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Our Work
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Procedure
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ρ(R) < 1, convergence quadratically.

ρ(R) = 1, no information.
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Sketch the Proof

Let R ∼ J1 ⊕ Js , where ρ(J1) = 1, ρ(Js) < 1. If the eigenvalues in

J1 are not semi-simple. For convenient, let J1 =

[
λ 1
0 λ

]
with

|λ| = 1. It is easily seen that J2k

1 =

[
λ2k

2kλ2k−1

0 λ2k

]
. Moreover, we

have

MkU = LkU

J2k

s

λ2k
2kλ2k−1

λ2k

 .
If O(Mk) = O(Lk) = 1, we should get some information by
comparing both sides.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Our tools

In this thesis, we only using elementary matrix theory:

Weierstrass canonical form
NARE, UQME, DARE.

Symplectic triangular Kronecker canonical form
NME.

We need choose matrices JM and JL such that

M− λL ∼ JM − λJL,
JMJL = JLJM.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Cayley Transformation

Let γ > 0, we define the function Cγ : C/{−γ} → C if ∀λ ∈ C
then Cγ(λ) = λ−γ

λ+γ . It is easily seen that

λ ∈ C+ ⇐⇒ |Cγ(λ)| < 1.

If Cγ is defined by Cγ(A) = (A + γI )−1(A− γI ), where A ∈ Cn×n

with −γ 6∈ σ(A), we also have

σ(A) ⊂ C+ ⇐⇒ ρ(Cγ(A)) < 1.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Beginning

Finding one or more roots of a matrix equation F (x) = 0 is one of
the more commonly occurring problems of applied mathematics. In
most cases explicit solutions are not available, the numerical
methods for finding the roots are called iterative methods. Two
classical methods

1. Fixed-Point Iteration

Xk+1 = G (Xk), X0 is given,

where G (X ) ≡ X − F (X ).

2. Newton’s Iteration

Xk+1 = Xk − (F
′
Xk

)−1(F (Xk)), X0 is given,

where F
′
Z denoted the Fréchet derivative of F at Z .

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Doubling Algorithm

Basic idea:

1. Single iteration

X1 → X2 → X3 · · · → Xk → · · · .

2. Double iteration

X1 → X2 → X4 · · · → X2k → · · · .

Example 1-1

We now consider the simple iteration:

fk = afk−1 + b,

where a, b ∈ R with |a| < 1, f1 is given.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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It is easily seen that

f2 = af1 + b

f4 = af3 + b = a2f2 + b(1 + a)

f8 = (a2)2f4 + b(1 + a)(1 + a2)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

f2k = a2k−1
f2k−1 + b(1 + a) · · · (1 + a2k−2

).

We get {
gk ≡ f2k = a2k−1

gk−1 + bk−1, g1 = f1
bk = (1 + a2k−2

)bk−1, b1 = b.

Let f∗ ≡
b

1− a
, we have

fk − f∗ = a(fk−1 − f∗) = . . . = ak−1(f1 − f∗).
Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Since

bk = (1 + a2k−2
)bk−1 = · · · = (1 + a2k−2

) · · · (1 + a)b = b
1− a2k−1

1− a
The new iteration is satisfying

gk − f∗ = a2k−1
gk−1 + b

1− a2k−1

1− a
− b

1− a
= a2k−1

(gk−1 − f∗).

Thus, we have

lim sup
k→∞

k
√
‖fk − f∗‖ = |a|,

lim sup
k→∞

2k√‖gk − f∗‖ = |a|.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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In this talk, we review two types of structure-preserving doubling
algorithm (and denoted by SDA). Moreover, we use the techniques
to study the SDA in the following four different nonlinear matrix
equations in the critical case.

(1) Nonsymmetric algebraic Riccati equation (NARE)

XCX − XD − AX + B = 0,

where A ∈ Rm×m,B ∈ Rm×n,C ∈ Rn×m and D ∈ Rn×n.

(2) Unilateral quadratic matrix equation (UQME)

A0 + A1X + A2X
2 = X ,

where A0,A1,A2 ∈ Rn×n.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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(3) Discrete-time algebraic Riccati equation (DARE)

−X+A>XA+Q−(C+B>XA)>(R+B>XB)−1(C+B>XA) = 0,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, Q = Q> ∈ Rn×n

and R = R> ∈ Rm×m.

(4) Nonlinear matrix equation (NME)

X + A>X−1A = Q,

where A,Q ∈ Rn×n.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Matrix background

The canonical form of a matrix pencil

Given a matrix pencil M− λL ∈ Cn×n, we say that M− λL is
regular if there exist a scalar λ0 ∈ C such that det(M− λ0L) 6= 0.
The following theorem generalizes the Jordan canonical form of a
single matrix to a regular pencils.

Theorem 1-2: Weierstrass canonical form [Gantmach77]

Let M− λL be regular. Then there are nonsingular U and V such
that

UMV =

[
J

I

]
, ULV =

[
I

N

]
,

where J and N are in Jordan canonical form and N is nilpotent.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Matrix background

Let

Jp(λ) ≡



λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ


∈ Cp×p. (1.1)

Assume that the finite eigenvalues of M− λL are J1 ⊕ J2,
J2 = Jλ1,2m1 ⊕ · · · ⊕ Jλk ,2mk

. we write

Jλi ,2mi
=

[
Jλ,m Γmi

0 Jλ,m

]
,

where Γmi = emi e
>
mi

. After some permutations we have

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Matrix background

P>J2P =



Jλ1,m1 Γm1

. . .
. . .

Jλk ,mk
Γmk

Jλ1,m1

. . .

Jλk ,mk


for a permutation matrix P. By Theorem 1-2, we have

M− λL ∼


J1

J̃2 Γ

J̃2

I

− λ [ I
N

]

∼


J1 0

J̃2 Γ
I

J̃2

− λ
 I

N
I

 .
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SDA

Structure-preserving doubling algorithm

Let the matrix pencil M− λL ∈ R(n+m)×(n+m) and define the left
null space

N (M,L) ≡
{[
M∗ L∗

]
; M∗,L∗ ∈ R(n+m)×(n+m), rank

[
M∗ L∗

]
= n + m,[

M∗ L∗
] [ L
−M

]
= 0

}
.

Since rank

[
L
−M

]
≤ n + m, thus nullity

[
L
−M

]>
≥ n + m and it

follows that N (M,L) 6= φ. For any given
[
M∗ L∗

]
∈ N (M,L),

define
M̃ =M∗M, L̃ = L∗L.

The transformation

M− λL → M̃− λL̃
is called a doubling transformation.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

An important feature of this kind of transformation is that it is
structure-preserving, eigenspace-preserving, and
eigenvalue-squaring [Lin06]. If

Mx = λLx ,

then

M̃x =M∗Mx = λM∗Lx

= λL∗Mx = λ2L∗Lx = λ2L̃x .

We quote the basic properties in the following theorem.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

Theorem 1-3: Properties [Lin06]

Assume that the matrix pencil M̃ − λL̃ is the result of a doubling
transformation of the pencil M− λL. The matrix pencil M− λL has
the Weierstrass canonical form

UMV =

[
J 0
0 I

]
, ULV =

[
I 0
0 N

]
where U,V are nonsingular, J is a Jordan block, and N is a nilpotent
matrix, then there exists a nonsingular Ũ such that

ŨM̃V =

[
J2 0
0 I

]
, ŨL̃V =

[
I 0
0 N2

]
.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

Symplectic-like pencil form

A pencil M1 − λL1 is said to be in first standard
symplectic-like pencil form (SLF-1) if it has the form

M1 =

[
E 0
−H I

]
, L1 =

[
I −G
0 F

]
, (1.2)

where E ∈ Rn×n, F ∈ Rm×m, H ∈ Rm×n and G ∈ Rn×m.
Suppose that I − GH is nonsingular, we can take the left null
matrix

[
M1,∗ L1,∗

]
, where

M1,∗ =

[
E (I − GH)−1 0
−F (I − HG )−1H I

]
, L1,∗ =

[
I −E (I − GH)−1G
0 F (I − HG )−1

]
.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

The doubling transformation is given by

M̃1 ≡M1,∗M1 =

[
E (I − GH)−1E 0

−(H + F (I − HG )−1HE ) I

]
,

L̃1 ≡ L1,∗L1 =

[
I −(G + E (I − GH)−1GF )
0 F (I − HG )−1F

]
.

Therefore, we define the sequence {M1,k ,L1,k} by the following
structured doubling algorithm-1 (SDA-1) if no breakdown occurs.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

SDA

Algorithm of SDA-1
Given

E0,F0,G0,H0,

for k = 0, 1, . . . ,
Set

Ek+1 = Ek(In − GkHk)−1Ek , (1.3a)

Fk+1 = Fk(Im − HkGk)−1Fk , (1.3b)

Gk+1 = Gk + Ek(In − GkHk)−1GkFk , (1.3c)

Hk+1 = Hk + Fk(Im − HkGk)−1HkEk . (1.3d)

End of algorithm

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

For the SDA-1, we have the following count for one iteration:

Calculation in SDA-1 Flops

GkHk 2n2m
HkGk 2m2n
LU decomposition of In − GkHk

2
3n3

LU decomposition of Im − HkGk
2
3m3

temp1 = Ek(In − GkHk)−1 2n3

temp2 = Fk(Im − HkGk)−1 2m3

Ek+1 = temp1 ∗ Ek 2n3

Fk+1 = temp2 ∗ Fk 2m3

Gk+1 = Gk + temp1 ∗ Gk ∗ Fk 4n2m
Hk+1 = Hk + temp2 ∗ Hk ∗ Ek 4m2n

The total count = 14
3 (m3 + n3) + 6(m2n + n2m)

We have ignored any O(n2) operation counts and the memory counts,

note that the flop count is 64
3 n3 when m = n.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

A pencil M2 − λL2 is said to be in second standard
symplectic-like pencil form (SLF-2) if it has the form

M2 =

[
V 0
Q −I

]
, L2 =

[
−P I
T 0

]
, (1.4)

where V ∈ Rn×n, P ∈ Rn×n, Q ∈ Rm×n and T ∈ Rm×n.
Suppose that Q − P is nonsingular, we can take the left null
matrix

[
M2,∗ L2,∗

]
, where

M2,∗ =

[
V (Q − P)−1 0
−T (Q − P)−1 I

]
, L2,∗ =

[
I −V (Q − P)−1

0 T (Q − P)−1

]
.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

The doubling transformation is given by

M̃2 ≡M2,∗M2 =

[
V (Q − P)−1V 0

Q − T (Q − P)−1V −I

]
,

L̃2 ≡ L2,∗L2 =

[
−(P + V (Q − P)−1T ) I

T (Q − P)−1T 0

]
.

Therefore, we define the sequence {M2,k ,L2,k} by the following
structured doubling algorithm-2 (SDA-2) if no breakdown occurs.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

Algorithm of SDA-2
Given

V0,T0,Q0,P0,

for k = 0, 1, . . . ,
Set

Vk+1 = Vk(Qk − Pk)−1Vk , (1.5a)

Tk+1 = Tk(Qk − Pk)−1Tk , (1.5b)

Qk+1 = Qk − Tk(Qk − Pk)−1Vk , (1.5c)

Pk+1 = Pk + Vk(Qk − Pk)−1Tk . (1.5d)

End of algorithm

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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SDA

For the SDA-2, we have the following count for one iteration:

Calculation in SDA-2 Flops

LU decomposition of Qk − Pk
2
3n3

temp1 = Vk(Qk − Pk)−1 2n3

temp2 = Tk(Qk − Pk)−1 2n3

Vk+1 = temp1 ∗ Vk 2n3

Tk+1 = temp2 ∗ Tk 2n3

Gk+1 = Qk − Tk(Qk − Pk)−1Vk 2n3

Hk+1 = Pk + Vk(Qk − Pk)−1Tk 2n3

The total count = 38
3 n3

We have ignored any O(n2) operation counts and the memory
counts.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

NARE

We consider the nonsymmetric algebraic Riccati equation (NARE)
in X ∈ Rm×n:

XCX − XD − AX + B = 0 (2.1)

and its dual equation in Y ∈ Rn×m:

YBY − YA− DY + C = 0, (2.2)

where A ∈ Rm×m, D ∈ Rn×n, B and C> ∈ Rm×n, arised from
transport theory and the Wiener-Hopf factorization.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Some relevant definitions are given as follows.

Definition 2-1: Z and M matrix

(i) For any matrices A = [aij ],B = [bij ] ∈ Rm×n, we
write A ≥ B(A > B) if aij ≥ bij(aij > bij) for all i , j .

(ii) A matrix A ∈ Rn×n is said to be a Z-matrix if all its
off-diagonal elements are non-positive. A Z-matrix A
is called a nonsingular M-matrix if A = sI − B with
B ≥ 0 and s > ρ(B), where ρ(B) is the spectral
radius of B; if s = ρ(B), then A is called a singular
M-matrix.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Some results about the M-matrix.

Lemma 2-2: Properties

Let A be an n × n Z-matrix,
C+ ≡ {z ; Re(z) > 0},C0 ≡ {z ; Re(z) = 0} and σ(A) denote the
spectrum of A,. The following statements are equivalent:

(a) A is a nonsingular M-matrix;

(b) A−1 ≥ 0;

(c) Av > 0 holds for some v > 0;

(d) σ(A) ⊆ C+.

And the following statements are equivalent:

(a) A is a singular M-matrix;

(b) σ(A) ⊆ C+ ∪ C0, σ(A) ∩ C0 6= φ.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Consider the standard assumption

(H) K =

[
D −C
−B A

]
is an irr. sing. M-matrix. (2.3)

We have

Theorem 2-3: Existence of solution [Guo01]

If the matrix K is an irr. M-matrix, then the NARE and its dual
equation have minimal nonneg. solutions X and Y , resp., such
that D − CX and A− BY are irr. M-matrices. Moreover, if K is a
nonsingular M-matrix, then D − CX and A− BY are irreducible
nonsingular M-matrices.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Define the Hamiltonian-like matrix

H =

[
D −C
B −A

]
and let

R ≡ D − CX , S ≡ A− BY ,

Then the NARE and its dual eq. can be rewritten by

H
[

In
X

]
=

[
In
X

]
R (2.4)

and

H
[

Y
Im

]
=

[
Y
Im

]
(−S),

respectively.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Spectral analysis

We now consider more strictly condition that K is a nonsingular
M-matrix in (H), by Lemma 2-2, there exist a positive vector

v =


v1

v2

...
vn+m

 such that Kv > 0. Let

V ≡ diag(v1, . . . , vn+m) ∈ R(n+m)×(n+m) and W ≡ V−1HV . The
Gershgorin’s disk of W is

|λ− dii | ≤
1

vi
(
∑

1≤j≤n, j 6=i

vj(−dij) +
∑

1≤j≤m

vj+ncij), 1 ≤ i ≤ n,

|λ+ aii | ≤
1

vi+n
(
∑

1≤j≤n

vjbij +
∑

1≤j≤m, j 6=i

vj+n(−aij)), 1 ≤ i ≤ m.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

The condition Kv > 0 implies that

dii −
1

vi
(
∑

1≤j≤n, j 6=i

vj(−dij) +
∑

1≤j≤m

vj+ncij) > 0, 1 ≤ i ≤ n,

aii −
1

vi+n
(
∑

1≤j≤n

vjbij +
∑

1≤j≤m, j 6=i

vj+n(−aij)) > 0, 1 ≤ i ≤ m.

That is, there are n Gershgorin’s disks in C+, m Gershgorin’s disks
in C− and we conclude that there are exactly n eigenvalues in C+,
the remain m eigenvalues in C−.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

On the other hand, since X and Y are minimal nonnegative
solutions of (2.1) and (2.2), respectively. We have[

I 0
−X I

]
H
[

I 0
X I

]
=

[
D − CX −C

0 −(A− XC )

]
,[

I −Y
0 I

]
H
[
I Y
0 I

]
=

[
D − BY 0

B −(A− BY )

]
,

since σ(D − CX ) ⊂ C> and σ(−(A− BY )) ⊂ C<, we get
σ(A− XC ) = σ(A− BY ) ⊂ C+, σ(D − BY ) = σ(D − CX ) ⊂ C+

and σ(H) = σ(D − CX ) ∪ σ(−(A− BY )).

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Now under the assumption (H): K is irreducible singular
M-matrix.

1. By P-F theorem, nullity(D − CX ) ≤ 1, nullity(A− BY ) ≤ 1.
2. By the continuity argument we know that there are at least

n − 1 eigenvalues of H in C+, at least m − 1 eigenvalues of H
in C−.

It is interested when zero is a double eigenvalues of H, what
is the Jordan blocks associated with zero eigenvalue?

H =

[
In 0
0 −Im

]
K ⇒ Ker(H) = Ker(K).

Apply P-F Theorem, we have nullity(K) = 1, nullity(D − CX )
and nullity(A− BY ) are less than 1.

Therefore, if zero is a double eigenvalue of H then the
elementary divisors of H corresponding to zero have degrees 2

(or H ∼ J1 ⊕ J2, where J1 =

[
0 1
0 0

]
and J2 consists of Jordan

blocks associated with nonzero eigenvalues).

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Introduction and Preliminaries

Now under the assumption (H): K is irreducible singular
M-matrix.

1. By P-F theorem, nullity(D − CX ) ≤ 1, nullity(A− BY ) ≤ 1.
2. By the continuity argument we know that there are at least

n − 1 eigenvalues of H in C+, at least m − 1 eigenvalues of H
in C−.

It is interested when zero is a double eigenvalues of H, what
is the Jordan blocks associated with zero eigenvalue?

H =

[
In 0
0 −Im

]
K ⇒ Ker(H) = Ker(K).

Apply P-F Theorem, we have nullity(K) = 1, nullity(D − CX )
and nullity(A− BY ) are less than 1.

Therefore, if zero is a double eigenvalue of H then the
elementary divisors of H corresponding to zero have degrees 2

(or H ∼ J1 ⊕ J2, where J1 =

[
0 1
0 0

]
and J2 consists of Jordan

blocks associated with nonzero eigenvalues).

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

Introduction and Preliminaries

More precisely, let [v>1 , v
>
2 ]> > 0 and [u>1 , u

>
2 ]> > 0 be the right

and the left null vectors of K in (2.3), respectively. The following
essential result of [Guo01] determines the signs of real parts of all
eigenvalues of H in (2.4). Recall that R = D − CX , S = A− BY
and σ(H) = σ(R) ∪ σ(S).

Theorem 2-4: Spectral properties [Guo01]

Assume that (H) holds. Then

(1) Critical case: If u>1 v1 = u>2 v2, then 0 ∈ σ(R) ∩ σ(S).
Moreover, nullity(R) =nullity(S) = 1.

(2) Non-critical case: If u>1 v1 > u>2 v2, then 0 ∈ σ(R) and
0 6∈ σ(S). Moreover, nullity(R) = 1.

(3) Non-critical case: If u>1 v1 < u>2 v2, then 0 ∈ σ(S) and
0 6∈ σ(R). Moreover, nullity(S) = 1

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Since K in (2.3) is a irr. sing. M-matrix, it follows from
Theorem 2-3 that R and S are M-matrices. By Lemma 2-2, it
implies σ(R) ⊂ C+ ∪ C0, σ(S) ⊂ C+ ∪ C0. Using a Cayley transf.
with some γ > 0, we can transform (2.4) into the form

(H− γI )

[
In
X

]
= (H+ γI )

[
In
X

]
Rγ , (2.5)

where
Rγ = (R + γIn)−1(R − γIn).

Since σ(R) ⊂ C+, we have that ρ(Rγ) ≤ 1 for any γ > 0.
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Since
Aγ = A + γIm and Dγ = D + γIn

are nonsing. M-matrices for any γ > 0. Let

Wγ = Aγ − BD−1
γ C , Vγ = Dγ − CA−1

γ B,

be the Schur complements of K + γI . It is well-known that Wγ

and Vγ are also nonsing. M-matrices.
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Applying the Sherman-Morrison-Woodbury formula , we have

V−1
γ =(Dγ − CA−1

γ B)−1

=D−1
γ (In − CA−1

γ BD−1
γ )−1

=D−1
γ

[
In + C (Im − A−1

γ BD−1
γ C )−1A−1

γ BD−1
γ

]
=D−1

γ + D−1
γ CW−1

γ BD−1
γ .

Now let

L1 =

[
D−1
γ 0

−BD−1
γ Im

]
, L2 =

[
In 0
0 −W−1

γ

]
, L3 =

[
In D−1

γ C
0 Im

]
.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

Introduction and Preliminaries

Then direct multiplication gives rise to

M = L3L2L1(H− γI ) =

[
Eγ 0
−Hγ Im

]
,

L = L3L2L1(H+ γI ) =

[
In −Gγ
0 Fγ

]
,

where

Eγ = In − 2γV−1
γ , Gγ = 2γD−1

γ CW−1
γ ,

Fγ = Im − 2γW−1
γ , Hγ = 2γW−1

γ BD−1
γ .
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Clearly, after these transf., (2.1) is transformed into

M
[

In
X

]
= L

[
In
X

]
Rγ , (2.6)

Similarly, if Y ≥ 0 is the minimal nonneg. sol. of the dual eq. ,
then

M
[

Y
Im

]
Sγ = L

[
Y
Im

]
, (2.7)

where Sγ = (S + γIm)−1(S − γIm), with S = A− BY being a
M-matrix and ρ(Sγ) ≤ 1.
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Theorem 2-5: Select γ [X.-X Guo06]

Assume that K in (H) is an irr. M-matrix. Let
Eγ ,Fγ ,Hγ ,Gγ ,Rγ , Sγ be as above. If γ satisfies

γ ≥ γ0 ≡ max{ max
1≤i≤m

aii , max
1≤i≤n

dii}, (2.8)

then −Eγ ,−Fγ ,−Rγ ,−Sγ ≥ 0 with −Eγe,−Fγe,−Rγe,−Sγe > 0.
Moreover, Im − HγGγ and In − GγHγ are nonsing. M-matrices.
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Algorithm of SDA-1 for NARE
Set

E0 = Eγ ,F0 = Fγ ,G0 = Gγ ,H0 = Hγ ,

for k = 0, 1, . . . ,
Set

Ek+1 = Ek(In − GkHk)−1Ek , (2.9a)

Fk+1 = Fk(Im − HkGk)−1Fk , (2.9b)

Gk+1 = Gk + Ek(In − GkHk)−1GkFk , (2.9c)

Hk+1 = Hk + Fk(Im − HkGk)−1HkEk . (2.9d)

End of algorithm

To ensure that this iteration is well defined, In − GkHk and
Im − HkGk must be nonsing. for all k .
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Theorem 2-6: Convergence of SDA-1 [X.-X Guo06]

Assume that K in (H) is an irr. M-matrix. Let X ,Y ≥ 0 be the
minimal nonneg. sols. of NARE and its dual eq., respectively. Let

Rγ = (R + γIn)−1(R − γIn), Sγ = (S + γIm)−1(S − γIm),

where R = D − CX , S = A− BY . If the parameter γ satisfies

γ ≥ max
{

max
1≤i≤m

aii , max
1≤i≤n

dii

}
,
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then the sequences {Ek , Fk , Gk , Hk} generated by SDA are well
defined, and

(a) Ek = (In − GkX )R2k

γ ≥ 0, with Eke > 0;

(b) Fk = (Im − HkY )S2k

γ ≥ 0, with Fke > 0;

(c) Im − HkGk , In − GkHk are nonsing. M-matrices;

(d) 0 ≤ Hk ≤ Hk+1 ≤ X ,

0 ≤ X − Hk = (Im − HkY )S2k

γ XR2k

γ ≤ S2k

γ XR2k

γ ;

(e) 0 ≤ Gk ≤ Gk+1 ≤ Y ,

0 ≤ Y − Gk = (In − GkX )R2k

γ YS2k

γ ≤ R2k

γ YS2k

γ .
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Convergence analysis

By Weierstrass canonical form of M− λL, there are nonsingular Q and
Z such that

QMZ =

[
J1 Γ
0m,n Im

]
≡ JM, (2.10)

QLZ =

[
In 0n,m

0m,n J2

]
≡ JL, (2.11)

Case (1) (0 ∈ σ(R) ∩ σ(S)):

J1 = J1,s ⊕ [−1], Γ = 0n−1,m−1 ⊕ [1] ≡ ene
>
m , J2 = J2,s ⊕ [−1];

Case (2) (0 ∈ σ(R), S is nonsing.):

J1 = J1,s ⊕ [−1], Γ = 0n,m, J2 = J2,s ;
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Case (3) (0 ∈ σ(S), R is nonsing.):

J1 = J1,s , Γ = 0n,m, J2 = J2,s ⊕ [−1],

where

ρ(J1,s) < 1, ρ(J2,s) < 1, J1
s∼ Rγ and J2

s∼ Sγ .

It is easy to check that JMJL = JLJM in the case (1)–(3).

Theorem 2-7: Noncritical case

Assume that (H) holds and satisfies the case (2) or case (3) of
Theorem 2-4. Let X ,Y ≥ 0 be minimal nonneg. sols. of NARE
and its dual equation. Then {Hk ,Gk}∞k=1 generated by SDA
algorithm satisfies

‖X − Hk‖1 ≤ ‖X‖1‖S2k

γ ‖1‖R2k

γ ‖1 → 0, quadratically,

‖Y − Gk‖1 ≤ ‖Y ‖1‖S2k

γ ‖1‖R2k

γ ‖1 → 0, quadratically.
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It remains to show that Hk and Gk converge linearly to X and Y ,
resp., for the case (1). From (2.10)-(2.11) one can derive

MZJL = Q−1JLJM = LZJM,

because JM and JL commute with each other. Let
{(Mk ,Lk)}∞k=1 be the sequence of symplectic-like pairs in SSF-1
with

Mk =

[
Ek 0n,m

−Hk Im

]
, Lk =

[
In −Gk

0m,n Fk

]
, (2.12)

generated by SDA algorithm with M0 =M and L0 = L.
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Define

M∗k =

[
Ek(I − GkHk)−1 0

−Fk(I − HkGk)−1Hk Im

]
,

L∗k =

[
In −Ek(I − GkHk)−1Gk

0 Fk(I − HkGk)−1

]
.

Then we have M∗kLk = L∗kMk , and

Mk+1 =M∗kMk , Lk+1 = L∗kLk .

It follows that

M1ZJ 2
L = M∗0M0ZJ 2

L =M∗0L0ZJMJL
= L∗0M0ZJLJM = L∗0L0ZJ 2

M = L1ZJ 2
M.

By inductive process we have

MkZJ 2k

L = LkZJ 2k

M. (2.13)

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

Convergence analysis of SDA algorithm

If we interchange the role of M and L in (2.10)-(2.11) and
consider the symplectic pair (L,M), there are nonsing. P and Y
such that

PLY =

[
J2 Γ̂
0n,m In

]
≡ ĴL,

PMY =

[
Im 0m,n

0n,m J1

]
≡ ĴM,

where Γ̂ = eme>n . Similar arguments as above produce

LYĴM =MYĴL.

consequently, it holds

LkYĴ 2k

M =MkYĴ 2k

L . (2.14)
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Theorem 2-8: Main Theorem

Assume that (H) holds and satisfies the case (1). Let
{Ek ,Fk ,Gk ,Hk}∞k=1 be the sequence generated by SDA and
{Mk ,Lk}∞k=1 be defined in (2.12). Suppose Z and Y satisfy
(2.13) and (2.14), respectively. Denote

Z =

[
Z1 Z3

Z2 Z4

]
, Y =

[
Y1 Y3

Y2 Y4

]
,

where Z1,Y3 ∈ Rn×n and Z4,Y2 ∈ Rm×m. Then Z1 and Y2 are
invertible, and

‖X − Hk‖1 = O(‖J2k

2,s‖1) + O(2−k)→ 0, as k →∞,

‖Y − Gk‖1 = O(‖J2k

1,s‖1) + O(2−k)→ 0, as k →∞.

where X = Z2Z
−1
1 and Y = Y1Y

−1
2 .
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proof

It is easily seen that [I ,X>]> and [Z>1 ,Z
>
2 ]> as well as [Y>, I>]>

and [Y>1 ,Y
>
2 ]> span the unique stable and the unstable subspaces

of (M,L) to σ(J1) and σ(J2), resp.. Then we have that
X = Z2Z

−1
1 and Y = Y1Y

−1
2 . Form (2.10)-(2.11) and the case (1)

follows that

J 2k

L =

[
In 0

0 J2k

2

]
, J 2k

M =

[
J2k

1 Γk

0 Im

]
,

where Γk = −2kΓ = −2kene
>
m .
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Substituting (Mk ,Lk) and Z into (2.13), and comparing both
sides, we obtain

EkZ1 = (Z1 − GkZ2)J2k

1 , (2.15a)

EkZ3J
2k

2 = (Z1 − GkZ2)Γk + (Z3 − GkZ4),(2.15b)

− HkZ1 + Z2 = FkZ2J
2k

1 , (2.15c)

(−HkZ3 + Z4)J2k

2 = FkZ2Γk + FkZ4. (2.15d)
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Similarly, we have

FkY2 = (Y2 − HkY1)J2k

2 , (2.16a)

FkY4J
2k

1 = (Y2 − HkY1)Γ̂k + (Y4 − HkY3),(2.16b)

Y1 − GkY2 = EkY1J
2k

2 , (2.16c)

(Y3 − GkY4)J2k

1 = EkY1Γ̂k + EkY3, (2.16d)

where Γ̂k = −2k Γ̂ = −2kene
>
m , and its pseudo-inverse

Γ̂†k = −2−kene
>
m .
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Postmultiplying (2.16b) by Γ̂†kY−1
2 . We get

(Y2 − HkY1)Γ̂k Γ̂†kY−1
2 = FkY4J

2k

1 Γ̂†kY−1
2 − (Y4 − HkY3)Γ̂†kY−1

2 .
(2.17)

Substituting (2.17) into (2.16a) we have

Fk(Im − Y4J
2k

1 Γ̂†kY−1
2 ) = Fk(Im − Y4(0n−1,m−1 ⊕ [−2−k ])Y−1

2 )

= (Y2 − HkY1)(J2k

2,s ⊕ [0])Y−1
2

− (Y4 − HkY3)Γ̂†kY−1
2 . (2.18)
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Since ‖Hk‖1 ≤ ‖X‖1, by Theorem 2-6(d), it follows from (2.18)
that

‖Fk‖1 ≤ O(‖J2k

2,s‖1) + O(2−k)→ 0, k →∞. (2.19)

By (2.19) and the boundness of ‖J2k

1 ‖1, the matrix in (2.15c) can
be estimated by

‖X − Hk‖1 ≤ O(‖J2k

2,s‖1) + O(2−k)→ 0,

linearly at least with rate 1
2 , as k →∞, where X = Z2Z

−1
1 .
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Similarly, postmultiplying (2.15b) by Γ†k and substituting it into
(2.15a), we get

Ek(In − Z3J
2k

2 Γ†kZ−1
1 ) = Ek(In − Z3(0m−1,n−1 ⊕ [−2−k ])Z−1

1 )

= (Z1 − GkZ2)(J2k

1,s ⊕ [0])Z−1
1

− (Z3 − GkZ4)Γ̂†kZ−1
1 . (2.20)
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Since ‖Gk‖1 ≤ ‖Y ‖1, by Theorem 4.1(e), from (2.20) follows that

‖Ek‖1 ≤ O(‖J2k

1,s‖1) + O(2−k)→ 0, k →∞. (2.21)

By (2.21) and the boundness of ‖J2k

1 ‖1, the matrix in (2.16c) can
be estimated by

‖Y − Gk‖1 ≤ O(‖J2k

1,s‖1) + O(2−k)→ 0,

linearly with rate 1
2 as k →∞, where Y = Y1Y

−1
2 .
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Numerical Examples

In this subsection,

We compare the ITs, CPU, NRes of NM with SDA-1, where
the “normalized” residuals (NRes) is defined by

NRes =
‖X̃CX̃ − X̃D − AX̃ + B‖∞

‖X̃‖∞
(
‖X̃‖∞‖C‖∞ + ‖D‖∞ + ‖Ã‖∞

)
+ ‖B‖∞

,

where X̃ ≡ XSDA.

In test examples, the IT counts for the SDA algorithm are
increased by one, accounting for the additional work on
computing initial matrices E0,F0,G0 and H0. Furthermore, we
take γ = [γ0] + 1, where γ0 is defined in (2.8).

All implementations were run in MATLAB (version 7.0) on a PC
Pentium IV (3.4GHZ) with the machine precision 2.2× 10−16.
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Newton’s method (NM). Given an initial X0 = 0. For
k = 0, 1, 2 . . . until Xk converges, compute Xk+1 from Xk by
solving the Sylvester equation

(A− XkC )Xk+1 + Xk+1(D − CXk) = B − XkCXk .

Note that we use the Bartels-Stewart method [Bartels72] to solve
Sylvester equations, where the computational cost at each Newton
step is approximately 60n3 flops when m = n (SDA-1=64n3

3 ). In
the case (1), Guo has been shown that the convergence rate of
Newton’s iteration is linearly with rate 1

2 .
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Example 2-9 [Juang98]

Let

A = diag(δ1, . . . , δn)− eq>, B = ee>, C = qq>,

D = diag(d1, . . . , dn)− qe>,

in which

δi =
1

cωi (1 + α)
, di =

1

cωi (1− α)
, q = (q1, . . . , qn)>

with qi = ci
2ωi

, where 0 < c ≤ 1, 0 ≤ α < 1 and

0 < ωn < · · · < ω1 < 1,
n∑

i=1

ci = 1, ci > 0.
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It has shown in [Guo01] that for c = 1 and α = 0 the matrix
H has a double zero eigenvalue with quadratic divisor which
satisfies the case (1) of Theorem 2-4. Thus, from
Theorem 2-8 the SDA algorithm converges linearly,
respectively, to minimal nonnegative solutions of (2.1) and
(2.2) with a rate at least 1

2 .

We take n = 50, 100, 200, 300, 400, 500, c = 1 and α = 0.
The IT counts, CPU times and NRes for SDA and NM are
listed in Table 1.
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Table: Table 1: Numerical results for Example 3.

Methods NM SDA Methods NM SDA
IT 26 27 IT 24 26

n = 50 CPU 0.36 0.06 n=100 CPU 2.8 0.64
NRes 3.7E-16 7.2E-16 NRes 1.1E-15 1.1-15

IT 23 26 IT 25 28
n = 200 CPU 33 4 n=300 CPU 150 14

NRes 3.8E-15 1.5E-15 NRes 1.5E-15 1.3E-15

IT 26 28 IT 25 31
n = 400 CPU 420 41 n=500 CPU 880 67

NRes 3.1E-15 1.6E-15 NRes 4.7E-15 3.2E-15
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Example 2-10

Let R ∈ R2n×2n be a doubly stochastic matrix (i.e., R ≥ 0,
Re = R>e = e) generated by the Matlab code

R =
1

n(4n2 + 1)
magic(2n).

Let K = a(I2n −R), where a is a randomly chosen positive
number. Then K is a singular M-matrix. Let

K =

[
D −C
−B A

]
and H =

[
D −C
B −A

]
(2.22)

with A,B,C ,D ∈ Rn×n.
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From the fact that e>K = 0, and Ke = 0, the condition of
Case (1) in Theorem 2-4 holds. Therefore, H has a double zero
eigenvalue with quadratic divisor. Theorem 2-8 shows that SDA
converges linearly to minimal nonnegative solutions X and Y ,
respectively. The numerical results are listed in Table 2.
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Table: Table 2: Numerical results for Example 6.

Methods NM SDA Methods NM SDA
IT 24 31 IT 24 33

n = 50 CPU 0.74 0.36 n=100 CPU 6.3 1.9
NRes 9.3E-15 8.7E-15 NRes 4.1E-14 2.6-14

IT 25 33 IT 25 34
n = 200 CPU 58 15 n=300 CPU 280 50

NRes 1.2E-14 6.4E-14 NRes 7.2E-14 1.3E-14

IT 27 34 IT 28 34
n = 400 CPU 560 110 n=500 CPU 1800 190

NRes 2.1E-13 1.8E-13 NRes 8.9E-13 1.6E-13
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UQME

We now consider the unilateral quadratic matrix equation

A0 + A1X + A2X
2 = X (3.1)

and its dual equation

A2 + A1Y + A0Y
2 = Y (3.2)

arising from discrete-time quasi-birth-death processes (QBDs).

Standard assumptions

(A0 + A1 + A2)e = e, A0,A2 ≥ 0, A1 ≥ 0,

and A0,A2 are two nonzero matrices. we also need:

A = A0 + A1 + A2 is irreducible.

Under the standard assumptions, it is well known that (3.1) has at
least one solution in the set {X ≥ 0; Xe ≤ e} (i.e., the set of
substochastic matrices). The desired solution X is the minimal
nonnegative solution.
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We now consider the unilateral quadratic matrix equation

A0 + A1X + A2X
2 = X (3.1)

and its dual equation

A2 + A1Y + A0Y
2 = Y (3.2)

arising from discrete-time quasi-birth-death processes (QBDs).

Standard assumptions

(A0 + A1 + A2)e = e, A0,A2 ≥ 0, A1 ≥ 0,

and A0,A2 are two nonzero matrices. we also need:

A = A0 + A1 + A2 is irreducible.

Under the standard assumptions, it is well known that (3.1) has at
least one solution in the set {X ≥ 0; Xe ≤ e} (i.e., the set of
substochastic matrices). The desired solution X is the minimal
nonnegative solution.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

UQME

Definition

There exist an unique Perron vector α > 0 with α>A = α and
α>A = α>. Let µ ≡ α>(A0 − A2)e, the QBD is

1. Positive recurrent if and only if µ > 0.

2. Transient if and only if µ < 0.

3. Null recurrent if and only if µ = 0.

Let

M =

[
0 I
A0 A1 − I

]
, L =

[
I 0
0 −A2

]
, (3.3)

and the characteristic polynomial of M− λL is

Γ(λ) ≡ det(M− λL).

We have the following fundamental results.
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Spectral analysis

Theorem 3-1: Spectral properties [Bini05]

Let the QBD is null recurrent, and the open unit circle
O ≡ {z ; |z | < 1}. Then, for some integer r ≥ 1 we have

1. σ(M,L) = σs ∪ σc ∪ σu, where σs = {λs
i }

n−r
i=1 j O,

σc = {λc
i }2r

i=1 j bd(O) and σu = {λu
i }

n−r
i=1 with |λu

i | > 1 for
i = 1, . . . , n − r .

2. {λc
i }2r

i=1 are exactly the rth roots of unity, each with
multiplicity two. That is, {λc

i }2r
i=1 = {λc

1, λ
c
1, · · · , λc

r , λ
c
r }.

The partial multiplicity of each eigenvalues on the unit circle
is exactly two.

3. The spectral set σ(X ) = {λs
i }

n−r
i=1 ∪ {λc

i }ri=1, and
σ(Y ) = { 1

λu
i
}n−r
i=1 ∪ {λc

i }ri=1. (Here 1
∞ = 0)
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Latouche Ramaswami reduction

Since X is satisfying the equation (3.1) and I − A1 is nonsingular,
we write

X = Ã0 + Ã2X
2 (3.4)

where Ã0 = (I − A1)−1A0, Ã2 = (I − A1)−1A2. Post-multiplying
(3.4) by X and by X 2, we get

X 2 = Ã0X + Ã1X
3, (3.5)

X 3 = Ã0X
2 + Ã1X

4. (3.6)

Pre-multiply (3.4) by Ã0 and pre-multiply (3.6) by Ã2, sum the
equations obtained in this way with (3.5). We get

X 2 = Ã2
0 + (Ã0Ã2 + Ã2Ã0)X 2 + Ã2

2X
4.
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LR process

If the matrix I − Ã0Ã2 − Ã2Ã0 is nonsingular, the later equation
allows one to express X 2 as a function of X 4 as

X 2 = Ã
(1)
0 + Ã

(1)
2 X 4

where

Ã
(1)
0 = (I − Ã0Ã2 − Ã2Ã0)−1Ã2

0, Ã
(1)
2 = (I − Ã0Ã2 − Ã2Ã0)−1Ã2

2.

Assuming that all matrices which must be inverted are nonsingular,
this process can be inductively repeated by generating successive
expressions of X as functions of X 2,X 4,X 8 . . . ,X 2k

, . . .. We
obtained LR algorithm as follows:
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LR algorithm

Algorithm of LR for UQNE
Set

Ã
(0)
0 = (I − A1)−1A0;

Ã
(0)
2 = (I − A1)−1A2;

B
(0)
0 = Ã

(0)
0 ;

B
(0)
2 = Ã

(0)
2 .

for k = 0, 1, . . . , compute
Set

Ck = Ã
(k)
0 Ã

(k)
2 + Ã

(k)
2 Ã

(k)
0 ; (3.7a)

Ã
(k+1)
0 = (I − Ck)−1(Ã

(k)
0 )2; (3.7b)

Ã
(k+1)
2 = (I − Ck)−1(Ã

(k)
2 )2; (3.7c)

B
(k+1)
0 = B

(k)
0 + B

(k)
2 Ã

(k+1)
0 ; (3.7d)

B
(k+1)
2 = B

(k)
2 Ã

(k+1)
2 . (3.7e)

End of algorithm
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Theorem 3-2: Convergence Theorem of LR [Bini05,Lat93,Lat99]

Let µ 6= 0 and

ξ ≡ min{|z |; Γ(z) = 0, |z | > 1} = min{|z |; z ∈ σ(M,L)/Cl(O)} > 1,

η ≡ max{|z |; Γ(z) = 0, |z | < 1} = max{|z |; z ∈ σ(M,L) ∩ O} < 1,

then we have

I. If µ < 0, i.e., the QBD is transient. Then we have

lim sup
k→∞

2k
√
‖Ã(k)

0 − eβ>‖ ≤ ξ−1,

lim sup
k→∞

2k
√
‖Ã(k)

2 ‖ ≤ ξ
−1,

lim sup
k→∞

2k
√
‖I − Ck‖ ≤ ξ−1,

lim sup
k→∞

2k
√
‖X − B

(k)
0 ‖ ≤ ξ

−1,
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where β is a nonnegative left eigenvector of X corresponding eigenvalue
one which sum of components is equal 1.

II. If µ > 0, i.e., the QBD is positive recurrent. Then we have

lim sup
k→∞

2k
√
‖Ã(k)

0 ‖ ≤ η,

lim sup
k→∞

2k
√
‖Ã(k)

2 − eγ>‖ ≤ η,

lim sup
k→∞

2k
√
‖I − Ck‖ ≤ η,

lim sup
k→∞

2k
√
‖X − B

(k)
0 ‖ ≤ η,

where γ is a nonnegative left eigenvector of Y corresponding
eigenvalue one which sum of components is equal 1.
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Cyclic reduction

Rewrite the matrix equation (3.1) as
−A0 + (I − A1)X − A2X

2 = 0, we have the infinite system
I − A1 −A0 0
−A2 I − A1 −A2 0

−A0 I − A1
. . .

0
...

...




X
X 2

X 3

...

 =


A0

0
0
...

 (3.8)
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Let S0 = I − A0, U0 = I − A1, V0 = A2 and T0 = A0, the general
procedure is adequately motivated by considering the finite system

S0X − V0X
2 = A0

− T0X + U0X
2 − V0X

3 = 0
− T0X

2 + U0X
3 − V0X

4 = 0
− T0X

3 + U0X
4 − V0X

5 = 0
(3.9)

For (3.9), we pre-multiply the 2nd equation by −T0V
−1
0 and add it

to the 1st equation. Pre-multiply the 2nd , 3rd and 4th equations by
T0U

−1
0 , I and V0U

−1
0 , respectively, and add the resulting equations

to obtain
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S1X − V1X
3 = A0

− T1X + U1X
3 − V1X

5 = 0

where

T1 = T0U
−1
0 T0;

U1 = U0 − T0U
−1
0 V0 − V0U

−1
0 T0;

V1 = V0U
−1
0 V0;

S1 = S0 − V0U
−1
0 T0.

By recursively applying above step (If Uk is nonsingular), we
generate the sequence of infinite block tridiagnal systems
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Sk −Tk 0
−Vk Uk −Tk

−Vk Uk −Tk

0
. . .

. . .




X

X 2k+1

X 2k+1+1

...

 =


A0

0
0
...

 , k ≥ 0.

(3.10)
then CR algorithm is given as
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CR algorithm

Algorithm of CR for UQME
Set

T0 = A0;

U0 = I − A1;

V0 = A2;

S0 = I − A1.

for k = 0, 1, . . . , compute
Set

Tk+1 = TkU
−1
k Tk ; (3.11a)

Uk+1 = Uk − TkU
−1
k Vk − VkU

−1
k Tk ; (3.11b)

Vk+1 = VkU
−1
k Vk ; (3.11c)

Sk+1 = Sk − VkU
−1
k Tk . (3.11d)

End of algorithm
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Theorem 3-3: Convergence Theorem of CR [Bini05]

Let ξ and η be defined in Theorem 3-2, then

I. If µ < 0, i.e., the QBD is transient. Then we have

lim sup
k→∞

2k
√
‖X − S−1

k A0‖ ≤ ξ−1.

lim sup
k→∞

2k
√
‖Y − A2S

−1
k ‖ ≤ ξ

−1.

II. If µ > 0, i.e., the QBD is positive recurrent. Then we have

lim sup
k→∞

2k
√
‖X − S−1

k A0‖ ≤ η.

lim sup
k→∞

2k
√
‖Y − A2S

−1
k ‖ ≤ η.
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µ = 0

In case µ = 0, the LR algorithm still converges to the minimal
nonnegative solution X . However, the convergence of the LR
algorithm is linear with rate 1/2 in the case µ = 0, And the proof
need additional assumptions. Here some definitions must be given.
A positive vectors x is called probability vector of X if the sum of
components equal 1 , and x>X = x>. It is well known that
probability vector is unique if it exist. We state the convergence
result in this case whose proof can be found in [Guo99].
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µ = 0

Theorem 3-4: Critical case [Bini05,Guo99]

In the case µ = 0. Let x and y are the unique probability vector of X and

Y , respectively. For any limit points (L0, L2) of {Ã(k)
0 , Ã

(k)
2 }, we have

L0 = ax> and L2 = (e − a)y> for some nonnegative vector a ≤ e. We
make two extra conditions:

1. σ(M,L) ∩ bd(O) = {1}. (3.12)

2.Each limit point ax> of {Ã(k)
0 } is such that 0 < y>a < 1. (3.13)

Then, under the assumptions (3.12) and (3.13), we have

lim sup
k→∞

k

√
‖B(k)

0 − X‖∞ =
1

2
.
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SDA-1

We rewrite (3.1) and (3.2), respectively, into[
0 I
A0 A1 − I

] [
I
X

]
=

[
I 0
0 −A2

] [
I
X

]
Rq, (3.14a)[

0 I
A0 A1 − I

] [
Y
I

]
Sq =

[
I 0
0 −A2

] [
Y
I

]
, (3.14b)

where X = Rq ≥ 0 and Y = Sq ≥ 0. We now assume that

(I − A1)−1A0e = A0e + A1A0e + · · · > 0,

(I − A1)−1A2e = A2e + A1A2e + · · · > 0. (3.15)
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SDA-1 algorithm

Algorithm of SDA-1 for UQME
Set

E0 = (I − A1)−1A0,

F0 = (I − A1)−1A2,

G0 = (I − A1)−1A0,

H0 = (I − A1)−1A2.

for k = 0, 1, . . . , compute
Set

Ek+1 = Ek(I − GkHk)−1Ek , (3.16a)

Fk+1 = Fk(I − HkGk)−1Fk , (3.16b)

Gk+1 = Gk + Ek(I − GkHk)−1GkFk , (3.16c)

Hk+1 = Hk + Fk(I − HkGk)−1HkEk . (3.16d)
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Theorem 3-5: Main results 1: Convergence of SDA-1

Assume that (3.15) and (3.12) holds. Let X ,Y ≥ 0 be minimal
nonnegative solutions of (3.1) and (2.14), respectively. Then the
sequence {Ek ,Fk ,Gk ,Hk} generated by SDA algorithm is
well-defined with E0 = E , F0 = F , G0 = F and H0 = E .
Furthermore, for the case µ = 0 it holds

‖X − Hk‖1 ≤ O(‖Ys‖2
k

1 ) + O(2−k)→ 0, (3.17a)

‖Y − Gk‖1 ≤ O(‖Xs‖2
k

1 ) + O(2−k)→ 0, (3.17b)

at least linearly with rate 1
2 as k →∞, where σ(X ) = σ(Xs) ∪ {1}

with ρ(Xs) < 1 and σ(Y ) = σ(Ys) ∪ {1} with ρ(Ys) < 1; for the
case µ > 0 (positive recurrent) and the case µ < 0 (transient) it
holds
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‖X − Hk‖1 ≤ ‖X‖1‖Y 2k‖1‖X 2k‖1 → 0, (3.18a)

‖Y − Gk‖1 ≤ ‖X‖1‖Y 2k‖1‖X 2k‖1 → 0, (3.18b)

as k →∞, where ρ(X ) ≤ 1, ρ(Y ) < 1 for the case µ > 0, and
ρ(X ) < 1, ρ(Y ) ≤ 1 for the case µ < 0.
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SDA-2 algorithm

To use SDA-2 to find X , we may rewrite (3.1) as

L0

[
I

A2X

]
=M0

[
I

A2X

]
X ,

where L0 ≡
[

0 I
A0 0

]
, M0 ≡

[
A2 0

I − A1 −I

]
. As mentioned before,

the pencil L0 − λM0 is a linearization of −A0 + λ(I −A1)− λ2A2.
If we use SDA-1, the matrix X can be approximated directly by a
sequence generated by SDA-1. One may have some concern about
the SDA-2 approach: How can one get X if A2X is obtained and
A2 is singular? This concern will turn out to be unnecessary. We
given the SDA-2 for solving the QBD processed.
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SDA-2 algorithm

Algorithm of SDA-2 for UQME
Set

V0 = A2,

T0 = A0,

Q0 = I − A1,

P0 = 0.

for k = 0, 1, . . . , compute
Set

Vk+1 = Vk(Qk − Pk)−1Vk , (3.19a)

Tk+1 = Tk(Qk − Pk)−1Tk , (3.19b)

Qk+1 = Qk − Tk(Qk − Pk)−1Vk , (3.19c)

Pk+1 = Pk + Vk(Qk − Pk)−1Tk . (3.19d)
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Theorem 3-6: Main results 2: Convergence of SDA-2

Let the QBD be null-recurrent. Then for SDA-2 we have

lim sup
k→∞

k
√
‖Vk‖ ≤

1

2
,

lim sup
k→∞

k
√
‖Tk‖ ≤

1

2
,

lim sup
k→∞

k
√
‖Qk − (I − A1 − A0Y )‖ ≤ 1

2
,

lim sup
k→∞

k
√
‖Pk − A2X‖ ≤

1

2
.
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Corollary 3-7: Using SDA-2 to finding X and Y

Let the limits

lim
k→∞

Qk = Q∗, lim
k→∞

Pk = P∗.

Then, Q∗ and I − A1 − P∗ are nonsingular matrices. The minimal
nonnegative solutions of (3.1) and (2.14) are

X = (I − A1 − P∗)
−1A0, Y = Q−1

∗ A2,

respectively. Moreover, the matrix Q∗ − P∗ is a singular M-matrix.
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DARE

The subsection concerns with SDA-1 for finding the symmetric
almost stabilizing solution Xs of a discrete-time algebraic Riccati
equation (DARE) of the form

R(X ) ≡ −X+A>XA+Q−(C+B>XA)>(R+B>XB)−1(C+B>XA) = 0,
(3.20)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, Q = Q> ∈ Rn×n and
R = R> ∈ Rm×m, respectively. A symmetric solution X ∈ Rn×n of
(3.20) is called stabilizing (resp., almost stabilizing) if R + B>XB
is invertible and all the eigenvalues of the closed-loop matrix
AF ≡ A + BF are in the open (resp., closed) unit disk, where

F = −(R + B>XB)−1(B>XA + C ). (3.21)
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Definition

Let extended symplectic pencil (ESP) M− λL associated with the
DARE (3.20) is defined by

M =

 A 0 B
−Q I −C>

C 0 R

 , L =

 I 0 0
0 A> 0
0 −B> 0

 . (3.22)

If a symmetric matrix X ∈ Rn×n satisfies the DARE (3.20) and all
eigenvalues of the closed-loop matrix AF are in the closed unit
disk, then we have
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Standard assumptions

M

 I
X
F

 = L

 I
X
F

Φ, (3.23)

where the matrix F is as in (3.21) and Φ = AF = A + BF .
We make two mild assumptions:

(P) : If X is an almost stabilizing solution to DARE (3.20) and all
unimodular eigenvalues of AF are semi-simple.

(A) : All elementary divisors of unimodular eigenvalues of
M− λL are of degree two.
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Spectral analysis

Lemma 3-8: Spectral Properties [Guo98]

Let λ be a complex number with |λ| = 1 and X be a solution of
(3.20) with R + B>XB > 0. If

rank[λI − A,B] = n, (3.24)

then the elementary divisors of A + BF corresponding to λ have
degrees k1, k2, . . . , ks(1 ≤ k1 ≤ · · · ≤ ks ≤ n) if and only if the
elementary divisors of M− λL corresponding to λ have degrees
2k1, . . . , 2ks .
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Spectral analysis

Theorem 3-9: Spectral Properties [Ionescu92]

Suppose that the ESP (3.22) is regular, then we have:

1. deg det(M− λL) ≤ 2n.

2. If λ 6= 0 is a generalized eigenvalue of M− λL, then 1/λ is
also a generalized eigenvalue of the same multiplicity.

3. If λ = 0 is a generalized eigenvalue of M− λL with
multiplicity r , then λ =∞ is a generalized eigenvalue of
multiplicity m + r .
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A trick

We can select an appropriate matrix Y = Y> ∈ Rn×n such that
R + B>YB is invertible. After some elementary block row
operators are applied on both sides of (3.23), we obtain (I − G0Y )A− BR̂−1C 0 0

−Q + C>R̂−1(C + B>YA) I 0

C + B>YA 0 R̂


 I

X
F


=

 I − G0Y G0 0

C>R̂−1B>Y A> − C>R̂−1B> 0
B>Y −B> 0

 I
X
F

Φ, (3.25)
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A trick

where R̂ = R + B>YB and G0 = BR̂−1B>. Next, post-multiplying
the second columns of the matrix pair in (3.25) by Y , and then
adding them to the first columns, it follows that(I − G0Y )A− BR̂−1C 0 0

Q̃ I 0

C + B>YA 0 R̂


 I

X − Y
F


=

 I G0 0

A>Y A> − C>R̂−1B> 0
0 −B> 0

 I
X − Y

F

Φ (3.26)

with Q̃ = −Q + C>R̂−1(C + B>YA) + Y .
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A trick

Then the above matrix pair in (3.26) is pre-multiplied by the
following block elementary matrix

E =

 I 0 0
−A>Y I 0

0 0 I

 ,
we thus have A0 0 0

−H0 I 0

C + B>YA 0 R̂

 I
X − Y

F

 =

I G0 0
0 A>0 0
0 −B> 0

 I
X − Y

F

Φ

(3.27)
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A trick

with

A0 = (I − G0Y )A− BR̂−1C , (3.28a)

G0 = BR̂−1B>, (3.28b)

H0 = Q − Y − C>R̂−1(C + B>YA) + A>Y (I − G0Y )A− A>YBR̂−1C .
(3.28c)

Consider the matrix pair (M0,L0) in standard symplectic form
(SSF), where

M0 =

[
A0 0
−H0 I

]
, L0 =

[
I G0

0 A>0

]
(3.29)

which satisfies M0JM>0 = L0JL>0 , where G0 and H0 are
symmetric matrices.
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A trick

By Lemma 3-8, Theorem 3-9, (A) and (3.27), it is obvious that
the spectrum of (M0,L0) is the same of (M,L) except m infinite
eigenvalues. The generalized eigenvalues of (M0,L0) can be
arranged as

0, . . . , 0︸ ︷︷ ︸
r

, λr+1, . . . , λ`, ω1, ω1, . . . ωn−`, ωn−`︸ ︷︷ ︸
unimodular eigenvalues

, λ−1
` , . . . , λ−1

r+1,∞, . . . ,∞︸ ︷︷ ︸
r

,

where the eigenvalues λi are inside the unit circle except the origin,
i = r + 1, . . . , `.
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A trick

From (3.27)–(3.28c), we immediately obtain

M0

[
I

X − Y

]
= L0

[
I

X − Y

]
Φ. (3.30)

The DARE associated with the symplectic matrix pair (M0,L0) in
SSF is

X̂ = A>0 X̂ (I + G0X̂ )−1A0 + H0, (3.31)

on which the efficient SDA algorithm [Chu04,Lin06] can be
applied. Note that if X̂ is the symmetric solution to the above
DARE (3.31), then X = X̂ + Y is the symmetric solution to the
DARE (3.20).
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SDA-1

Algorithm of SDA-1 for DARE
Select a symmetric matrix Y such that R̂ ≡ R + B>YB is invertible.
Set

A0 = (I − GY )A− BR̂−1C ,

G0 = BR̂−1B>,

H0 = Q − Y − C>R̂−1B>YA− A>YBR̂−1C − C>R̂−1C + A>Y (I − GY )A;

for k = 0, 1, . . . , compute
Set

Ak+1 = Ak(I + GkHk)−1A>k ,

Gk+1 = Gk + AkGk(I + HkGk)−1A>k ,

Hk+1 = Hk + A>k (I + HkGk)−1HkAk ;

End of algorithm
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NM for DARE

Algorithm of Newton’s Method for DARE
Choose

A matrix L0 such that A0 ≡ A− BL0 is d-stable;

Solve

X0 := dlyap(A>0 ,Q + L>0 RL0 − C>L0 − L>0 C ); (3.33)

for k = 0, 1, . . . , compute
Set

Lk+1 = (R + B>XkB)−1(C + B>XkA) (3.34a)

Ak+1 = A− BLk+1; (3.34b)

Xk+1 = dlyap(A>k ,Q + L>k+1RLk+1 − C>Lk+1 − L>k+1C );(3.34c)

End of algorithm
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Convergence of NM for DARE

Let (A,B) be d-stabilizable pair and assume that there is a
symmetric solution X̃ of the inequality R(X ) > 0 for which
R + B>X̃B > 0. For any L0 ∈ Cm×n such that A0 = A− BL0 is
d-stable, starting with the symmetric matrix X0 determined by
(3.32), the recursion (3.34b) determines a sequence of symmetric
matrices {Xk} for which A− B(R + B>XkB)−1(C + B>XkA) is
d-stable for k = 0, 1, . . . , and X0 ≥ X1 ≥ . . ., and lim

k→∞
Xk = X+.
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DARE

Theorem 3-10: Main Theorem

Suppose that the (M,L) in (3.22) satisfies the assumption (A)
and that the DARE (3.20) has an almost stabilizing solution Xs

with property (P). Let Z2b = Z2(:, 1 : µ) and Z4a = Z4(:, 1 : `). If
the matrix [Z4a Z2b] ∈ Rn×n is invertible, then Z1 is invertible,

X̂s = Z2Z
−1
1 is an almost stabilizing solution of DARE (3.31), and

the sequences {Ak ,Gk ,Hk} generated by Algorithm of SDA-1 for
DARE is satisfying

(1) lim sup
k→∞

k
√
‖Ak‖ ≤ 1

2 .

(2) lim sup
k→∞

k

√
‖Hk − X̂s‖ ≤ 1

2 , i.e., Hk → X̂s linearly with rate less

than or equal to 1
2 . Moreover, Xs = X̂s + Y .
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DARE

Corollary 3-11: Stabilizing and Maximal solution

Assume that (A,B) is d-stabilizable and that the same conditions
as in Theorem 15 hold. If the DARE (3.20) has a maximal solution
X+, then it must coincide with the almost stabilizing solution Xs

computed by SDA.
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NME

NME

In this subsection, we are interest in the study of the nonlinear
matrix equation (NME)

X + A>X−1A = Q, (3.35)

and its dual equation

Y + AY−1A> = Q, (3.36)

where A,Q ∈ Rn×n with Q being symmetric positive definite.

NMEs occur frequently in many applications, that include control
theory, ladder networks, dynamic programming, stochastic filtering
and statics [Anderson90,Zhan96]. Notable examples include
algebraic Riccati equations
[Chu05,Chu04,Hwang05,Hwang07,Lin06], quadratic matrix
equations [Guo01,Guo04,GuoLan99]

AX 2 + BX + C = 0,

where A,B,C are given coefficient matrices.
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NME

NME
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NME

Existence of solution

Theorem 3-12: Necessary and Sufficient condition [EngRanRij93]

The NME (3.35) has a symmetric positive definite solution if and
only if ψ(λ) ≡ λA + Q + λ−1A> is regular (detψ(λ) 6= 0 for some
λ ∈ C), and ψ(λ) ≥ 0, for all |λ| = 1. In that case ψ(λ) factors as

ψ(λ) = (C ∗0 + λ−1C ∗1 )(C0 + λC1)

with det(C0) 6= 0, then X = C ∗0 C0 is a solution of (3.35). Every
positive definite solution is obtained in this way.
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NME

Maximal and Minimal solution

Theorem 3-13: Existence [EngRanRij93]

If (3.35) has a symmetric positive definite solution, then it has a
maximal and minimal symmetric positive definite solution X+ and
X−, respectively. Moreover, for the maximal solution X+, we have
ρ(X−1

+ A) ≤ 1; for any other symmetric positive definite solution X ,
we have ρ(X−1A) > 1. Here ρ( · ) denotes the spectral radius.
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NME

Spectral analysis

Consider the NME (3.35) and define

M≡
[

A 0
Q −I

]
, L ≡

[
0 I
A> 0

]
. (3.37)

It is well known that the pencil M− λL is symplectic, i.e., it
satisfies

MJM> = LJL> , with J ≡
[

0 I
−I 0

]
and λ ∈ σ(M, L) if and only if 1/λ ∈ σ(M, L).
Let S = X−1A. Then (3.35) can be rewritten as

M
[

I
X

]
= L

[
I
X

]
S . (3.38)
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NME

Spectral analysis

It is widely known that λ 6= 0 is an eigenvalue of X−1
+ A if and only

if (λ, 1
λ) are eigenvalues of M− λL. A unimodular λ is an

eigenvalue of X−1
+ A with algebraic multiplicity k if and only if it is

an eigenvalue of M− λL with algebraic multiplicity 2k . The
follows Theorem given that the eigenvalues of the matrix
R = X−1

+ A have the following characterization.
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NME

Spectral analysis

Theorem 3-14: Spectral Properties [Guo01]

For (3.35), the eigenvalues of the matrix X−1
+ A are precisely the

eigenvalues of the matrix pencil M− λL inside or on the unit
circle, with half of the partial multiplicities for each unimodular
eigenvalue.
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NME

NM for NME

Algorithm of Newton’s Method for NME
Set

X0 = Q;

for k = 0, 1, . . . , compute
Set

Lk = X−1
k−1A; (3.39a)

Xk = dlyap(L>k ,Q − 2L>k A); (3.39b)

End of algorithm
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NME

Convergence of NM

Theorem 3-14: Convergence of NM [Guo01]

If (3.35) has a positive definite solution, then Newton’s Algorithm
for NME determines a nondecreasing sequence of symmetric
matrices {Xk} for which ρ(Lk) < 1 and lim

k→∞
Xk = X+. The

convergence is quadratic if ρ(X−1
+ A) < 1. If ρ(X−1

+ A) = 1 and all
eigenvalues of X−1

+ A on the unit circle are semi-simple, then the
convergence is either quadratic or linear with rate 1/2.

When ρ(X−1
+ A) has non-semisimple unimodular eigenvalues,

Newton’s method is still convergent but the rate of convergence is
only conjectured to be 1

p√2
, where p is the size of the largest

Jordan blocks associated with unimodular eigenvalues. The
conjecture was made in [Guo98] for DARE.
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NME

CR for NME

Algorithm of CR algorithm for NME
Set

A0 = A;

Q0 = 0;

X0 = 0;

Y0 = 0,

for k = 0, 1, . . . , compute
Set

Ak+1 = AkQ
−1
k Ak ; (3.40a)

Qk+1 = Qk − AkQ
−1
k A>k − A>k Q−1

k Ak ; (3.40b)

Xk+1 = Xk − A>k Q−1
k Ak ; (3.40c)

Yk+1 = Yk − AkQ
−1
k A>k . (3.40d)

End of algorithm Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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NME

Convergence of CR

Theorem 3-15: Convergence of CR [Meini02]

The sequence of matrices {Qk}, {Xk} and {Yk} are positive
definite, nonincreasing. Moreover, let σ = ρ(X−1

+ A) we have

lim sup
k→∞

2k√‖Xk − X+‖ ≤ σ2,

lim sup
k→∞

2k√‖Yk − Y+‖ ≤ σ2,

lim sup
k→∞

2k√‖Ak‖ ≤ σ2.

The matrices Qk and Q−1
k are bounded in norm.
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NME

Theorem 3-16: Critical case [Guo01]

If σ = 1 and all eigenvalues of X−1
+ A on the unit circle are

semisimple, then the sequence {Xk} produced by CR algorithm
converges to X+ and the convergence is at least with rate 1/2.

In Theorem 3-16, convergence is guaranteed under a addition
assumption, i.e., all elementary divisors of unimodular eigenvalues
of M− λL are of degree two. In our algorithm (SDA-2), we can
show more convergence results without any assumption on the
unimodular eigenvalues of X−1

+ A.
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NME

SDA-2 for NME

Algorithm of SDA-2 for NME
Set

A0 = A;

Q0 = Q;

P0 = 0.

for k = 0, 1, . . . , compute
Set

Ak+1 = Ak(Qk − Pk)−1Ak ; (3.41a)

Qk+1 = Qk − A>k (Qk − Pk)−1Ak ; (3.41b)

Pk+1 = Pk + Ak(Qk − Pk)−1A>k . (3.41c)

End of algorithm
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NME

SDA-2 for NME

Theorem 3-17: Convergence of SDA-2 [Lin06]

Assume the NME (3.35) has a symmetric positive definite solution
X . Then the matrix sequence {Ak , Qk , Pk} generated by SDA-2
Algorithm for NME is well-defined and satisfies

(i) Ak = (X − Pk)R2k
;

(ii) 0 ≤ Pk ≤ Pk+1 < X and
Qk − Pk = (X − Pk) + A>k (X − Pk)−1Ak > 0;

(iii) X ≤ Qk+1 ≤ Qk ≤ Q and

Qk − X = (R>)2k
(X − Pk)R2k ≤ (R>)2k

XR2k
.
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NME

Critical case

Theorem 3-18: ρ(X−1
+ A) = 1

Assume that the NME (3.35) has a symmetric positive definite
solution. Let X+ and X− are its maximal and minimal solution,
respectively. If ρ(X−1

+ A) = 1, then the sequence {Ak ,Qk ,Pk}
generated by SDA-2 Algorithm for NME satisfies

(i) ‖Ak‖ = O
(
ρ(Js)2k

)
+ O(2−k)→ 0 as k →∞;

(ii) ‖Qk − X+‖ = O
(
ρ(Js)2k

)
+ O(2−k)→ 0 as k →∞ where

X+ = Z2Z
−1
1 (and therefore Z1 is nonsing.) solves (3.35);
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NME

Critical case

(iii) ‖Pk − X̃−‖ = O
(
ρ(Js)2k

)
+ O(2−k)→ 0 as k →∞ where

X̃− = Y2Y
−1
1 if Y1 is invertible; moreover, if in addition, A is

invertible, then X̃− solves (3.35) and equals X−;
(iv) {Qk − Pk} → singular matrix as k →∞.
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Contributions

This thesis is concerned with the important topic of iterative
methods for some nonlinear matrix equations. In particular it deals
with structure-preserving doubling algorithm, we have contributed
to

1. We show that the convergence of the SDA is at least linear
with rate 1

2 in the critical case.

2. As compared to previous papers, the results here are obtained
with only basic assumptions, only using elementary matrix
theory. The results we present here are more general, and the
analysis is much simpler.
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Contributions

NARE

Spectral analysis

DARE

Applying SDA-1 to the more general DARE

− X + A>XA + Q − (C + B>XA)>(R + BXB)−1

(C + B>XA) = 0,

with singular R.
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Different than early results

In [Huang07], use SDA-1 for the analyzing of the weakly stabilizing
Hermitian sol. of

CARE
−XGX + A∗X + XA + H = 0,

DARE
X = A∗X (I + GX )−1A + H.

Different: Rewrite DARE as[
A 0
−H I

] [
I
X

]
=

[
I G
0 A∗

]
Φ,

where Φ ≡ (I + GX )−1A.

Assumption property (P), ρ(Φ) ≤ 1 and each unimodular eigs. has a
half of the partial multiplicity of M− λL corresp. to the same eigs.

SDA-1 has no breakdown. That is, {Ak ,Gk ,Hk} is well defined, or
(I + GkHk) is nonsingular.

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations



Introduction NARE Another Equations Concluding Remarks

Future works

Some future works include

1. In the critical case, the convergence of SDA in ours
experiments has been observed to be exactly linear with rate
1
2 . In our proof, this thesis only show that the convergence of
the SDA is at least linear with rate 1

2 in the critical case. We
believe that the convergence rate is exactly 1

2 in the critical
case, but we have no proof for this.

2. NARE

Arising from Transport theory:

XCX − XD − AX + B = 0,

where A,B,C ,D ∈ Rn×n are given by

A = ∆− eq>, B = ee>, C = qq>, D = E − qe>,

Chun-Yueh Chiang Convergence Analysis of SDA for Nonlinear Matrix Equations
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Future works:NARE

where

e = (1, 1, . . . , 1)>,

q = (q1, q2, . . . , qn)>, with qi =
ci

2ωi
,

∆ = diag(δ1, δ2, . . . , δn), with δi =
1

cωi (1 + α)
,

E = diag(e1, e2, . . . , en), with δi =
1

cωi (1− α)
.

Parameters:

0 < c ≤ 1; 0 ≤ α < 1; 0 < ωn < · · · < ω1 < 1; ci > 0 with
n∑

i=1

ci = 1.
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Future works:NARE

Recently research: Write the NARE as
T ◦ X ≡ ∆X + XE = (Xq + e)(q>X + e) ≡ uv>.

Construct an explicit formula via the inversion of a Cauchy
matrix: [Juang98],[Mehrmann08].

Vector iteration: [Lu/SIMAX/05], [Bai08]

u = u ◦ (Pv) + e, v = v ◦ (P̃u) + e.

Newton’s iteration: [Lu/NLAA/05]

f (

[
u
v

]
) ≡

[
u − u ◦ (Pv)− e

v − v ◦ (P̃u)− e

]
.

SDA (1 or 2)? How to apply?
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Future works:NARE

Another condition of the existence of minimal noneg. sol.. Let the
assumption (H1)

B,C ≥ 0; A,D are Z-mat.; ∃X ≥ 0, s.t. R(X ) ≤ 0.

We can show that there exist mini. noneg. sol. under assumption
(H1). But (H1) < (H1).
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Future works:NME

MME

Existence of sol. of NME

X + A>X−1A = Q,

where Q = Q> (not necessarily positive definite, this problem
arising from >-palindromic eigenvalue problem).

NME arising from the time delay systems [Faßbender07]

X + KX−1M = C ,

where
∏

K
∏

= M and
∏

C
∏

= C (Centrosymmetric),

∏
=

 1

. .
.

1

.
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Future works:NME

Existence, methods?

SLF-2 [
M 0
C −I

] [
I
X

]
=

[
0 I
K 0

] [
I
X

]
(X−1M).

This DA has no preserving the centrosymmetric of M,C ,K ;
Mn → 0 not implies Kn → 0.

NM Method, given X0, Solve the Sylvester eq.

Xk+1 + (KX−1
k )Xk+1(X−1

k M) = C .

How is taking X0?
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Future works

3. We are interested in finding the positive semi-definition
solution X of the stochastic algebraic Riccati equation (SARE)

A>X + XA> + C>XC − (XB + C>XD)(R + D>XD)−1

(B>X + D>XC ) + Q = 0, (4.1)

with the constricted condition

R + D>XD > 0,
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where A,B,C ,D,R and Q are n× n matrices, the matrices Q
and R are symmetric. The equation (4.1) has investigated an
important research field in control theory and has found
interesting applications.

To our best knowledge, the solvability of the SARE (4.1),
even for the standard case (i.e., Q ≥ 0 and R > 0 while
D 6= 0), remains an unexplored and open problem. Recently,

In [Rami00], the authors proposed a numerical algorithm to
compute the maximal solution to the SARE (4.1), based on a
semi-definite programming.
The Newton procedure may be applied to SARE (4.1) under
some assumptions [Ivanov07].

In our future work, we expect to develop a
structure-preserving method, which can be analytical and
computational approaches the SARE (4.1). Moreover, the
critical case R + D>XD ≥ 0 can also be solved (the symbol
“− 1′′ should be replaced with “†′′, i.e., the Moore Penrose
inverse of R + D>XD).
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Thank you for your attention!
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