank(CHl) >
rank(C’ ), and the compression process becomes unprofitable when the ranks of B. i+1 and

~

Cj+1 approach n.

Error Analysis of SDA

We consider the forward error bounds of the computed matrices A\jH, @j+1 and ij+1
in the SDA algorithm for one iterative step j. Since Kp; and K¢ ; are the computed

Cholesky factors of matrices W¢ ; and Wy, xespectively, it follows that

Kp = fUKGEBL) = KBl + AR,

N (3.19)
|AE| < eru K STIRE | | Kal,
and
Ko = fl(Kg;C)) = Kg;C) + AE,
~ R (3.20)
|AE| < éu |[KGj| [Keyl | Kol
where ¢; and ¢; are modest constants. Therefore, we have
fUKgL TBT ) fl(KB ) K5 TBTAT+AE2,
(3.21)
|AB,| < cou [K55) KT | |Ks| | AT,
and
FUKG;CA;)) = fFl(KeA;) = K55CiA; + AE,, 322

AB| < éu [Keh| Koyl [Kol |4,

where ¢y and ¢, are modest constants.
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If rank(ﬁf) =/, then from Theorem 18.4 of [63] and (3.17), there exist an orthogonal
matrix Qp € R**?! and a computed upper triangular matrix fI (§]T+1) with full row rank,
such that

nT nT
’V ?j R -| + ’V AB -| =Qp ’V fl(BjH) -‘ ’ (3_23)
| fURpAT) | | AB | 0|
where |[AB;| < c3u Gg(|§]T| + K55 |§JT| |fA1;‘F\) for j = 1,2, with ¢z being a modest
constant and ||G||r = 3.

From (3.21) and (3.23), we have

BT AB FUBT
SO I A ) (B | (3.24)
K5 BT Al AB, 0

where |AB,| < cou |K§§| |K£’j | K| |A]T| + c3u G@(|B]T| + |K§§| \BJT| |A]T|) Pre-
multiplying both sides of (3.24) by Q%, it follows that

BT AB (BT
0 ADB, 0
and we deduce that
IF1(B} 1) — Billr <enl[Bille + csu k(K ;) 1Kl rll 4], (3.26)
where ¢; and ¢ are modest constants, and k(K% ;) = || |K§§ |K% ;] llso is the Skeel

condition number of K]Z;J. Furthermore, applying a similar argument with the help of

(3.22), we can derive that
1f1(Cj41) — Cipallr < cou ||Cil|p + cru k5(Key) [|[Kellr||AllF, (3.27)

where ¢g and ¢; are modest constants.

On the other hand, it follows from (3.19) that

FUK S BYHA)) = K" BY H;A; + AB;, 528)

AL < csu [ K] K| [Ks| [Hl |4,
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where c¢g is a modest constant. From (3.21) and (3.28), the forward error bound of

computing A\jﬂ 18
1f (A1) = Ajallr < cou [|Aj]5 4 crou k(KR ) || Byl K G5 H eIl Ayll7,  (3.29)

where cg and ¢;o are modest constants.

When the Skeel condition numbers (K ;) and #,(Kc,;) in (3.26) and (3.27) are
bounded from above by acceptable numbers, the accumulation of error will be dampened
by the fast rate of convergence at the final stage of the iterative process. Danger, if any,
lies in the early stage of the process before the )\fj convergence factor dominates. It
is unlikely to have any ill-effect, as the accumulated error in the matrix additions and
multiplications should be of magnitude around a small multiple of the machine accuracy.

As the SSF properties are preserved in the SDA, any error will be a structured one,
only pushing the iteration towards a solution of a neighboring SSF system. Thus the
algorithm is stable in this sense, when the errors are not too large and when stabilizability
and detectability are maintained. - For large 7js, ‘as A\j — 0, @j and I/—\Ij converge to the
unique s.p.s.d. solutions of (2.8) and (2:6), respectively. Danger again will only comes at

the initial stage of the iteration.-Corresponding checks may be prudent in the algorithm.

4 SDA m

A matrix A is persymmetric when A is symmetric with respect to the main anti-diagonal
([59, p. 193]). When the DARE transformed from the CARE (1.1) has the additional
property that the initial data 121\0, @0 = f[o € R?**2¢ are symmetric and persymmetric,
the additional structure can be preserved in a modified version of the SDA (SDA_m). For
simplicity, we consider only when v = 1. This doubly symmetric type of DAREs appear
in the Examples 10 and 17 of Section 5 (originally from [22]).

For convenience, in the SDA, we denote for j =1,2,---

~

A+ = Izl\j_;’_l, G+ = G\]_H — H]+1
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Since A, G = H are symmetric and persymmetric of even order, we write

A_’Val agC-‘ G_’Vgl 92C-| (42)
| Car CarC | | ¢o CoC |
where ay, az, g; and g, € R are symmetric and ¢ = [ey, - - ,e;] with e; being the

jth column of ;. In the SDA, we shall show that ;1\, G and H are also symmetric and

persymmetric with G=H , with

ay  ax(

A, = AI+GH A= , (4.3)
Caz Ca(
G, = G+AG(I+GY) AT = { ” gf ] . (4.4)
| G Cac |
Let
G=01+92 @=01—092, a=a+a , Qz=a —a. (4.5)
Simple manipulation leads to
~ 1 i _
a; = 5 [al(I—I—qf) 10[1 o Otg([+ q%) 10[2] s (46)
~ 1 o _
2 = 3 (T +4f) T ron=as(T + ¢3) '] (4.7)
~ 1 o _
9 = g+ 3 loa (I +q) i + ao(I + ¢3) ' qpas] (4.8)
—~ 1 _ _
G = ¢o+ 3 [al(l+ &) o — (I + ¢2) 1qga2] ) (4.9)

Furthermore let

R N I
Q1—[U1,V1][0 —FlJ {VITJ’ QQ_[U%V?]{O —FQJ LX/&TJ (4.10)

be the spectral decompositions of ¢; and ¢o, respectively, with ¥, I'y, 35 and I'y being

nonnegative diagonal matrices. Then @y, @y, g1 and g in (4.6)—(4.9) can be computed by
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the following symmetric forms:

& = alU(I+32) Ul an — aVi(I +T%3) Wy,

& = aplUs(I +32)'USay — anVo(I +13) 'V, ay,

a = %{51 +&}, = %{51 — &l (4.11)
m = U (I+3H7' U ey — o Vi(T 4+ T3 Vi ay,

e = apls(I 4 33) 'SU5 ap — aoVa(l +T5) 'TaVy o,

g = 91+;{771+772}> 9> :92‘1‘;{771 — 2} (4.12)

The SDA_m computes A, G in (4.3) and (4.4) using the symmetric forms (4.11) and (4.12)

and considerably improves the accuracy of Examples 10 and 17 in the next section.

5 Numerical Examples

For the Tables in the following examples, data for various methods are lists in columns
with obvious headings. The heading “care” isfor the care command in MATLAB [8§],
“MSGM” is for the matrix sign function method {41], and “SDA” (or “SDA_m”) stands for
our SDA (or SDA_m) algorithm. Theré’is no'iteration numbers to report for care and an
‘x” in the Tables indicates a failure of convergence in obtaining a solution. In the graphs,
“ratio_care” and “ratio.MSGM” are the ratio of the CPU-times for care and MSGM to
that of the SDA, respectively. For the comparison of residuals, the “normalized” residual
(NRes) formula is applied in the numerical examples, i.e.,
|ATX + XAT - XGXA+ H||
[ATX | + [|IXAT|| + |IXGX|| + | 2

where X is an approximate solution and || - || denotes the 2-norm for matrices.

Some numerical examples from [22] involved very large data sets, which have not been
repeated here. Twenty examples were presented in [45]. We retain the numbering of
examples in [45], comment upon all of them but present only five representative ones in

this chapter.
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In the MSGM, the scaling strategy suggested in [41] was implemented. For a fairer
comparison, similar convergence criteria were used in all the methods and the solutions
were not refined.

All computations were performed using MATLAB/Version 6.0 on a Compaq/DS20

workstation. The machine precision is 2.22 x 10716,

Example 5. The example is identical to Example 5 of [22], which has been presented
originally in [97]. This is a 9th-order continuous state space model of a tubular ammonia

reactor. The actual system matrices are

[ 4019 5.12 0 0 —2.082 0.87

0 0 0
—0.346  0.986 0 0 —2.34 0 0 0 0.97
—7.909 15407 —4.096 O —6.45 0 0 0 2.68
—21.816 35.606 —0.339 —-3.87 —17.8 0 0 0 7.39
A=1-60.196 98.188 —7.907 0.34 —53.008 0 0 0 204 |,
0 0 0 0 94.0 —147.2 0 53.2 0
0 0 0 0 0 94.0 —147.2 0 0
0 0 0 0 0 12.8 0 —31.6 0
0 0 0 0 12.8 0 0 18.8  —31.6
0.010  0.003 0.009 0.024  0.068 0 0 0 O
BT = |-0.011 —0.021 —0.059 —0.162 —0.445 0 0 0 0|, H=1I, R=I;s.
—0.151 0 0 0 0 0000
The numerical results are given in Table 1.
SDA MSGM care

NRes 1.68 x 107 1.73 x 10713 4.64 x 10~
Iter. no. 9 8 -

Table 1: Results for Example 5.

Example 6. The example is identical to Example 6 of [22], which has been presented
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originally in [49]. This control problem for a J-100 jet engine is a special case of a mul-
tivariable servomechanism problem. To save space, we shall not list the system matrices

here. We report the numerical results in Table 2.

SDA MSGM care

NRes 5.78 x 1078 3.11x107% 1.91 x 1072
Tter. no. 10 9 -

Table 2: Results for Example 6.

Example 10. The example is identical to Example 10 of [22], which has been presented

originally in [8]. Here, the system matrices are

A_[5+1 1-‘ G-1, H:’Vg? 0-“

BRI

The exact stabilizing solution X is given~by

[2(54— 1)+ /206 #1202+ \/55] T =29 =211 /[r1 — (e +1)] .

T11 = To2 =

[NR=

The corresponding DARE is doubly symmetric-and the SDA_m was applied (see details

in Section 4). The numerical results with € = 1,1073,107° and 10~ 7 are given in Table 3.

Example 11. The example is identical to Example 11 of [22], which has been presented
originally in [66]. This example represents an algebraic Riccati equation arising from a

H-control problem [131]. Let

3—¢ 1 1 4e — 11 2 -5
H
4 2—¢ 1 2e —5 2e—2

The matrix
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SDA SDA_m MSGM care
e=1 NRes 0.00 x 10° 0.00 x 10° 4.69 x 10°'® 9.36 x 10~'7
Rel. err. 1.96 x 1076 196 x 1076 880 x 10716 3.83x 106
Iter. no. 4 4 2 -
e=103] NRes 1.58x10"" 143x1071% 1.11x107! 9.20x 10717
Rel. err. 1.82 x 107" 222 x 10716 222 x 107" 4.08 x 10°16
Iter. no. 16 13 12 -
e=10""]| NRes 228x1072 1.11x10"% 1.07x 107 5.53 x 10~7
Rel. err. 7.16 x 1077 1.76 x 1076 2.14 x 107" 2.60 x 10~'¢
Iter. no. 22 19 18 -
e=10"7] NRes 149x1071° 132x10°% 331x10° 2.06x 10°'7
Rel. err.  6.04 x 1078  4.44 x 1076 6.63 x 10™° 1.36 x 10716
Iter. no. 12 26 20 -

is the stabilizing solution for ¢ > 0.7For &.=0, the solution X is obtained by an H-
invariant Lagrangian subspace, i.e., a solution in the sense of H..-control. The numerical

results with € = 1,0 are given in Table 4.

Example 12. The example is identical to Example 12 of [22], which has been presented

originally in [65]. Let

Table 3:-Results:for FExample 10.

2
V=I- §UUT’ v = [1 1 1] ;. Ag = e diag(1,2,3), Hy=diag(e ', 1,¢);

we have

The solution is

A= VA()V, G:€71[3,

H=VH,V.

X=V diag(l‘l,l'g,l'g) \%
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SDA MSGM care

e=1| NRes 0.00x 10° 1.69x 1076 1.97x 1016
Rel. err. 1.26 x 10716 1.25 x 107*® 9.68 x 1016

Iter. no. 5 2 -

e=0 NRes 3.06 x 10716 * 5.06 x 10~17
Rel. err. 2.66 x 107° * 7.68 x 1072
Iter. no. 28 * -

Table 4: Results for Example 11.

where

T =24+ Vet +1, xy=224+ Vet +e, x3=232+ V9 4 2.

The numerical results with ¢ = 1,10° are given in Table 5.

SDA MSGM care

e=1 NRes - 2.01.x 10 1,78 x 10715 3.00 x 1016
Rel. err. ~4:33 X107+ 2.78 x 10715 5.03 x 10716
Iter. no. 6 4 -

e=10°] NRes 1.62x10% 222x10* 219x10*
Rel. err. 258 x 107" 6.33 x 107" 4.92 x 1071°

Iter. no. 11 10 -

Table 5: Results for Example 12.

Example 15. The example is identical to Example 15 of [22], which has been presented
originally in [75, Example 4] and [4]. This example arises from a mathematical model of
position and velocity control for a string of high-speed vehicles. If N vehicles are to be
controlled, the size of the system matrices will be n = 2N — 1, the number of control

inputs will be m = N, and the number of outputs will be p = N — 1, respectively. The
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comparison of normalized residuals are reported in Table 6 for N = 5, 20, 60, 100, 140 and
180. Figure 3 reports the comparison of CPU times for care, MSGN and the SDA.

SDA MSGM care

N =5 NRes 1.61 x 10716 875 x 10~ 253 x 10~
Iter. no. 5 6 -

N =20 NRes 3.85x107% 355 x 107" 6.15x 1071
Tter. no. 5 6 -

N =60 NRes 1.53 x 107" 2.32x 10713 8.14 x 1071
Iter. no. 7 8 -

N =100 | NRes 215 x 107 6.62 x 10713 2.55 x 10714
Iter. no. 8 9 -

N =140 | NRes 3.05 x 107 6.50 x 1072 3.60 x 10~™
Iter. no. 8 9 -

N =180 | NRes 1.25x 107464 x 10?2 2.01 x 10713
Tter. no. 9 9 -

Table 6: Comparison of normalized residuals for Example 15.

Example 17. The example is identical to Example 17 of [22], which has been presented

originally in [75, Example 6]. The system matrices are

0 1

0

0

It is known from [75] that z1, = \/qr. Therefore, we may use the relative error in zy,, i.e.,

RE = (|1, —+/q7])/\/qT, as an indicator of the accuracy of the results. The corresponding

0

0

0

0

1
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Figure 3: Comparison of CPU times for Example 15.

DARE is doubly symmetric and the SDA_m was applied (see details in Section 4). Table 7
reports the comparison of normalized residuals.computed by SDA, SDA_m and care for
n =6,12,18,24,30. We also report-the comparison of relative errors in xy,, computed by

above three algorithms in Table 8.

Comments on Numerical Results

We have tested twenty examples in [45] to illustrate the accuracy and efficiency of the
SDA applied to CAREs, in comparison to the MSGM [41] and care in MATLAB [88].
Some of these examples have parameters to vary their sizes or conditioning. In what
follows, we shall comment upon all the examples in [45], thus retaining the old labelling

of the examples:

(1) Comparing with care for all the examples, solutions with better or comparable
accuracy were obtained using the SDA in far less time. This comparison has been
difficult as care yields no iteration numbers and the CPU time information from

MATLAB is not always accurate.
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n  NRes.SDA NRes.SDA_m NRes.MSGM NRes_care
qg,r =1 6 450x 107 356x 1071 887 x 107 1.80x 10~
12 3.63x10°10 322x10°" 968x10"2 1.23x10 '
18 9.47x107° 1.83x 107"  4.63x 107"  9.46 x 107
24 247x1072  234x107%  9.88x107% 3.25x 1077
30 4.80x 107!  3.52x107°  347x 1072 717 x 107"
¢,r=100| 6 259x10°® 282x10'% 1.20x10°" 1.02x 10"
12 4.81 x 10710 294 x 107" 411 x107° 1.58 x 10~'*
18 433x107° 226x107'%  1.78 x107% 7.83x 107
24 7.24x107'  290x107% 137 x 1072 1.50 x 107°
30 3.07x107'  145x107° 294 x 107!  4.38 x 1073

Table 7: Comparison of normalized residuals for Example 17.

(2) The best indication of the efficiency of the SDA over care comes from Example 15

(with varying dimension n), where care required two to eight times more CPU times
than the SDA. This is consistent with the findings in Chapter 1 for DAREs. Keep
in mind that the SDA requires farless number of flops than care in each iteration,
as the operations in the SDA are performed in R"*™ whereas those for care are

carried out in R2x2n,

For examples with varying conditioning, such as Examples 9-14, 17 and 18, the SDA
out-performed care and converges to more accurate solutions in less time. For the

ill-conditioned Example 20, care failed while the SDA succeeded without difficulty.

In Example 11 (in H,, control), some eigenvalues were numerically on the imaginary
axis and assumptions in the theory were practically violated. The stronger structure-
preserving property of the SDA enabled it to produce an accurate solution when
the MSGM failed. Somehow, care produced a slightly less accurate solution using

much more CPU time.
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(5)

n RESDA RESDA.m REMSGM  RE_care
g,r=1 6 1.94x10™ 1.11x10°% 222x10 " 568 x 10
12 399x1071 1.68x10°8 492x 10" 561 x 10"
18 873x107° 6.37x 107 235x107% 2.68 x 107
24 3.09x 107! 6.39%x107% 329%x107° 6.16 x 107°
30 6.49x 10" 1.57x10* 1.40x10" 837x10°3
g, r=100] 6 213x107 995x 107" 327 x 10" 7.67x 1071
12 6.04 x 1071 1.83x107% 230x107® 6.13 x 10~
18 5.87x107* 1.16 x107® 295x107° 2.70x 107®
24 2.02x107" 1.32x1077 239x107% 5.20x 107°
30 4.60 x 107! 5.67x107° 298 x 107% 1.71 x 1072

Table 8: Comparison of relative errors in xy, for Example 17.

In Examples 10 and 17, the: CAREs gaye rise to DAREs which were “doubly sym-
metric” (see Section 4 for details).  The-SDA_m improved the efficiency of the
SDA for these examples, obtaining‘comparable accuracy for Example 10 while out-

performing care for Example 17.

Comparing to the MSGM for ill-conditioned problems, the SDA performed better
in terms of accuracies or number of iterations. This is consistent with the fact that
while both the SDA and MSGM are structure-preserving, the former preserves more
structure than the latter. For some well-conditioned problems, the efficiency and
accuracy of the SDA and MSGM are comparable. For a few simple small examples,
the MSGM converged quickly and was superior to the SDA. Note that the work

involved in an iteration for either method is similar.

The MSGM, with similar operations count to SDA, was generally more efficient
than care, especially for well-conditioned problems. For ill-conditioned problems

(such as Example 10), the MSGM was sometimes less accurate than care.
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6 Conclusions

Solving CAREs as DAREs, after applying the Cayley transform, has previously been
investigated by many. Recent developments and better understanding of doubling algo-
rithms, especially the structure-preserving properties and efficiency of the SDA proposed
in Chapter 1, give this old approach a new lease of life. In addition, we have studied how
the parameter 7 in the Cayley transform can be chosen optimally. A Fibonacci search for
choosing v was suggested in Section 3, together with the details of other issues involved
in the practical implementation of the SDA. We have also developed the SDA m which
preserves the structure of some doubly symmetric DAREs. Extensive numerical results
show that this approach of solving CAREs using the SDA is efficient and competitive,

especially for ill-conditioned problems.
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Chapter 3

Structure-Preserving Doubling Algorithm for
G-DAREs

1 Introduction

Let matrices £, A € R™" with E being nonsingular, Q € RP*? with Q = Q7 > 0
(symmetric positive definite or s.p.d.), B € R**™ S € R™*? and C € R**? with B,C
possessing full column rank, and the s.p.d. R € R™*™. Suppose further that the matrix
Q — STR™1S is symmetric positive semidefinite (s.p.s.d.). The generalized discrete-time

algebraic Riccati equation (G-DARE) has the form
E"XE=A"XA+ (ATXB+CS™(R+B"XB) "(B"XA+ SC") +CQC™. (1.1)

Equation (1.1) arises frequently;in diserete-time optimal control problems and optimal

filter problems [75, 76, 77, 91| for a‘given deseriptor linear system:

Exy = Az +Buy, z9=12°

(1.2)
yr = Oy,
with the control vectors {uy} chosen through
minglio:( P Quk + ujp Ruy, + vy ST u + uj, Syy) (1.3)
=5 Y QYk T~ Up LU T Y o U T Up O Yk)- .
k=0
Let
C(Q—-STR'S)CT = CyCF >0 (1.4)

be in full rank decomposition (FRD). The systems denoted by (E, A, B) and (FE, A, 6’0)
are assumed to be stabilizable (S) and detectable (D), respectively. Note that (E, A, B) is
stabilizable if w”B = 0 and w” A = AEw” imply |A| < 1 or w = 0. The system (E, A, Cj)

75



is detectable if (ET, AT,CT) is stabilizable. The optimal feedback control {u}} for (1.2)

and (1.3) are given by
up = —(R+B"X,B)" (B"X, A+ 5C")x, (1.5)

where X, > 0 is the unique s.p.s.d. solution to (1.1). Furthermore, the closed-loop

dynamics of the system obtained with this control
FExyy = (A+ BK)x, = [A — B(R+B"X,B)"Y(B" X, A+ SCT)} Ty, (1.6)

is asymptotically stable, i.e., klim x = 0 (see, e.g., [91]).
—00
It is well-known [91] that the s.p.s.d. solution of the G-DARE (1.1) can be obtained

via the computation of the stable deflating subspace of the matrix pencil

A 0 B E 0 0
A-XB=| —cQcT ET —cST |-X|o0 AT o]. (1.7)
SCT 0 R 0 —BT 0

If the columns of [I,, ET X, Z]T span the stable deflating subspace of A — \B, then
X > 0 solves the G-DARE (1.1). Here I, denotes the identity matrix of order n.
It is also well-known [91] that the s.pis.d: solution X, of G-DARE can be solved by

computing the stable deflating subspace span " of the reduced matrix pencil
X, F
of (1.7):
A— BR1'SCT 0 E BR'BT
Mo — ALy = - A . (1.8)
-0(Q - STR'S)Cct ET 0 AT —CSTR'BT
Furthermore, it is easily seen that the pencil Mg — ALy is equivalent to the symplectic
pencil
E'A—-E'BR'SCT 0 I E'BR'BTET
M-=AL = —A . (1.9)
—-0(Q—-STR'S)CT T 0 ATET - CSTR'BTE-T

1
If the column of span the stable deflating subspace of M —\L, then E-T X, E~! =
X

X, > 0solves the G-DARE (1.1). Note that a 2n x 2n matrix pencil £ — AF is symplectic
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0 I,

I, 0
in (1.9) is symplectic and is said to be a standard symplectic form (SSF), a stronger

if and only if £EJET = FJFT, where J = . The matrix pencil of the form

symplectic property. Being a SSF is the structure we try to preserve in the numerical
algorithm (see Chapter 1 for more details of the SSF).

A well-known backward stable approach based on the reordering QZ-algorithm for
computing the unique s.p.s.d. solution of DAREs has been proposed by [96]. The associ-
ated code, dare, has been developed in MATLAB control toolbox [88]. Unfortunately, QZ-
like algorithms do not take into account of the symplectic structure, destroying it through
the iterative process. Similarly, matrix disk function/inverse free methods [7, 18, 19, 20]
have been developed for solving DAREs without preserving the symplectic structure. In
Chapter 1, an efficient structure-preserving doubling algorithm (SDA), based on the dou-
bling algorithm [3, 69], has been proposed for solving DARESs, while preserving the SSF
at each iterative step. G-DAREs can thus be solved by applying the SDA or other algo-
rithms to the symplectic pencil (1.9). However;. the symplectic form in (1.9) requires the
explicit inversion of ' and R, which may-be ill-conditioned.

In this chapter, based on the SDA algorithm in Chapter 1, we develop a generalized
structure-preserving doubling algorithm' (G-SDA) for solving the G-DARE (1.1). Inver-

sions of ill-conditioned matrices, such as £ and R, are circumvented.

2 G-SDA and QR-SWAP Algorithms for G-DAREs

In this section, we develop the G-SDA for solving the G-DARE (1.1). Let

E'A—-E'BR'ScT 0 I E-'GE-T
M= , L= (2.1)
~H+CSTR1scT T 0 ATE-T _CSTR'BTE-T

as given in (1.9), where H = CQCT > 0 and G = BR™'BT > 0. The pairs (E, A, B) and
(E, A, Cy) (with Cy given in (1.4)) are assumed to be (S) and (D), respectively.

7



Let

Ay = E'(A—-BR'SCY), (2.2)
Go = E'BR'BTE " ~ ByBy >0, (2.3)
Hy = CQCT —CSTR'SCT ~ CyCT > 0. (2.4)

“

Here “~~” denotes the operation which expands a s.p.s.d. matrix into a FRD. The SDA

generates the sequences {Ek, @k, flk}

Ay = AyI+GpH) A, (2.5)
@kﬂ = @k + A\kék<1 + Eg@k(j’,fﬁk)*lﬁ,f;ff ~ §k+1§kT+1 >0, (26)
Hypw = Hy+ ALCy(I + CFBBICy) 'CF Ay ~» Cpyi CL, > 0. (2.7)

It was proven in Section 2 of Chapter 1, under conditions (S) and (D), that the sequences
{A\k, @k, fIk} converge respectively to zero and the s.p.s.d. solutions of the dual and prime
DARESs corresponding to the sympleetic pencil (1.9). Consequently, {E*TflkEfl} con-
verges to the s.p.s.d. solution of the'G-DARE:

In many applications, the matrices E-or R in (2.1) and (2.2)—(2.4) are ill-conditioned,
causing numerical instability. We shalli modify the SDA (2.5)-(2.7) to the G-SDA for
solving G-DAREs. The process utilizes on the basic swapping process [19, Lemma 1]:

Given ET ¢ R™*", FT ¢ R”*", let

Qll Ql? ET _ T (28)

Qa1 Q2 —FT 0

be the QR factorization of [ET, —FT]T, where F = QL ¢ R, £ = QF, ¢
R?*? and T is upper triangular. Then

E'F=FE, (2.9)

Here the inverses of E or E are merely notational — they do not have to be constructed

explicitly unless required by the particular circumstances.
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For the G-SDA, we first assume, without loss of generality, that only F is ill-conditioned.

We shall later describe a pre-processing step when R is ill-conditioned. Let

Ay = A—BR'SCT,
Gy = BR'BT ~ BBl >0,

Hy = CQCT —CSTR'SCT ~ CoCT > 0.
With
Gri1 = G+ AE'B(I+ B{E "CyCLE'By) 'B{E"" A ~ By1B[.,,

we can rewrite the sequences {Ay, Gy, Hy} of (2.5)~(2.7) in the SDA as

Ay =E Ay = E'AWE+ BBIETH,) Ay, (2.10)

Gepn = E'Go BT = E'B. Bl ET >0, (2.11)
Hypi = Hyyw = Ho+ATETC,(I+CFE'B.BFETC,) 'CFE A,

v Oy Caq= 0. (2.12)

Applying the basic swapping process (2.8)=(2.9)-we arrive at the G-SDA which generates
the sequences { E~' Ay, E~'GyE~T, Hy} without explicitly inverting E:
E7'Apy = EBE'AL(ENT(B(EMNT + BoBF Hy) ™' Ay, (2.13)
E7'GppETT = E7V[Gy+ ABy(EY)TE) + BL C,CiBy) ' BI AL E7T
= E7'BpuB,ET" >0, (2.14)
Heow = Hyp+ AL Cu(EL(E))" + CEBLBECY) 'O Ag
= Cp1Cy >0, (2.15)
where swapping produces, for all £ > 0,

ETH, = H(E})™, E™'B,=Bi(E)™", ETC,=C(Ef)™ . (2.16)

Notice that other inverses appear in (2.13)—(2.15) and their conditioning will be analyzed

in Section 3.
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Under conditions (S) and (D), the sequences {E~"Ay, E~'GxE~", H}.} constructed by
(2.13)-(2.16) converge to {0, E'GL,E~T, H,} in with E~TH,E~" solving the G-DARE
(1.1). By (1.6) the associated optimal control matrix K is obtained by

K, = —(R+BTE-TH,E~'B)"Y(BTE-TH,E~'A + 5CT)
= —[(E.E'R+ K.B)"'K,A+ E(E'E + B"H,B)"'ETSC"]
where BTE~T = E-TBT and (BTH,)E~' = E; 'K, are again computed by swapping.
We now describe the basic G-SDA algorithm for solving G-DARE:

G-SDA Algorithm

Input : E, A, B, C, Q, R, S, 7 (a small tolerance);
Note : F is ill-conditioned, R is well-conditioned;

Output : the s.p.s.d. solution X for G-DARE.

Initialize : A < A — BR'SC", G+ BR-'B" ~ ByB{ >0,

H + CQCT — CSTRTSCT ~ 4Cl > 0, B + By, C + Cy;
Repeat : Swap as in (2.8)—(2.9):

E-TH=HE;", E-'B=BE,"“ETC=CE;";
Compute W, < EET + BBTH, W, <« ETE, + BTCCTB,
W3 < E3ET + CTBBTC;
Solve for Vi, V,, Vi from Wi Vi = A, WoVa = BT, W3V = O7,
A+ AE™,, G + G+ ABV, AT, H « H + ATCV;3A;
Compute the FRDs: G ~ BBT >0, H ~ CCT > 0;
If |H — H| < r||H||, Then X « E-"HE"' Stop;
ElseA<—ﬁ,G<—@,H<—fI,B<—§,C<—CA’.
Go to Repeat.

End of G-SDA Algorithm
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When R is ill-conditioned, we swap matrices as in (2.8)—(2.9):
BR'=R'B, R'(SCT)=CIR,". (2.17)
Then the pencil My — ALy in (1.8) is equivalent to
RiARY — R\BCT 0 \ RIERY BRBT (2.18)
—Ro(CQCTRY + C,RCT R,ETRY 0 RATR' —C,B'RT |
with the left and right transformations diag{R, Ry} and diag{R%, RT}. Compute the
FRDs
BRB" ~ ByBl >0, Ry(CQC")R] — C,RCT ~~ C,CT >0
and let
AO = RlARg - RlBC;T, E(] = Rl(ERg) = RIEQ,
the matrix pencil in (2.18) corresponds to a G-DARE with E = Ey, A = Ay, B = By,
C =0Cy,, Q=1,, R=1. and S = 0. The G-SDA can then be applied, with R =
I, being perfectly conditioned. Let the corresponding s.p.s.d. solution be E; ' H,FEy* .

Transforming back using (2.17), we see that
X, =F"R/HR;'E'=E,"H,E," >0

solves the original G-DARE (1.1) corresponding to My — ALg in (1.8), and the associated

optimal control matrix

K, = —(R+B"E;"H,E;"B)"Y(B'E;"H.E; A+ SCT)
— [(B.ETR+ K.B)"“K.A + Ey(EY By + BYH.By) " E,SC"] |
with the help of the swapping BT E;* = Ey" B and (BIH,)E;" = E;'K,.

Finally, the s.p.s.d. solution of the G-DARE can be solved by computing the stable
deflating subspace of the matrix pencils in (1.7), (1.8) (when R is well-conditioned) or
(2.18) by the generalized Schur algorithm. This is equivalent to applying the command
dare [88] to the G-DARE (1.1). Similarly, the recently developed matrix disk function
methods, based on the QR-SWAP process (2.8)—(2.9) [18, 19, 20], can also be applied.
For comparison we briefly describe the QR-SWAP matrix disk function method:
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QR-SWAP Algorithm [19]
Input : E, A, B, C, Q, R, S, 7 (a small tolerance);
Output : the s.p.s.d. solution X for G-DARE;
Initialize : T + 0,,, M < My, L < Ly, where M, and L, are computed by (1.8);

Repeat : Compute the QR-factorization:

Qu Qu || £ T
Q2 Q2 -M 0
If |7 — T|| < 7||T||, Then solves the least squared problem for X,:
M(:1:n) =M(n+1:2n)X,;
Set X «+ X, E !,
Else Set L <+ QuL, M < QuM, T T;

Go to Repeat.

End of QR-SWAP Algorithm

By (1.6) the associated optimal control matrix is given by
K,=(R+B"X.,E'B)'B"X,E'A=(E.R+ BI'B) 'B'A

with the help of the swapping (BT X,)E~! = E;1BT.

3 Conditioning of Inversions in G-SDA

The inversion of the matrices [E(E,’:)T + BkB,{Hk], [(E,g)TEZ + BngCkTBk] and
[E¢(E)T + CF ByBl'Cy] in (2.13)—(2.15) cannot be avoided in the G-SDA. We shall show

that the condition numbers of these matrices are small. Let

E G
M, = k (3.1)
“H, ET
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where the FRDs Gy, = BB} > 0 and Hy = C,C!" > 0. Tt is easily checked by using the
Sherman-Morrison-Woodbury formula (SMWF) that

(E+GyE~TH)™! ~E-'By(I + BFE-TH E~'By)"'BI E-T

M=
ETC,(I+ CIEGrE~TCy)tCTE! (ET + HyE~1Gy) !

(3.2)
An inspection of (2.10)—(2.12) reveals that the three inverses in (2.13)—(2.15) appear in
M,;l. From the properties of norms, the maximum singular value of M,;l is a upper
bound of the maximum singular value of any of its submatrices. Consequently, we aim to
bound ||M;!|| from above with a moderate quantity, thus proving that the inversions in
(2.13)—(2.15) are well-conditioned.

Since the stabilizability and the detectability of (E, A, B) and (E, A, Cy), respec-
tively, are preserved for all k£ (see Section 2 of Chapter 1), we shall try to measure the
“quality” of stabilizability and detectability and subsequently estimate ||, "||. We shall
show that the relevant partial measures of stabilizability and detectability actually im-
proves through the iteration process. Hereafter, || - || and || - || denote the 2-norm and
Frobenius norm, respectively. For convenience, we drop the index % in (3.1) and (3.2).

Let (E, A) be a regular pencil and:let & > (-be a small threshold. Suppose that E is
nearly singular and the “large” eigenvalues of (E, A) have only linear divisor. Then there
are orthogonal equivalence transformations such that the following equivalence relation-

ship holds:

E11 E12 All A12

(B, A) % , , Egg, Agy e R, (3.3)
Es1 Ea 0 Ay
in which
max {7 (E2),5(Eyw)} < e < min{o(E;), a(A)}. (3.4)
Here 5(-) = || - || and ¢(:) denote, respectively, the maximal and minimal singular values

of the given matrix, and r is the number of “large” eigenvalues.
Assume that 7 < min{m, p}, where m and p are the rank of the control matrix B and

the output matrix C', respectively, as in (1.1), and that A((E11, A11)) N A((Eg, Agg)) = 0
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and

92 4’

where A ((+,)) denotes the spectrum for the given matrix pair, and

Vel (Era, Av)llr - 1

6 = dif [(Eh1, An), (Ea2, Ax)] >0
is the difference between the matrix pairs (E11, A11) and (Eag, Ags) [109, pp. 307]. Then
there are P,, P, € R ") with

2\/re
max {[| P ||, [| P[]} <

)

satisfying

I 0 Ey Ey Ay Ap I 0

P I Ey Ep | | 0 Ay P

E, E Ay A

_ 11 ~12 7 11 ~12 7 (3.5)

0 E22 0 A22

where

En = En+EP,, EQQ = FEo+ Pl 211 = A+ AP 222 = Ay +PrAs. (3.6)

—E By ]
1
form bases of the left and right invariant subspaces of the transformed pencil corresponding

It is easily seen that the rows of [Py, I] and the columns of { , respectively,

to the “large” eigenvalues.

Since (E, A, B) and (E, A, C) are respectively stabilizable and detectable, we have

cy=a(0FB) = (Pl | 0 || =B >0 (3.7

By

and B
0c =0 (C"X5) =0 | [C],CF] {Ej | =a(C]) >0, (3.8)
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B ~ ~ ~
where B = ' s CT = [C,{,C;], B2 = PgBl + BQ, CT = —ClTEHElg + C;, and X2

By
and Y5 are respectively the unitary bases of the right- and left-eigenvectors corresponding

to the large eigenvalues of (E, A). Clearly oz and g, in (3.7) and (3.8), respectively, are
partial measures of stabilizability and detectability.

Without loss of generality, we let

Ell ElQ Gll G12

Eo Ey |Gy Ga
~H,, —-Hy |FEL E}

| —Hl, —Hy|EL EL

where G1; = BiB! >0, G1o = B\BY, Gy = BoBY > 0. Multiplying M from the left by

] { I 0 -‘ { 1 0 -‘ [ I P -‘
and from the right by

{10 S e ) I PT
L, = diag o, ‘ (3.11)
B,\% 0 T 0 I

we obtain, with EU and EQQ given in (3.5},

Ell 0 Gll G12

0 EQQ 6{2 G22

M=LML, = |— = 1 : (3.12)
—Hy; —Hipy ElT1 0
| AL My 0 EL
where
Gu G | R B _
I Y| [BLBIR +BE = | | B BE
G{Q G22 P(Bl + B2 BQ
-ﬁIll -?I12 ] [ Cl ~_ Cl ~
S . T —CTER Bn+cf| = | 1 | |cF.c]].
I HL, Hy ] ] —ELE"C,+ C, Cy

In order to estimate |[M || we first prove the following Lemmas.
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Lemma 3.1. Let E, G =G" >0, H=H" >0 ¢ RV",

(i) If E is nonsingular, G ~ BBT >0 and H ~ CCT > 0, then

-1

E G
-H ET

(E+GETH)"'  —E'GET+HE'G)" ]

E-THE+GETH)™ (E' + HE7'G)™!
(3.13)

Furthermore, we have

(E4+GE "H) | <o(E)™ <1 + %)

and

IE7'GE"+HETG) | < o(B)GIl,  (|IET"H(E+GE™ H)™'|| < o(B)7?||H]|.

(i) IfG=G" >0 and H=H" > 0, then

—1

E G H'EN(G+EHT'ET)"!  —(H+ ETG'E)™!

~H ET (G+EH'EY)"  G'E(H+ET'G'E)~!
(3.14)

Furthermore, we have

_ 1Ty B 1
1T 1pTy\—1 < || T 1 1 <
JH BTG+ EHOET) ) € s (H o+ BTGB < s

and

‘ .

E
(G+EH*ET) Y| < IG'E(H + ETG'E) ™| < L]
(o

7(G)Q(H)' (3.15)

(@)’

Proof. (i) Equation (3.13) can easily be verified. As in (3.2), using the SMWF twice, we

19

have

E'G(E" + HE™'G)' = E"'B(I + B'"E-"HE'B)"'B"E~".

Consequently, with |[(I + BPE-THE™'B)™!|| <1, we have

IE-'G(ET + HE'G) || < o(E)2||G||
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and similar

|EH(E+GE"H)™ || < o(B)?|H].
—1

E G
For the diagonal blocks in on the right-hand-side of (3.13), by the SMWF,

—H ET
we have

(E+GE"H)" = (I+FE 'GE"H) 'E!
= I -E'BI+B"E"THE'B)"'BTE-TH|E™".
Again with ||(/ + BTE"THE'B)~'|| < 1, we obtain
T - Gll[[H]]
E+GETTH) Y <aE) (1 ”7.
(B + <) (1+

(ii) Equation (3.14) can easily be verified. Since G = GT >0 and H = H" > 0, we have

H'E"(G+EH'ET) ' = H'E"GVP(I+GTPEH T ETGT?) TG

and
(H+ ETG'E) ' = H (1 + H PETG'EH ?)"'H /2,
Consequently,
_ - _ E}| e 1
HE"(G+ EHEN) | < — VB g Era ) < :
1HET(G+ < ey I EGTEN <
The inequalities in (3.15) can also be obtained in a similar fashion. O

Lemma 3.2. Let & € R (w.lo.g. s <t) with0 < oy < --- < 0y = o(P) singular

values. Then it holds

[[t O-I _<2—|—U§+05(4+a§)1/2
[cb ISJ 2

1/2
) < 5(®) + 1. (3.16)

Proof. Applying the singular value decomposition of ® and the definition
7(Z) = Amax(ZT 2)'12,

(3.16) follows immediately. O]
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Theorem 3.3. Let (E, A) be the matriz pair given by (3.3) satisfying (3.4). Assume that

Vrell(B, Aw)llr _ 1
92 4

(B, Ain)) NA((Eaz, Agz)) = 0,

and P,, P, € R7*(=7) < min{m, p} with

2\/re
max{ |, 17} < 2%

satisfying (3.5) and (3.6). From (3.7), (3.8) we let

€11 = Q(EH) > 0, G292 = QQB = Q(égg) > 0, h22 = QQC = Q(HQQ) > 0, (317)
qi1 = 5(611), ﬁll = 5(ﬁ11), €= 5(522)7

Ji2 = 5(612); Eu = 5(?112); €12 = 0(F1a),

~ b = hi 1
Ng=gun+=—", m=hu+—, N=1+ N0, (3.18)
922 hao €11

and

2 ~2 2 EQ
K = max <772 + 777;1> qu? 1 (772 5B 77_29> 5 122 ,
€11/ €119% e, ) efihiy

Gaahss

2 2
h22 22

If ke < 1, then the matriz of the form in (3.9) can be estimated by

o2 2 4 p2y 1/2 932 2 p2 0\ 12
||M1||§max{<e%+n" nh) : <—8 Ot 22) Y (3.19)

1 2 12 '
11 €11 Gyohe 1 — ke

where

- 2 - ~ 2
w:max{<2ﬁg+1>, <@—|—1>} - max (g—I—l), @—I—l .
J €11 g22 hias

Proof. Let M = L,ML, as in (3.12), where L, and L, are given by (3.10) and (3.11),

respectively. By assumption (3.17) that Ga and Hay are s.p.d., we eliminate Go (C~}1T2)
and ﬁlg (fIlTQ), respectively, by using G2 and Hao as pivot matrices. Note that Gao and

Hyy do not possess full rank when r > m, p. Consequently, we have

LML, = My + €&
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where

En 0 Gy 0
- 0 EQQ 0 éQQ
MO = s
~Hy 0 |EL 0
0 —Hpl| 0 EL
_ [ 0 — GGl E
£ = diag _ fetay e
I —Hl, Hy,' Egy 0
N ([ GGy | |1 -y,
L, = diag 12 , 12
o 1 |0 I
- I 0 I 0
L, = diag . ~
| —Hy'Hf, T ~Gopy Grg T

and éll = 611 - 6{262_21612, Flll = ﬁll - ﬁﬂﬁg;ﬁlg. This lmphes

M = L,L,(My+ &) "Ly =L, L,(I + My ‘&) "My ' LyLy.

(3.20)

(3.21)

(3.22)

Interchanging the second and third-row: (and column-) blocks in MO, we can show the

similarity relationship

My ~ diag

Ell éll
—Ijlu ElTl

—H,, EL

EZQ 622

From Lemma 3.1, we can apply parts (i) and (ii), respectively, to the two diagonal blocks

above. One can easily check that ||]\A/[/0715|| < k€ < 1 and obtain

— 2In?
||MO—1|| < max (% +
€11

AN
a T ) o\ m e T
€11 11 G5a N3y

— +
g%z

11
h3,

)

Furthermore, applying Lemma 3.2 to (3.10), (3.11), (3.20) and (3.21) we have

5(L0),o(L,) < max {(

and

7(L¢),(L,) < max { (Q +1

2V/r

922

Inequality (3.19) then follows from (3.22)—(3.25).
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Remarks: (1) In Theorem 3.3 we give a upper bound for ||[M || in terms of e;;, § and
the partial measures of stabilizability and detectability goo and hge. Let ¢ in (3.4) be
chosen so that e;; and 0 are not too small, and let the systems be reasonably stabilizable
and detectable so that the partial measures are reasonably large. In such circumstances,
the bound in (3.19) is reasonably moderate for || M.

(2) The spectrum of (E, A) can spread out continuously in such a way that no small
¢ together with large e;; and § can be found. In such circumstance, a compromised r has
to be chosen so as to optimize the bounds in (3.19).

(3) We can show that the partial measures are not getting worse through the iteration
with increasing k. From (2.13)-(2.15), the symmetric G, and Hj, are added to by low-
rank updates through the iteration, which increases their ranks as well as their minimum
eigenvalues. Recall that the partial measures are really the minimum singular values of
Y'B and CT X5, where Y, and X, are unitary bases for the eigenvectors corresponding to
the large eigenvalues. For various k, they span approximately the null spaces of matrices
constructed from ET and F with components related to Ey and Ey in (3.3) deleted.
Let these null spaces be span respectively by the unitary A, and N,. With the help of
the properties of norms and variational properties of eigenvalues and singular values, for

various values of k, we have

g2 = Y ByBlYy, = N!ByB[ N, > o*(Bi) > o*(By),
hay = X, CLCY{ Xo = N CLCENy > a*(Cr) > a*(Cy).

Thus the partial measures for stabilizability and detectability are improving, approxi-
mately, through the iteration. The G-SDA should perform well when the original system
is reasonably stabilizable and detectable, in the sense that the starting values go9 and hoy
for £ = 0 are bounded reasonably far away from zero, with a small enough ¢ and a large
enough eq;.

(4) The assumption in (3.3) that the large eigenvalues have only linear divisors can
be removed. An arbitrarily small perturbation will perturb the matrix pencil (F, A) with

defective eigenvalues to one with only linear divisors. The conclusions in the Section then
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still hold, effectively via a continuation argument. Alternatively, the system (FE, A) can
be regularized via feedback [37] before the corresponding G-DARE is solved.

(5) We require that the number of large eigenvalues r < min{m, p}. This only limits
size of ¢ and the extent to which we can benefit from circumventing the inversion of E.
This will not lead to a failure of the G-SDA as F and R, although possibly ill-conditioned,

are assumed to be invertible.

4 Numerical Experiments for G-DARESs

For the Tables in the following examples, data for various methods are lists in columns
with obvious headings. The heading “dare” is for the dare command in MATLAB [88]
applied to (1.1), and “G-SDA” stands for our G-SDA algorithm. The heading “QR-
SWAP” stands for the QR-SWAP algorithm applied to the matrix pencil in (1.7). There
is no iteration numbers to report for dare and an ‘x’ in the Tables indicates a failure
to obtain a solution. Besides, we also report the numbers of iterations (no. ite.) for the
QR-SWAP and G-SDA algorithms, respectively, and the number of stable closed-loop
eigenvalues (no. stab. ev.) in the examples. The symbol |A¢_ | indicates the spectral

radius of the closed-loop matrix pair (E, A4 BK), i.e.,
| Ao ax] = max{|A| : M € AM(E, A+ BK)}.

We use trid(a, b,c) to denote the tridiagonal matrix with the main-, sub- and super-

diagonal elements being a, b and ¢, respectively. Also, we denote

—1 -1 -1 --- —1_

0 1 —1 - -1
I,=1|: "-. 1 . C | e RP

-1

_0 0 1_

For the comparison of residuals computed by these three methods, we use the ‘nor-
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malized’ residual (NRes) formula proposed in [19]

NRes — |ATXA —~ ETXE — ATXB(R+ B"XB)"'B"XA + H||
~ ||JATXA|| + |ETXE| + ||ATXB(R+ BTXB)'BTX A|| + | H||

where X is an approximate solution.

All computations were performed in MATLAB/version 6.5 on a PC of Intel Pentium-
IIT processor at 866 MHz, with RAM of 768 MB, using IEEE double-precision floating-
point arithmetic (e & 2.22 x 107'°).

Example 1. Consider a linear descriptor system (F, A, B, C') with n = 6 and rank(B) =

rank(C') = 3. The system matrices are

E = diag(1,1072,107%,107%,107%,1071%), R =1,

[ 40426 3.9258 26310 —2.1318 55833 —7.1839
3.5169 —0.0108 —1.7188 —8.5395 —5.2439 —0.2965
41518  5.7531 2.0055. 4.6018  8.2394  5.7068
1.2700 —7.3705 - =5.6308 .. 3.8215  8.0503  2.2467
1.5915  0.6336 7 —2.9188  -5.2129  0.1337 —6.8345
4.0271 —3.9175—=22047 < 22661 2.8700  0.1553

—0.4820 —0.4466 - —0.8810° —0.8007  0.4766 —1.2284
B = 1.2694  0.7538 —0.8847 —1.1809  0.5286  0.3069 | ,
—0.6425  1.2407 0.1126  0.7689 —0.8265  0.2993

0.3285 —0.9312  1.0424 1.1712 -0.0214  0.6355
cr = 0.3685  0.6990 —0.3572 —0.5304 —1.7255 —1.3765
3.0559 —-2.6376 —1.2290 —1.6608  0.0370  1.3068

In this case, one of the closed-loop eigenvalues achieved by QR-SWAP lies outside the

unit circle, with modulus equals 24.255. The numerical results are given in Table 1.

Example 2. In this example, we consider a linear descriptor system (E, A, B, C') with
E =T, and R = I,,. System matrices A, B,C are randomly generated with entries of A
distributed normally in [—5, 5], and entries of B and C' distributed normally in [—1, 1].
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G-SDA dare QR-SWAP

NRes 1.71 x 10716 * 1.47 x 10713
no. ite. 4 - 5
no. stab. ev. 6 * 5

|AS 3.48 x 107! * 2.43 x 101

max |

Table 1: Results for Example 1.

We set rank(B) = rank(C') = [5] (the nearest integer > %) for n = 5, 15,25, 35,45. Note
that the matrix F becomes nearly singular for large values of n and its condition number
varies from O(10') to O(10™). For n = 35, one of the closed-loop eigenvalues achieved
by QR-SWAP lies outside the unit circle, with modulus equals 3.1413. When n = 45,
four of the closed-loop eigenvalues achieved by QR-SWAP lie outside the unit circle. The

numerical results are reported in Table 2.

Example 3. Let £ € R"™*" be the Frank matrix

n- =1 "n—=2,+ ... 21
n — 1L syl ey - - 2 1
0 n—==2mnw=2 ... .. 21
E = 0 0 n—-3 " S
2 1
0 0 0 1 1]

and let
A = trid(20, —10,—10) € R"™*", R =1,.

The control matrix B and output matrix C are randomly generated with entries dis-
tributed normally in [—1,1]. We set rank(B) = rank(C) = [4]. Note that the matrix £
becomes nearly singular for increasing values of n and its condition number varies from

O(1) to O(10*). The numerical results are reported in Table 3 for n = 5,8,11,13, 16.

93



n | cond(E) G-SDA dare QR-SWAP

NRes 9.13 x 10717 6.19 x 1076 1.70 x 10~ ™
5 | 2.9 x 101 | no. ite. 6 - 8

no. stab. ev. 5 ) 5

INS sl 6.32x 107! 6.32x10°1  6.32x 1071

NRes 2.25 x 10716 7.90 x 10716 8.12 x 1012
15 | 9.5 x 10* | no. ite. 5 - 6

no. stab. ev. 15 15 15

IAE ol 176 x 1071 1.76 x 107! 1.76 x 10!

NRes 1.04 x 10~16 % 1.09 x 10~12
25 | 1.7 x 10% | no. ite. 5 - 6

no. stab. ev. 25 * 25

INC o 1.72 x 107! * 1.72 x 107!

NRes 2.23 x 10716 % 5.08 x 10713
35 | 2.4 x 10 | no. ite. 5 - 6

no. stab. ev. 35 * 34

IAC sl 2.51 x 107" * 3.14 x 10°

NRes 2 ) 1 % 1.18 x 10713
45 | 3.3 x 10™ | no. ite. 5 - 6

no. stab. ev. 45 * 41

IAS ol 5.05 x 107! * 2.65 x 10°

For n = 13, 16, some closed-loop eigenvalues achieved by QR-SWAP lies outside the unit

Table 2: Results for Example 2.

circle, with moduli up to 2.7023 and 7.6843, respectively.

Example 4. This example is modified from Example 15 in [21], which was presented

originally in [96, Example 3]. Here we consider the G-DARE defined by

E = diag(1,107%,1072,--- ;107" V) € R,
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n | cond(E) G-SDA dare QR-SWAP

NRes 4.14 x 10717 470 x 1076 2,71 x 10~
5 | 6.5 x 102 | no. ite. 6 - 7

no. stab. ev. 5 5 5

IS x| 3.62x 1071 3.62x1071  3.62x 1071

NRes 3.90 x 10716 228 x 10715 8.70 x 10710
8 | 2.8 x 10° | no. ite. 6 - 7

no. stab. ev. 8 8 8

IAE ol 479 x 1071 478 x 107t 479x 107!

NRes 9.81 x 10717 % 5.10 x 10712
11| 3.3 x10% | no. ite. 7 - 7

no. stab. ev. 11 * 11

IAS ol 5.68 x 107! * 5.68 x 107!

NRes 7.79 x 10717 * 6.24 x 10711
13 | 5.9 x 10'% | no. ite. 6 - 7

no. stab. ev. 13 * 12

IAC sl 446 X 107" * 2.70 x 10°

NRes 2.39.x'10-16 * 2.26 x 10714
16 | 2.3 x 10 | no. ite. 6 - 7

no. stab. ev. 16 * 15

IAS ol 7.36 x 107! * 7.68 x 10°

Table 3: Results for Example 3.
and
B =10 0 1|eR*™, R=1 H=I,.

If £ = diag(en, €99, -

where 21 = 1/ef, and z; = (z;.1 + 1)/e

,€nn), then it is easily seen that the stabilizing s.p.s.d. solution is

X = diag(xy, xa, -+, xy),

2.
i3’
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eigenvalues are all zero.

The numerical results are given in Table 4.

n | cond(E) G-SDA dare QR-SWAP

NRes 1.52 x 10716 2,05 x 1071°  2.95 x 10~17
2 10 no. ite. 2 - 8

no. stab. ev. 2 2 2

IAE x| 0.00 x 10°  1.52 x 10733 0

NRes 232 x 10716 214 x 1075 7.75 x 10713
4 103 no. ite. 3 - 7

no. stab. ev 4 4 4

INE sl 0.00 x 10° 216 x 1077 551 x 1077

NRes 8.15 x 10717 * 6.58 x 1071
6 10° no. ite. 4 - 8

no. stab. ev. 6 * 6

IAS ax] 0.00 x 10° * 2.74 x 1073

NRes 3855 15 16 * 9.99 x 101
8 107 no. ite. 4 - 11

no. stab. ev: 8 * 6

IAC sl 0.00'x 10° * 1.27 x 10°

NRes 1.95 x 10716 % 9.96 x 101
10| 10 | no. ite. 5 - 13

no. stab. ev. 10 * 6

IAS ax] 0.00 x 10° * 5.54 x 107

Example 5. Here we consider a linear descriptor system (F, A, B,C) with E = T,, and

Table 4: Results for Example 4.

R = T,, 7T, where m = rank

m?

entries of A distributed normally in [—5, 5], and entries of B and C' distributed normally
in [~1,1]. We set rank(B) = rank(C) = [5] for n = 5,15,25,35,45. Note that the

matrices F and R become nearly singular for increasing n and their condition numbers

(B).
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vary from O(10') to O(10').
by QR-SWAP lies outside the unit circle, with modulus equals 20.9885. When n = 45,

For n = 35, one of the closed-loop eigenvalues achieved

four of the closed-loop eigenvalues achieved by QR-SWAP lie outside the unit circle. The

numerical results are reported in Table 5.

n cond(E) cond(R) G-SDA dare QR-SWAP

NRes 197 x 1076 359 %x 1076 539 x 104
5 1 29x 10" | 2.9 x 10 | no. ite. 6 - 8

no. stab. ev. 5 5 5

P 6.66 x 1071 6.66 x 1071 6.66 x 10~*

NRes 7.76 x 10717 1.10 x 10715 7.29 x 10712
15| 9.5 x 10* | 1.4 x 10° | no. ite. 5 - 6

no. stab. ev. 15 15 15

pYa. 2.40 x 1071 240 x 1071 2.40 x 107!

NRes 4.84 x 10716 * 2.74 x 10712
25 | 1.7x10% | 4.2 x 10®% | no. ite. 6 - 6

no, stab. ev. 25 * 25

(A 2:21 x 107! * 221 x 107!

NRes 2.25 x 1016 * 2.95 x 10~12
35 | 2.4 x 10" | 8.6 x 10! | no. ite. 6 - 6

no. stab. ev. 35 * 34

P 3.12 x 107! * 2.10 x 10"

NRes 4.96 x 10716 * 4.35 x 10~
45 | 3.3 x 101 | 1.5 x 10! | no. ite. 6 - 6

no. stab. ev. 45 % 41

IS el 8.60 x 10! * 4.11 x 10

Table 5: Results for Example 5.

97



5 Conclusions

We have develop the G-SDA algorithm which solves G-DAREs with ill-conditioned R
and E. Inversions of ill-conditioned matrices are circumvented via well selected swapping
of matrix products and applications of the SMWEF. Numerical results show that the G-
SDA is competitive with QR-SWAP and dare, out-performing the other algorithms in
the selected set of test examples. The advantage of our structure-preserving algorithm is
evident from the absence of unstable closed-loop eigenvalues at the end of the iterative
process, contrasting results from QR-SWAP. The corresponding solution from QR-SWAP
may be accurate in the sense of a small residual, it is obviously useless in the sense
of stabilizing the closed-loop system. The MATLAB command dare failed frequently
for many ill-conditioned examples. Apart from having superior accuracy, convergence
and structure-preserving properties, the operation count (per iteration) for G-SDA is a
small fraction of those for the other algorithms, analogous to the superiority of the SDA
for DAREs proposed in Chapter 1./ Thisefficiency is the consequence of the fact that
the G-SDA operates in R"*" while QR-SWAP. and dare works with matrices of higher

dimensions.
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Chapter 4

Balanced Realization of Periodic Descriptor
Systems

1 Introduction

In the second-half of the last century, the development of systems and control theory,
together with the achievements of digital control and signal processing, has set the stage
for renewed interests in the study of periodic systems, both in continuous and discrete
time; see, e.g., [87, 130, 118, 47, 57, 52] and the survey papers [28, 29]. This has been
amplified by specific application demands in the aerospace realm [68, 89, 67], computer
control of industrial processes [30] and communication systems [117, 47, 116, 129]. The
number of contributions on linear time-varying 'discrete-time periodic systems has been
increasing in recent times; see, e.gl [53,:62, 72,121, 123, 125] and the references therein.
This increasing interest in periodic systems has-also been motivated by the large variety
of processes that can be modelled through linear discrete-time periodic systems (e.g.,
multirate sampled-data systems, chemical processes, periodically time-varying filters and
networks, and seasonal phenomena [26, 28, 31, 55, 83, 101, 128]).

We consider here periodic time-varying descriptor systems of the form
Eyvpp = Agvp + Brug,  yp = Cray, k€ Z, (1.1)

where the matrices Ei, A, € RY", B, € R¥™™, (), € RP*" are periodic with period
K >1,ie., Ey = Eyyk, Ay = Ak, Bx = Bk, Cr = Cyik, and the matrices Ej are
allowed to be singular for all k. Recently, this class of periodic descriptor systems (1.1) is
discussed and studied extensively in the problem of solvability and conditionability [107],
the computation of H.,-norm and system zeros [106, 127], and the compensating and

regularization problems for periodic descriptor systems [35, 73].
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It is well known that the dynamics of the discrete-time periodic descriptor system
(1.1) depend critically on the regularity and the eigenstructure of the periodic matrix

pairs {(Ejy, Ag)} ' which satisfy the homogeneous systems of (1.1):
Ekxk—i—l = Akxk, k € Z. (1.2)

The matrix pairs {(Ej, Ax)}1—y are said to be regular when det[C((ou, Bi)izy)] F 0,

where _ )
o By 0 T 0 —PBoAo
—biAL alE) 0
Cllak, Br)rsy) = ; (1.3)
0
L 0 0 —51(71141@1 OéKflEKfl_
in which ay, B are complex variables for £ =0,..., K — 1.

Definition 1.1. [80] Let {(Ey, Ax)}yt e n x n regular matriz pairs. If there exist

complex numbers ag, -+, g 1, Boy - Br=i-which satisfy

det[C (o, Br) i) =05, <f[ Qg 1:[ 6k> = (mq,m8) # (0,0) (1.4)

k=0

then (ma,m3) is an eigenvalue pair of {(Ey, Ar) }r-

Note that if (7, 75) is an eigenvalue pair of {(Ey, Ax)} ', then (7, 75) and (774, 775)
represent the same eigenvalue for any nonzero 7. If 73 # 0, then A = 7, /7 is a finite
eigenvalue; otherwise (7, 0) represents an infinite eigenvalue. The spectrum, or the set of
all eigenvalue pairs, of {(Ej, Ay) e is denoted by o ({(E, Ax)}r'). We shall assume
throughout this chapter that the periodic matrix pairs {(Ej, Ax)},_, are regular, and
also use the notation o(M) to denote the spectrum of a square matrix M.

It is easily seen that the determinant of C((ag, Bk)i—y’) is a homogeneous polynomial

in 7, and 7 of degree n of the form

n
Z ckwgwg_k, (1.5)
k=0
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where ¢, - ,c, are complex numbers uniquely determined by {(Ej, Ax)},—,'. For the
regular matrix pairs {(Ey, Ag)}r_!, at least one of the ¢4’s is nonzero, and hence we
see from Definition 1.1 that there are exact n eigenvalue pairs (counting multiplicity) for
{(Br, Ap) 15

It was shown in [107] that the solvability of (1.2) is equivalent to the condition that

the pencil
(0B, 0 - 0 —BA|
—BAI ab 0
af — PA = : (1.6)
0
L 0 0 —BAx a’EKfl_

is regular i.e. det(a€ — B A) # 0. From (1.5) it is easy to check that
o ({(Er, Ar) 1) = {(@F, %) | det(a& — BA) =0} . (1.7)

Hence, from (1.7), the solvability of (1:2)'is equivalent to the regularity of {(Ey, Ag)} .

For discrete-time descriptor systems; the:concepts of reachability and observability
Gramians, causal and noncausal 'Hankel singular-values, and balanced realization are
well-established [17, 114]. Moreover, numerical methods are proposed in [110] to solve
the projected generalized Lyapunov equations for continuous-time descriptor systems.
However, to our best knowledge, similar results have not been developed for periodic
descriptor systems.

In summary, there are three main contributions from this chapter. First, in Sec-
tion 3, we give a set of necessary and sufficient conditions of complete reachability and
observability for the periodic time-varying descriptor system (1.1). Second, with the
aid of the fundamental matrices ¢;; defined as in (2.6), the reachability /observability
Gramians and their corresponding projected generalized discrete-time periodic Lyapunov
equations (GDPLE) are derived in terms of the original system matrices Fy, Ay, By and
Cy, k =0,1,..., K — 1, respectively. These fundamental matrices play an important

role here and are not natural extension of those defined for the descriptor system with

101



period K =1 [110, 114]. Third, in Sections 6 and 7, Hankel singular values and balanced
realization are discussed, for the first time, for completely reachable and observable pe-
riodic descriptor systems. These concepts are likely to be crucial in the model reduction
problem of periodic descriptor systems.

This chapter is organized as follows. Section 2 contains some notations and definitions,
as well as some preliminary results. In Section 3 the necessary and sufficient conditions
are derived for complete reachability and observability of periodic descriptor systems,
respectively. With these equivalent conditions, the periodic reachability and observability
Gramians, which satisfy some generalized periodic Lyapunov equations, are developed in
Section 4. In Section 5 we propose a numerical method for solving these equations under
the assumption of pd-stability. A numerical example is given to illustrate its feasibility
and reliability. The concept of Hankel singular values is generalized for periodic descriptor
systems in Section 6. The problem of balanced realization for the completely reachable

and completely observable periodic descriptor systems is discussed in Section 7.

2 Preliminaries

For period K = 1 and a regular matrix-pair'(£, A), it is well known that the discrete-time
descriptor system (E, A, B, (') is asymptotically stable if and only if all finite eigenvalues
of (E,A) lie inside the unit circle [48, 111, 112]. Similarly, the asymptotic stability of
the periodic descriptor system (1.1) can be characterized in terms of the spectrum of the

periodic matrix pairs {(Ej, Ay) }rg.

Definition 2.1. Let {(FE}, A,yg)}sz_O1 be n x n regular matrixz pairs. The periodic descriptor
system (1.1) is asymptotically stable if and only if all finite eigenvalues of the periodic
matriz pairs {(Ey, Ag)} 1" lie inside unit circle. The periodic matriz pairs {(Ey, Ax)} o'
are called pd-stable if the periodic matriz pairs {(Ey, A) kK:Bl are reqular and all their

finite eigenvalues lie inside the unit circle.

In a similar fashion to the Kronecker canonical form for a regular matrix pair, we can

transform regular periodic matrix pairs into periodic Kronecker canonical forms [73].
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Lemma 2.1. Suppose that the periodic matriz pairs {(Ey, Ag)}iey in systems (1.1) are

reqular. Then for k =0,..., K — 1, there exist nonsingular matrices X, and Yy such that
I 0 Al o

XpEpYei1r = , o XpApYy = ; (2.1)
0 E} 0 I

where Y =Yy, A£+K71A£+K72 x -A,’: = Ji 15 an ny X ny Jordan matriz corresponding
to the finite eigenvalues, E,’;E};H . -E,l;JrKfl = N 18 an ny X ng nilpotent Jordan matriz

corresponding to the infinite eigenvalues, and n = ny + no.

Remark. If v, is the nilpotency of the nilpotent matrix N, for £k = 0,1,..., K — 1,
then these K values are defined as the indices [73] of regular periodic matrix pairs
{(Ek, Ap)},—,'. Hence we define the index of the periodic descriptor system (1.1) as
v = max{vg, 1, ,Vk_1}. We say that the periodic descriptor system (1.1) is of index

at most 1 if v <1, i.e., E} are all nonsingular or N, = 0 for all k.
For each k € Z, we let

f f
xy, | B[}y

Ty =Y o XuBy = ;o CyYp = [C,{ C,ﬂ 5 (2.2)
2} [ Ino B2 {}ns ny N2

and by using Lemma 2.1 we can decompose the original system (1.1) into forward and

backward periodic subsystems, respectively:

x£+1 = A£x£ + B,{uk, y,{ = C,{x,{, (2.3)

E,’;xzﬂ = xz + BZuk, y,’; = C’,gzvz, (2.4)

with g, =yl +18, ke Z.

Notice that the state transition matrix of the forward subsystem (2.3) equals ® (7, j) =
Al Al -A; when i > j with ®;(4,7) := I,,. The state transition matrix of the
backward subsystem (2.4) is ®y(4, j) = E}E}, | ---EY_; when i < j with ®,(i,i) := I,
The state transition matrix over one period ® (74, 7) € R" *™ is called the monodromy
matrix of the forward subsystem (2.3) at time 7. It is well known that its eigenvalues,

called the characteristic multipliers, are independent of 7 [122, 81].
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For k=0,1,..., K — 1, the n X n matrices

2., o] 5 o]
P.(k) = Vi Y, P(k) = X; Xy, (2.5)
L0 o L0 o
are respectively the spectral projections onto the kth right and left deflating subspaces of
the periodic matrix pairs {(Ej, Ay) };—' corresponding to the finite eigenvalues. Moreover,
the fundamental matrices ¢; ; (i, j € Z) of the periodic descriptor system (1.1) are defined
by

( "q) o
,7+1) 0
y |G+ X, ifi>j,
0 0
(pi,j = r (26)
0 0 o
Y; X, i<y
L _0 *(I)b(zvj)

These matrices play an essential role for the periodic discrete-time descriptor system (1.1).
For the discrete-time descriptor system with period K = 1, these fundamental matrices
coincide with the coefficient matrices of the Laurent expansion of the generalized resolvent

(AE — A)~! at infinity [79, 114].

3 Complete Reachability'and Observability

In this Section we shall give a characterization of complete reachability and observability

for the periodic discrete-time descriptor systems (1.1).

Definition 3.1. (i) The periodic descriptor system (1.1) is reachable at time t if for any
state T € R™, there exist two integers s, £ with s < t < £ and a set of control inputs
{u;Ye_, which carry xy = 0 into x; = . The periodic descriptor system (1.1) is called
completely reachable if it is reachable at all time t.

(ii) The forward subsystem (2.3) is reachable at time t if for any state & € R™, there

exists an integer s with s <t and a set of control inputs {u;}'=} which carry x{ = 0 into
x{ = &1, The periodic subsystem (2.3) is called completely reachable if it is reachable at

all time t.
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(iii) The backward subsystem (2.4) is reachable at time t if for any state & € R,
there exists an integer { with ¢ > t and a set of control inputs {u;}!_, such that 2* = &.

The periodic subsystem (2.4) is completely reachable if it is reachable at all time t.

Remark. It is easily seen from Definition 3.1 that the periodic discrete-time descrip-
tor system (1.1) is completely reachable if and only if both its forward and backward

subsystems are completely reachable.
Theorem 3.1 (Forward Reachability). The following statements are equivalent.
(a) The forward subsystem (2.3) is completely reachable.
(b) Fort=0,1,2,--- K — 1, the matrices
Rf(t) = [Btf—la A{—lBg—Q’ ey Qp(tt—m K + 1)Bg—n1K]
have full row rank .

(c) Fort=0,1,2,--- K — 1, and

Bl = [Btfqa AL B ALCATGBL - @8t - K + 1)3511(} ’
the matrices
(B, @yt — K)B], (@y(t,t — KB, -, (@y(t,t — K))ym B |

have full row rank.

K—1
(d) For 1:[ a; € 0(®(K,0)), the matriz

=0
[l 0 - 0 —Al | B! ]
Al ar 0 B!
Uf(Oéoa"' ,OZKA) = 0 —Ag
0
[0 0 Al ekl Bie s

has full row rank.
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(e) Fort=0,1,2,--- K — 1,

y'®r(t+ K, t) =My’ and yT(Pf(t,j)Bf =0 for j=t—K+1,---,t—1,t

i1
mmply y = 0.

Proof. (a) = (e): Suppose the statement (a) is true. For any ¢t € {0,1,--- , K — 1},

assume that
y'®,(t+ K,t) = \y" and nybf(t,j)Bf_l =0 for j=t—K+1,---,t—1,t. (3.1)

Since the forward subsystem (2.3) is reachable at time ¢, there exist an integer s with
s < t and control inputs u;, s <7 < t— 1, which carry :1:{ = (0 into xtf = y. Thus, we have

t—1

1=$
Moreover, from the assumptions (3.1), it follows that

eyl

yly = yTZq)f(t,i—i— 1)Bu; = 0.

Therefore, y = 0 and hence the condition (¢) holds.
(e) = (d): Assume that the condition (e) holds, and let vectors yo, y1,- -+ ,yx—1 € R™

satisfy
(yép: y”ir’ T :yg—l)Uf(O‘U’ Qp, " aO‘K—l) =0,
or ) .
T — . TAf TRl —
QpYy Y1 A Yo Do
T — ,TAl Tl — ¢
Q1Y Yo A Y1 Dj
............... and ¢ (3.2)
T _ T Af T Bf =0
OK2Yx o2 = Yrk—1A4K_1 Yx 2Pk -2
\CYK—lyﬁfl = Z/OTA(J; \yljglef(fl =0.
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Notice that for the vector yg_;, it can be easily checked from (3.2), for j =

1,

and

,—2,—1,0, that

Yy ®(K,0) = yb_ AL AL Al

= (g 20K 3" WOK_1)YK 15

y£—1q>f(07j)33f71 =0.

~K +

By condition (e), if the product ax sax 3---apax 1 € o({(Ek, Ak)},f:’ol), we then have

yr—1 = 0. Similarly, it can be shown that yx_s = yx_3 =

matrix U/ (ap, - -+ ,ax_1) has full row rank and condition (d) is proved.

- =yp = 0. Therefore, the

(d) = (c): Suppose that (d) holds. It suffices to prove condition (c) for time instant

t = 0. Since condition (d) holds, it follows that

I
—A{
0

0

0
I
—Ag

0

0

!
< Agl

—Ag
0

0
A

Bj
By

f
By, |

(3.3)

has full row rank for all A € o(®;(K,0)). By elementary row operations, the matrix

Uf(l,---

,1,A) can be transformed to

I
0

0

*

1

1
0

A — @ (K, 0)

*

®;(K,1)B]

*

! f f
Ax_1Bk_y Bk i

which is of full row rank for all A € o(®(K,0)). Equivalently, the last row blocks of U/
has full row rank for all A € o(®(K,0)), i.e.,
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where the matrix B} is defined in the (c). This proves condition (c) for t = 0. Similar
arguments apply for 1 <t < K —1.

(¢) = (b): This follows from the periodicity of the matrices Af and B/, i.e., A,’;K = Af
and B], . = B} for all k.

(b) = (a): Assume that condition (b) holds. For any time ¢ € Z (mod K) and any
given state & € R™, there exist an integer s = t — n; K and a set of control inputs w;,

s <11 <t—1, which satisfy
t—1

> @p(tyi+ 1)Blu; =&,

1=§
since R/ (t) has full row rank. With these control inputs, the given state & can be reached

at time ¢ from the initial state 2/ = 0, and hence the complete reachability of the forward

subsystem (2.3) is proved. O
Theorem 3.2 (Backward Reachability). The following statements are equivalent.
(a) The backward subsystem (2.4) is completely reachable.
(b) Fort=0,1,2,---, K — 1, the matrices
Rb(t) = [Bf, EfoH, B B (I>b(t,t—|— vK — 1)B1?+1/K—1:|
have full row rank.
(c) Fort=0,1,2,--- K —1, and
BI= Bl BBl - BVEL, - By Bl |
the matrices [Nt7 Bf] have full row rank.

(d) The pair (Ey, By) is reachable, where

0 E} Bt
0 0 E? B
& = : and By =
0 0 Eb
_E’}(,l 0 - .- 0 ] I B?(,l_

(3.4)
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Proof. (a) < (b): For any time ¢ € Z, it can be easily seen that

Ut
, t+rvK—1 , , , Ui
o == Y ®t,i)Blu; = —R"(t)
i=t
| UttvK -1 |

Therefore, any given state & € R" can be reached at time ¢, i.e., 22 = &,, through a set
of control inputs {u;}*** " if and only if the matrix R’(#) is of full row rank.
(b) < (c): Since N; = ®y(t,t + K) = E}El - El._, and Ny = 0 for t =

0,1,..., K — 1, it follows that
RYt) = [BL, NBY, - NI
Thus, rank(R’(t)) = ny if and only if rank [AI — N,, B!| = ny for any X € o(IV;). Since
the matrix N; is nilpotent, o(N;) = {0}, and hence rank(R°(t)) = ny if and only if
rank [th, Bf] = ny. Equivalently, rank [Nt, Bf] = ngy.
(b) < (d): Notice that the matrix &, is nilpotent with the property that & =

and &' # 0. It is well known that the pair (£, B;) is reachable if and only if B, =
[Bb, EBy, -, f,’é’*le] has full row rank. Eurthermore, it can be checked that the row

blocks of the matrix By are just R(#) with'different ¢. Therefore, statements (b) and (d)

are equivalent. O

Definition 3.2. (i) The periodic descriptor system (1.1) is observable at time t if there
exist two integers s, £ with s < t < £ such that any state at time t can be determined from

¢, and {u;}t_,. The periodic descriptor system (1.1) is called completely

knowledge of {y;
observable if it is observable at all time t.

(ii) The forward subsystem (2.3) is observable at time t if there exists an integer ¢
with € >t such that any state at time t can be determined from knowledge of {y;}i, and
{u;}t_,. The periodic subsystem (2.3) is called completely observable if it is observable at
all time t.

(iii) The backward subsystem (2.4) is observable at time t if there exists an integer s

with s < t such that any state at time t can be determined from knowledge of {y;}i_, and

i=s
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{u;}t_,. The periodic subsystem (2.4) is completely observable if it is observable at all

time t.

Remark. It is easily seen from Definition 3.2 that the periodic discrete-time descrip-
tor system (1.1) is completely observable if and only if both its forward and backward
subsystems are completely observable.

We shall state the following Theorems without proofs, which are similar to those of

Theorems 3.1 and 3.2.

Theorem 3.3 (Forward Observability). The following statements are equivalent.
(a) The forward subsystem (2.3) is completely observable.

(b) Fort=0,1,2,--- K — 1, the matrices

cf
cl, Al

o'(t ChoaL, Al

_th—l-mel(Df(t +nm K -1, t)_
have full column rank.
(c) Fort=0,1,2,--- K —1, and
T
¢l = [y, (AT ()T - eyt K~ L7 (C )]

the matrices
c/
Cl o (t+ K, t)
cl (®s(t + K, t))?

0] (@)(t + K, 1)

have full row rank.
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K-1

(d) For ]:[ a; € 0(Pf(K,0)), the matriz

=0
[l 0 -0 —AL ]
—Al a1 0
0 —Af
0
0 - 0 —Al_, ax.I
Vf(ao,--- ,QK—1) =
ot
of
Ch_s
_ Ck1

has full column rank.
(e) Fort=0,1,2,--- K — 1,
O(t+ K, t)x = Az and Cif@f(i,t)a: =0 foro=t,t+1,--- t+K—-1
imply x = 0.
Theorem 3.4 (Backward Observability). The following statements are equivalent.
(a) The backward subsystem (2.4) is completely observable.

(b) Fort=0,1,2,---, K — 1, the matrices

Ct
Cia Bty

O°(t) Cb ,Eb ,EY |

Ctb—uK—H(I)b(t —vK + 17 t)

have full column rank .
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(c) Fort=0,1,2,--- ,K —1, and
b T
¢t = [(ChT, (BL)T(CL)T. o, Bl = K+ L7 )]

the matrices

Cy
CtN,
CYN?

Ny

have full column rank

(d) The pair (&,Cp) is observable, where &, is defined in (3.4) and the matriz C, =
dlag(c(l])a Ci)a U ;Cg(—l)'

4 Periodic Reachability and Observability Gramians

It is well known that Gramians play an important role in many applications, such as the
model reduction problem [58, 94; 131].-In this Section, the concepts of reachability and
observability Gramians are generalized for periodic discrete-time descriptor systems (1.1).

Consider the causal and noncausal reachability matrices given by

R+(t> = [‘Pt,tletflv SOt,HBH, M <Pt,z‘Bz', e } (t =0,1,--, K — 1)

and

R- (t) = [@t,tBt, <Pt,t+1Bt+1, T, (Pt,t+uK—1Bt+uK—1} (t =0,1,---, K — 1);

respectively, with ¢, ; (7,7 € Z) as defined in (2.6).
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Definition 4.1 (Reachability Gramians). Suppose that the periodic matriz pairs
{(Ey, Ap) }i_y! are pd-stable.
(i) The causal reachability Gramians of the periodic descriptor system (1.1) are defined

by
k—1

T =Ri(E)RL(E)" = ) BBt k=01, K-1.

1=—00
(ii) The noncausal reachability Gramians of the periodic descriptor system (1.1) are

defined by

k4+vK—1
v=R_(ER_(K)" = > eniBBlgp, k=0,1,... K-1
i=k

(iii) The reachability Gramians of the periodic descriptor system (1.1) are defined via
GL.=G{+GY, k=0,1,...,K—1.
The causal and noncausal observability matrices are respectively defined by

T
O, (t) = [@ZtilctT, Oh1 o Gt i e s } (t=0,1,--- , K —1)

and

T
O_(1) = [@?qu,tflcguK7 ‘PtTquH,tflCtTquJrla A ‘PtT—1,t—1CtT;1} (t=0,1,---, K-1).

Definition 4.2 (Observability Gramians). Suppose that the periodic matriz pairs
{(Ey, Ap) iyt are pd-stable.
(i) The causal observability Gramians of the periodic descriptor system (1.1) are de-

fined by

W= 04(k) 0L (k) =) 0l (Ol Cipigr, k=0,1,... K —1.
i=k

(ii) The noncausal observability Gramians of the periodic descriptor system (1.1) are

defined by

k—1
=00 (k)= Y ¢l ClCipigr, k=0,1,... K -1

i=k—vK
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(iii) The observability Gramians of the periodic descriptor system (1.1) are defined by

GO=Ge+Ge, k=01,... K-L

Remarks. (i) The infinite series appeared in the definition of Gramians G§" and G§°
converge because of the pd-stability of the periodic matrix pairs {(Ej, Ax)} iy -

(ii) The Gramians G, G}", G¢° and G}° are n x n symmetric positive semi-definite
matrices for all .

(iii) Definitions 4.1 and 4.2 are natural generalizations of the Gramians defined for

descriptor systems with period K = 1; see, e.g., [17, 114].

The following theorem indicates that these Gramians of the periodic descriptor system
(1.1) satisfy some projected generalized discrete-time periodic Lyapunov equations with

special right-hand sides.

Theorem 4.1. Consider the periodic_discrete-time descriptor system (1.1), where the
periodic matriz pairs {(Ey, Ay) )1y -are pd-stable.
(i) The causal and noncausal reachability-Gramians {GS' 1=y and {GE"} ! are the
unique symmetric positive semi-definite=solutions of the projected GDPLE
ELGE, BT — AuG AT'= P(k) BuBI Pk,

(4.1)
G = R(KGTP(R)", k=012, K1,

and
ExGylL B — AGRT AR = —(1 = Pi(k)) By B (I — Pi(k))", (12)
P.(k)G¥ =0, k=0,1,2,..., K —1,
respectively, where G = G§ and G = Gy .
(ii) The causal and noncausal observability Gramians {G°}F " and {GR°} ! are the
unique symmetric positive semi-definite solutions of the projected GDPLE
By, Gy By — AL G A = Po(k)T CL G (R),

(4.3)
G = Pk =1)"GR(k 1), k=0,1,.... K —1,
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and

B (G B — ARG, Ap = —(I = Po(R))"CLC(I = Po(k)), (1.0
Gp°P(k-1)=0, k=0,1,2,...,K -1,
respectively, where G¢ = G§°, G = Gy°, E_1 = Fx 1 and P(—1) = P(K —1).

(iii) The reachability and observability Gramians {G}}1—,' and {G}1—,' are the unique
symmetric positive semi-definite solutions of the projected GDPLE

EyGi Bl — A GLAL = P(k) BB P(k)" — (I — Pi(k))ByBI (I — Fi(k))",

(4.5)

P.(k)G} =G P.(k)", k=0,1,2,..., K —1,

and
El \GyEp 1 — ALGy Ay = Po(k) CECP (k) — (I = Po(k))"CLC(I — Po(k)),

P(k—=1)"Gs =GP (k—1), k=0,1,2,...,K—1,

(4.6)
respectively, where G = G, G% = G5, E_1 = Ex_1 and P(-1) = P(K — 1).

Proof. We shall verify only (4.1) here and the other cases can be shown similarly. Rewrite

(4.1) into an enlarged Lyapunov equation
EGELL AGAT = BB, (4.7)
where

g = dia‘g(E07E17 e 7EK71)7 B = dla‘g(Pl(O)B(): Pl(l)Bl7 e 7IDZ(K - 1)BK71)7

Ay

Ak

Ao

cr
Gi

cr
Gs

cr
G§ |

Since the periodic matrix pairs {(Ejy, Ax)} i, are pd-stable, the matrix pencil A\f — A is
regular and all its generalized eigenvalues lie inside the unit circle. Then the Lyapunov

equation (4.7) has a unique solution and hence the uniqueness of solutions of the projected
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GDPLE (4.1) is guaranteed. On the other hand, it can be shown that the causal reach-
ability Gramians G§', k = 0,1,..., K — 1, satisfy the projected GDPLE (4.1). Indeed,

simple calculation gives that
ExGYL Bl — AGY AL

k k1
= Ej ( Z @k+1,iBz'B¢T90;€+1,i) By — Ay ( Z ¢k,iBiBiT99£¢) Af

i=—00 1=—00

k . ; T
Qr(k+1,0+1) 0 Prk+1,04+1 0

T T
Vi1 B

L ®y(ki+1) 0 ®s(k,i+ 1) 0

—AY Y X, B;BIXT y,I AT
Pl 0 0 0 0
- S Bk +1,i+1)B/(BNT®(k+1,i+1)T 0 ot
- k k
0 0
- P @k + 1,0+ 1)BUBH Ok +1,i+ 1T 0] .
k k
0 0
BI(BHT 0
= | BP0 o BT R
0 0
and
P (k)G P ()T
(1, 0 = I, 0
= Y| v, ! Z eriBiB el | YT v
0 0 Pt 0 0
S @y (ki + BB R (ki )T 0]
- 0 OJ Y =

for k = 0,1,..., K — 1. Therefore, the causal reachability Gramians {G;T}ngol are the

unique symmetric positive semi-definite solutions of the projected GDPLE (4.1). O

The following theorem shows that complete reachability /observability of the periodic

descriptor system (1.1) can be characterized via the reachability /observability Gramians.

116



Theorem 4.2. Consider the periodic discrete-time descriptor system (1.1). Assume that
the periodic matriz pairs {(Ey, Ax)}1_g' are pd-stable.

(i) The periodic descriptor system (1.1) is completely reachable if and only if the reach-
ability Gramians GY, are positive definite for k =10,1,2,..., K — 1.

(ii) The periodic descriptor system (1.1) is completely observable if and only if the

observability Gramians GY, are positive definite for k =0,1,2,..., K — 1.

Proof. Here we shall only prove statement (i) and statement (ii) can be verified similarly.
Fork=0,1,..., K—1, pre-multiply (4.5) by X} and post-multiply (4.5) by X}, it follows
that
BV Gy Vi ETXT — XAy atxy = | Pe00 @y
0 =ByBY"
where @; = kaleYk*T .
From Definition 4.1 it is easily seen; for k. =0,1,..., K — 1, that

~ Ccr 0
Gy SYHEEytEEn s (4.9)
0 ng
with
. k—1 N k+vK—1
o= 3 ki + 1B (B) 0 (ki+1)T, Gry= Y @k, i) BB Dy (k, i) .
1=—00 i=k

Then by (2.1) and (4.9), equations (4.8) are decomposed into two periodic Lyapunov
equations, for k =0,1,2,..., K — 1:

Gy — ALGS (AN = BI(B])T, (4.10)

ZTQ - EIZ Z:—LQ(EIZ)T = B,';(B,Z)T. (4-11)
Rewrite (4.10) and (4.11) to two enlarged Lyapunov equations:

gcr - AfgcrAT = BfBTa (412)
gnr - gbgnrng = BbBlTa (413)
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— 1 ACT‘ AC’I“ ACT‘ J— 3 Anr ATLT‘ A’I’LT‘
where G, = diag( k1 s UK GO,I)) Gnr = diag( 0,291,207 1@1,2), & and B, as

defined in (3.4), and

A} B}
Al B B]

Afol B{(A_

Since the periodic matrix pairs {(Ej, A¢)},_,' are pd-stable and the matrix &, is
nilpotent with index v, the pairs (A, By) and (&, By) are reachable if and only if the
solutions G., and G,, of Lyapunov equations (4.12), (4.13) are symmetric positive definite.
Equivalently, followed from (4.9), all reachability Gramians G, (kK =0,1,..., K — 1) are
symmetric positive definite. Moreover, from Theorems 3.1-3.2 and the Remark following
Definition 3.1, we know that the periodic descriptor system (1.1) is completely reachable
if and only if the pairs (Ay, By) and (&, By) are reachable. This completes the proof of

statement (i). 0

5 Numerical Solutions of Projected GDPLEs

In this Section, a numerical method is proposed for the symmetric positive semi-definite
solutions of the projected generalized discrete-time periodic Lyapunov equations (4.1)
and (4.3), for pd-stable {(Ej, Ag)}'. We first consider the numerical solutions of the
GDPLE (4.3).

GDPLE for Observability Gramians G}’

As {(Ey, Ag)} F7! are pd-stable, there exist orthogonal matrices V;, and Uy, with Ux = Uy
and for £k =0,1,..., K — 1, such that

Ei1 Eigs Ap1 Aps
V}CTEICUIHJ — s VkTAkUk =
0 Ejo 0 Ako

(5.1)
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are upper triangular except V' AUy is qusi-upper triangular [33, 62]. The matrices Ej

and Ay are nonsingular, and Ey oEj11,2 -+ Ex+ k1,2 are nilpotent for £ =0,1,..., K —1.

All finite eigenvalues of the periodic matrix pairs {(Ej,1, A1)}, lie inside the unit circle
K-1

and the spectrum of the periodic matrix pairs {(Ek 2, Ax2)}i, contains only infinite

eigenvalues, with

g ({(Ek,laAk,l) 52701) No ({(Ekyg,Akyg) kK:Bl) - @ (52)

Computationally, these matrix decompositions can be accomplished via the periodic QZ
algorithm (PQZ) with reordering strategies.
Notice that

I Z Eri Eigs I Wi | | Bka 0 (5.3)
0 I 0 Ew | |0 I 0 Ep |
oz A Al -w Ay O
k k1 Aggs B k1 7 (5.4)
0 I 0 Akg 0 I 0 Ak,2

if the matrices Z, and Wy, with Wy = Wgeand for £k = 0,1,..., K — 1, satisfy the
generalized periodic Sylvester equations

By \Wisi'= Zi By = Ej 3,

Ap Wi =Zp Ay = Ag3.

(5.5)

From condition (5.2), the generalized periodic Sylvester equations (5.5) have unique so-

lutions Z; and Wj. Therefore, the nonsingular matrices Xy, Y; in (2.1) satisfy

1 Z I —W,
Xy = "LV YL =T, ",
0 I 0 I

and the right and left spectral projections P,(k), P,(k) are given as

Pi(k) = Vi Vi, Pu(k)=Uy Ul (5.6)
0 O 0 0
Let, for k =0,1,..., K — 1,
— Gin oGP
Vi1 Gi'Viee1 = o Gy = [ Cr1y Ckp ] . (5.7)

(Gi)" Gy
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Substituting (5.1), (5.6) and (5.7) into the projected GDPLE (4.3), for k =0,1,..., K —1,
we have
Ep G E, 11— AL G Ak = CF G, (5.8)
Elzll,lGZ(,)lEk—L?’ + Elzll,le%Ek—l,? - Ag,leoJrl,lAk,:% - Af,lez-l,?,Akﬂ = CkT,lckJWku
(5.9)
Elzll,SGZ(,)lEk*L?) + Ekal,zGZ%Ekfl,Z + Ekal,Q(Gz??,)TEkfl,?) + E1?71,2G2?2Ek71,2_
A£,3G?)+1,1Ak,3 - Ag,?,Gzil,sAm - AZ,Q(G?H,:;)TAM - A{,QG?;LQA/CQ = WkTClcT,lck,lwk-
(5.10)
Again from the pd-stability of {(Ej.1, 4x1)} i, the generalized discrete-time periodic
Lyapunov equations (5.8) have unique symmetric positive semi-definite solutions G§’

Furthermore, it follows from (5.5) that (5.9) can be rearranged as
By 11(Gyy = Gl Zk1) Br1p — A4y (G s — Gila 1 Zk) Az = 0. (5.11)
Again, from (5.2), we deduce that
0, = Giigeah a0l I, ... K — 1. (5.12)
From (5.5), (5.8) and (5.12), (5.10) cansbe rewritten as
Eg—m( 202 - ZkT—1Gz?12kfl)Ekfl,2 - Azg( k+1 2 ZTGk+1,1Zk)Ak,2 = 0. (5.13)

Now, since the periodic matrix pairs {(Ej.2, Ar2)}i_, have only infinite eigenvalues, we
then have

kQ_Zk 1 Z‘:le_17 k:(),l,...,K_].. (5.14)
Therefore, the solutions of the projected GDPLE (4.3) have the form

Geo Geo Zk—l
©—V, ol ol VI, k=0,1,....K—1, (5.15)
ZIZLlGZ(,)l ZIZLlG/Cc?lzkfl
where the matrices G}?; are the unique symmetric positive semi-definite solutions of the

generalized periodic Lyapunov equations (5.8). Moreover, from (5.6) and (5.15) they also
satisfy Pj(k — 1)"G{°Py(k — 1) = G¢°.
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In many applications it is necessary to have the Cholesky factors of the solutions of the
Lyapunov equations rather the solutions itself [78]. In particular, these full-ranked factors
are useful for computing numerically the Hankel singular values (see next Section). If Ly ;
denotes a Cholesky factor of each matrix Gf’,, i.e., G{°) = Li, Ly, then we compute the

QR factorization

Ty.1
Ly = Q.1 )
0
where @)y 1, is orthogonal and 7} ; has full row rank, for £ = 0,1,..., K — 1. The full-
ranked factorizations of the solutions G¢°, for £ =0,1,..., K — 1, are given by
Li,
Gio = Vi1 S [ Lk,l; Lk,lzk—l } VkTi1
i Zj 1L,
Tkj;L
= Vi S [ Ty, TkrZk } ijil
i Zp 1Ty 1 |
= LZLk,
where Ly = | Ty, ThpZp—y | Viiy has full tow-rank.

GDPLE for Reachability Gramians G}’
Similarly for the projected GDPLE (4.1), for k =0,1,..., K — 1, we let
Z’,"l zrs B
UL GU, = . VIBe=| M
(G G Bz

(5.16)

Substituting (5.1), (5.6) and (5.16) into the projected GDPLE (4.1), we then have
Ek,l 2T+1,1EkT,1 - Ak,l zr,lAg,l = _Ek,l 2T+1,3EkT,3 - Ek,S( 211,3)TEkT,1 - Ek,S 2T+1,2EIZ:3

+ Ak,leT,?,A;}F,?, + Ak,S( Z?,)TAZJ + Ak,3GzT,2A£,3

+ (B + ZgBya2) (B + ZkBk,Z)T; (5.17)
Ek,lGZr-HﬁElZQ - Ak,lGifsAz,Q = _Ek,3GZ7;1,2EkT,2 + Ak,3Gzr,2A£2a (5-18)
E2Gily 5By — ApaGilyAf, =0, k=0,1,...,K—1. (5.19)
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Since the periodic matrix pairs {(E2, Ar2)}, have only infinite eigenvalues, it
follows from (5.19) that
0,=0, k=0,1,...,K —1. (5.20)

Furthermore, (5.18) can be simplified to
Ep Gyl sEL, — AraGylsAL, = 0. (5.21)
Then from (5.2), we have
Gy =0, k=01,...,K—1, (5.22)
From (5.20) and (5.22), (5.17) can be rewritten as

Ey 211,1E16T,1 — A ZflAf,l = (Bg + ZBi2)(Bry + ZyByo)'. (5.23)

Therefore, the solutions of the projected GDPLE (4.1) have the form
G0

0 O

o = Uy ul, k=0,1,...,K —1, (5.24)

where the matrices G/, are the unique symmetric positive semi-definite solutions of the
generalized periodic Lyapunov equations (5.23)., Moreover, from (5.6) and (5.24) they
also satisfy P,.(k)GS P, (k)T = GY".

If Ry, denotes a Cholesky factor:ofseach matrix Gi'}, ie., G/} = Rk’lRf’l, then we

compute the QR factorization

TT
RZ;J = Qk,R ol 3
0
where Q) g is orthogonal and T}, r has full column-rank. The full-ranked factorizations of

the solutions Gf are given by

Ry .
0
Tk,R
= Uy [ Tl g 0 ] UF
0
= RkR]{,
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where RT = [ Tre, 0 } Ul has full row-rank for £ =0,1,...,K — 1.

Algorithm GDPLESs

We now summarize the main steps for computing the full-ranked Cholesky factors of
the causal Gramians, via the solution of the GDPLEs (4.1) and (4.3). For simplicity in

Algorithm 5.1, we shall ignore the obvious qualification for k, i.e., k=0,1,--- , K — 1.
Algorithm 5.1 (GDPLESs)

Input: System matrices (Ey, Ay, By, C), with {(Ej, Ax)} 1! being pd-stable.

Output: Full-ranked Cholesky factors Ry and L, (kK = 0,1,..., K — 1),
where
GY = RLR] and G = L] L.

Step 1. Use the PQZ algorithm [33, 62] to compute orthogonal matrices Vj
and Uy, with Ug = U,, such that

Ekl Ek,3 Ak,l Ak,3

‘/kTEkUk—i-l = : > VkTAkUk =
0= Ers 0 Ao

3 )

are upper triangular except ViE AUy is quasi-upper triangular. The ma-
trices By and Ay 5 are nonsingular, and Ey o Ej41 2 - - - Egq g —1,2 are nilpo-

tent.
Step 2. Use the Cyclic Schur and Hessenberg-Schur methods [43] to compute
the solutions of the generalized periodic Sylvester equations
EyxaWii1 — ZpEgp = Ey 3,
AWy — ZyAga = Ap .

Step 3. Compute the matrices

By,

By

Vi By = , GhlUp = [ Cri, Crp } -

)
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cr

Step 4. Compute the Cholesky factors Ry ; and Ly of the solutions k1=
Ri Ry, and Gy = Li Ly, of the generalized discrete-time periodic

Lyapunov equations

Ek,1GZZ1,1EkT,1 - Ak,lef1A£1 = (By1 + Z1.Bi2)(Bia + ZkBio)',

T co T co _ T
Ek—l,IGk,lEk*Ll - Ak,l k+1,1Ak,1 - Ck,lck,l-

Step 5. Compute the QR factorizations

Tr Ty,1,
Ry, = Qur ’SR . Lyy = Qrs .

Step 6. Compute the full-ranked Cholesky factors

T,k
Ry = Uy o L= Tprn, TirZe— Vi1
0
Remark. One can extend the techniques in [98], for the numerical solution of the gen-
eralized Lyapunov equations, to_solve:the generalized discrete-time periodic Lyapunov

equations given in Step 4. A thorough error analysis and practical implementation details

for the algorithm extended from [98] are still-under investigation.

A Numerical Example

We shall illustrate the feasibility and reliability of the proposed algorithm with an example.
All computations were performed in MATLAB /version 6.5 on a PC with an Intel Pentium-
IIT processor at 866 MHz, with 768 MB RAM, using IEEE double-precision floating-point
arithmetic. The machine precision is approximately 2.22 x 10716,

For approximate solutions X ¢ of the projected generalized discrete-time periodic Lya-

punov equations (4.1) and (4.3), we compute the relative residuals defined by

cr

_ | BeXi EY — A X AT — Pi(k) BeBE P(R)” |

k > )
Xk ll2
o L SeBe  ATS Ay PR CTCP(B) s
r = = .
Xk |2
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Example 1. We consider a periodic discrete-time descriptor system (1.1) with n = 10,

m =2, p=3 and period K = 3. For k =0, 1, 2, we have

0 0 0 0 0 0 0 0 0 0
0 1 0 ¢ s 0 0 0 00
0 0 1 —sg ¢¢ 0 O O O O
0 ¢ s 1 0 ¢ s 0 0 0
E;io)— 0 —s; ¢¢ O 1 —s9 ¢ 0 0 0 |
0 0 0 ¢ s 1 0 ¢ s30
0 0 0 —s9 ¢ O 1 —s3 c3 0
0O 0 0 0 0 e s3 1 0 0
O 0 0 0 0 —s3 ¢c3 O 1 0
_0 o o0 0o o0 o0 0 0 0 0_

A — diag(1.01, Aoy, Ags, Ags, Ags, 1.001), 0 := 27k /K,

T 4 -1 3 50 -2 0 8 1 0
Bk) - Y
1 175+l =200, 0 0 -3 01

0 0 =00 1:0 0 0 0
Cr=12 0 000701 0 0 1],
00 0O0O0OO0OO 0 0054+c¢c 00

where
¢ =cos(f), c2=02¢, c3=006¢,
sy =sin(fg), s2 =0.2s7, s3=0.6s1,
rycos(m/3)  rysin(m/3) rocos(7m/5)  rosin(7mw/5)
A01 == ) AOQ - ’
—rysin(n/3) 7y cos(m/3) —rysin(77/5) recos(7m/5)
rycos(m/4)  rysin(m/4) rqcos(m/10)  rysin(w/10)
Aoz = , Ap = ;
—rysin(m/4) r3cos(n/4) —rysin(mw/10) 74 cos(m/10)
and

r = 05, 9 = 005, r3 = —0027 T4 = 0.12.
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We define a Householder transformation V = I — 2uu” with u = [1,1,---,1,1]7/3/10 €

R!%, and the K-periodic system matrices (Ey, Ay, By, Ck) are given by
By =VTEOV, A4, =vTADV, k=012

The computed open-loop spectrum of the periodic matrix pairs {(Ey, Ax)},, consists
of two infinite eigenvalues and four pairs of complex conjugate finite eigenvalues lying
inside the unit circle. Thus, the periodic matrix pairs {(Ej, Ax)}r," are pd-stable with
ny; = 8 and ny, = 2. Accurate numerical results were produced by the proposed algorithm,

as shown in Table 1.

1GF 1l Vi Gl Vi,
8.30 x 10* | 2.17 x 10716 || 1.14 x 10% | 1.39 x 10716
7.11 x 10% | 3.11 x 10716 || 9.70 x 10° | 4.17 x 101
5.82 x 10% | 6.73 x 10710 || 9.74 x 10" | 9.18 x 10~ "°

N = O |

Table 1: Norms and relative residuals of causal Gramians.

6 Hankel Singular Values

Similar to standard state space systems [58] and continuous-time descriptor systems [110,
113], the controllability and observability Gramians can be used to define Hankel singular
values for the periodic descriptor systems (1.1), which are of great importance in the
model reduction problem via the balanced truncation method.

For the discrete-time descriptor systems, the causal and noncausal Hankel singular
values are defined via the nonnegative eigenvalues of the matrices G.E'GyoF and
Ganc AT GanoA. Here Gaee, Gane, Gaco and Ggno denote the causal/noncausal reachability

Gramians and the causal/noncausal observability Gramians, respectively [114].

Lemma 6.1. Let the periodic matriz pairs {(Ex, A)}j—, be pd-stable. Then the matrices
H{ = G{E]_G{Ey,y and H}* = G AL G0, Ay, k= 0,1,2,..., K — 1, have real and

nonnegative eigenvalues.

126



Proof. From Definitions 4.1, 4.2 and (2.6) and for £ =0,1,2,..., K — 1, we have

ACT‘ ACO
Gk,le,l 0

H; =Y, Yk’l,
0 0
where
R k—1 R 00
Ti= Y Ok i+ DBI(BI) @k i+ 1), GE=D 06, k)(C) T (i k).
1=—00 i=k

Since the ny X n; matrices c?gq and @z"l are symmetric positive semi-definite, it follows
that Hj, have real and nonnegative eigenvalues. Similarly, it can be shown that H}¢ also

share the same property. []

Notice that, in the proof of Lemma 6.1, the matrices Hj, and H}° have at least ny
and ny zero eigenvalues, respectively. Hence, we have the following definition of Hankel

singular values for the periodic descriptor system (1.1).

Definition 6.1. Suppose that the periodic matriz pairs {(Ey, Ag) }i—g' are pd-stable and let
n1, ng be the dimensions of the periodic deflating subspaces of {(Ex, Ax) f;ol corresponding
respectively to the finite and infinite, eigenvalues.

(i) Fork =0,1,..., K—1, the Square roots of the largest n, eigenvalues of the matrices
Hj,, denoted by (. j, are called the causal Hankel singular values of the periodic descriptor
system (1.1).

(ii) For k = 0,1,...,K — 1, the square roots of the largest ny eigenvalues of the
matrices H¢, denoted by 0y ;, are called the noncausal Hankel singular values of the

periodic descriptor system (1.1).

Remarks. (i) When K = 1, the causal and noncausal Hankel singular values defined
in Definition 6.1 coincide with those for discrete-time descriptor systems (see [114] and
references therein). For Ey = I, the causal Hankel singular values are the classical Hankel
singular values of linear periodic discrete-time systems [124].

(ii) As in the case of descriptor systems, the causal and noncausal Hankel singular
values of the periodic descriptor system (1.1) are invariant under system equivalence

transformations.
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From Theorem 4.2 and Lemma 6.1 we obtain the following result.

Corollary 6.2. Consider the periodic discrete-time descriptor system (1.1), where the
periodic matriz pairs {(Eg, Ay)}ro)b are pd-stable. The following statements are equiva-
lent.

(a) The periodic descriptor system (1.1) is completely reachable and completely ob-
servable.

(b) For k=0,1,2,..., K — 1, we have
rank(GYy") = rank(Gy’) = rank(Hj) = ny,
rank(G}") = rank(G}°) = rank(H}¢) = ns.
(¢) The causal and noncausal Hankel singular values of (1.1) are nonzero.

For pd-stable {(E}, Ax)}1—', the causal and noncausal reachability and observability
Gramians are symmetric and positive semi-definite. Thus, there exist full-ranked factor-

izations
§ =Ry G = Li Ly, (6.1)
o R R = LT L,
where the matrices Ry, L}, Ry, and [:f are-of full column-rank. The connections be-
tween the causal/noncausal Hankel singular values and the singular values of the matrices

L.E._1 R, and ZkHAkJ?Zk are considered in the following Lemma.

Lemma 6.3. For the periodic descriptor system (1.1), where the periodic matriz pairs
{(Ey, Ap)} iy are pd-stable. Suppose that the causal and noncausal Gramians of (1.1)
have the full-ranked factorizations defined as in (6.1). Then for k = 0,1,2,..., K — 1,
the nonzero causal Hankel singular values are the nonzero singular values of the matrices
LiyEy 1Ry, , while the nonzero noncausal Hankel singular values are the nonzero singular

values of the matrices ZHlAkék.

Proof. Notice that for K =0,1,..., K — 1, we have
Goi=N(ReR{E]_ L LyEy_1) = \j(RLE{_ | Lj Ly Ex—1Ry) = 0 (L Ep—1 Ry,

Bi’j = )\](ﬁkﬁkTAfZ;‘fokHAk) = )\j(ﬁ%A%z{_sz_HAkRk) = O'?(E]H_lAkﬁk),
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where A;(-) and o;(-) denote, respectively, the eigenvalues and singular values of the

corresponding matrices. O

7 Balanced Realization

It is well known [58] that for any minimal realization (A, B,C') of a stable continuous-
time or discrete-time system, there exists a transformation such that the controllability
and observability Gramians for the transformed realization equal to some diagonal ma-
trix. Such a realization is called a(n) (internally) balanced realization. Recently, the
issues of balanced realization and model reduction via the balanced truncation method
are discussed for continuous-time descriptor systems [110, 113] and asymptotically stable
linear discrete-time periodic systems [123, 124]. In this Section the problem of balanced
realization is generalized for periodic descriptor systems. We shall assume that the peri-
odic descriptor system (1.1) is completely reachable/observable with {(Ej, Ax)} ;" being
pd-stable.

Definition 7.1. A realization (Eg; Ay, By, Cx) of the periodic descriptor system (1.1) is
called balanced if

Dy 0 0 0

cr ___ CcO __ nr __ no —
r =Gy = and k= U411 = )

0 0 0 Dgpo

where Dy, and Dy o are diagonal matrices for k =0,1,..., K — 1.

We shall show that for a realization (Ej, Ay, By, Ck) of the periodic descriptor system
(1.1), there exist nonsingular periodic matrices Sy and Ty (k = 0,1,..., K — 1) with

Ty = Tp, such that the transformed realization
(Ek, Ay, By, (jk) = (S{ ExTir1, SE AxTy, S§ By, Ci'Ty) (7.1)

is balanced.
Consider the full-ranked factorizations (6.1) of the causal and noncausal reachability

and observability Gramians. For k =0,1,--- | K — 1, let

LiBy 1Ry, = UyS VT, L AvRy = Up©, VT, (7.2)
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be the singular value decompositions [59] of LyE)_1 Ry and Ek+1Ak§k. Here Uy, Vi, ﬁk,
‘719 are orthogonal, and ¥, and ©; are diagonal and nonsingular. From Corollary 6.2 and
Lemma 6.3, we have ¥y = diag(Cx,1,-+ ,Ckmy) > 0 and O = diag(Og,1, -+, Okm,) > 0.

Furthermore, it is easily seen from Theorem 4.1 and (2.5) that

¢ =P (hGT PR, GY = Rk —1)TGPR((k - 1),
P (k)G =0, GrP(k 1) =0,
By 1 Po(k) = Pk — D)Ep1.  AyPo(k) = Bi(k) Ay

Simple calculations then yield G}°Ey_1G} = Gi?E G} = Gp9 AyGy = G2 ApGYT =
0. Hence, for £ =0,1,..., K — 1, we have

LiEy 1Ry, = LiEj_1 Ry = Lyo1 AyRy = Lys1 Ap Ry, = 0. (7.3)

Now for £ =0,1,..., K — 1, consider the n x n matrices

Sk = L£+1Uk+12;-‘,1-{2, Zz—l—lfjk@]zl/? :| ’ Sk S |: Ek)Rk+1Vk+1EI;_,’1_{27 Akék";}g@;l/Q :| ,

It follows from (7.2) and (7.3) that

STS« El;lr/fUkT+1Lk+1EkRk+1Vk+121:i/12 E;{Q UE+1Lk+1Ak§k‘7k@/;1/2 I
kRPk — L 5 N o . B = 1Ip,
0, PUT L Ex Rt Vi Sty O3 UL Ly AR V20, V2

i.e., the matrices S, and S), are nonsingular and 51;1 = S’kT Similarly, it can be shown

that the matrices
T, = [ RViS % Ry Vo ? } , T = [ EL \LIU ;P AVLE, U0,

are also nonsingular and T, ' = 7. Therefore, with the transformation matrices Sy, and

T} defined above and (7.3), the causal reachability and observability Gramians of the
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transformed periodic descriptor system (7.1) become

G = T,;lGC’"T*T =TT T,

1/2 ~1/2 71/2 ~1/2

Ul LyEy 1Ry RIEl | LTU,S, Ul LBy 1R, RL AT LY, U0,
@,;1/ Ul Lyt AgRyRYEL (LTURS, Y 0, P U Ly Ay Ry REATLY, U0,
Sk 0]

[0 o

and

Geo = 5.1, GeSs T = ST LGS,y

,1/2 71/2

VIRTEY | LT LBy Ry Vis;, VIRTE! (LT LAy 1 By 1 Vi 10, 12 W
0, PV RE AT LT LB RS, 0, PVE RE (AT LT LAy Ry 1 Vi1 O WJ
[y, 0

0 0

On the other hand, one can also'show that the noncausal reachability and observability

Gramians of the transformed periodic deseriptor system (7.1) satisty

Anr -1 ynrp=T 0 0 =1t no =T Ano
Gy =T,°GyT," = =S, G55, =G, k=0,1,...,K -1
0 O
Consequently, Sy and T}, (k =0,1,..., K — 1) are the desired balancing transformations

such that the realization (7.1) is balanced. In summary, we have the following theorem.

Theorem 7.1. For completely reachable and completely observable periodic discrete-time
descriptor system (1.1) with {(Ey, Ay)}1—y' being pd-stable, there exist nonsingular peri-
odic matrices Sy and Ty (k = 0,1,..., K — 1) with Ty = Ty such that the transformed

realization (7.1) is balanced.

Remark. As in the cases of standard state space systems [58, 94] and descriptor systems
[110, 113], the balancing transformation matrices for periodic descriptor system (1.1)

are not unique. Indeed, if {(Sk, T})}iy" denotes a set of balancing transformation pairs
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for the periodic descriptor system (1.1), then for any diagonal matrix D with diagonal
entries &1, the set of matrix pairs {(SxD, T, D) }2_ ! are also the balancing transformation

matrices for the periodic descriptor system (1.1).

8 Concluding Remarks

In this chapter we have derived the necessary and sufficient conditions for complete reach-
ability and complete observability of periodic time-varying descriptor systems. Further-
more, the important concepts of reachability/observability Gramians, Hankel singular
values and balanced realization have been generalized for periodic discrete-time descrip-
tor systems. These are useful in the model reduction problem via the balanced truncation
method.

In addition, in Theorem 4.1, the reachability /observability Gramians are shown to
satisfy some projected GDPLE which can be computed numerically by applying the PQZ
algorithm with reordering strategies.~ A numerical example is given to illustrate the fea-

sibility and reliability of the proposed algorithm in Section 5.
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