
Chapter 9 binary tree

Speaker: Lung-Sheng Chien

Reference book: Larry Nyhoff, C++ an introduction to data structures

Reference power point: Enijmax, Buffer Overflow Instruction

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Recall linear search in chapter 6

• Data type of key and base are immaterial, we only need to
provide comparison operator. In other words, framework of
linear search is independent of comparison operation.

pseudocode

[]

[]
[]

Given array 0 : 1 and a search
and may have different data type
 0 :1: 1

 if then

 return location of

return not-found

base n key
key base
for j n

base j key

base j
endfor

−

= −

==

User-defined comparison operation

linear search for structure-array

2

1

1

2
2

2

1. search key must be consistent with
keyval in comparison operator, say key
and keyval have the same data type,
pointer to content of search key

2. keytab[i] must be consistent with
*found_key, they must be the same type and
such type has sizeof(keyType) bytes

binary search in chapter 6

since “endfor” is not a keyword, under linear search algorithm, we
need to compare all keywords to reject “endfor”. We need another
efficient algorithm, binary search, which is the best.

step-by-step of binary search [1]

13 28 35 49 62 66 80

13 28 35 49 62 66 80(1)

13 28 35 49 62 66 80(2)

13 28 35 49 62 66 80(3)

step-by-step of binary search [2]

Equivalent tree structure

49

28 66

13 35 62 80

Question: Does binary-search work on sorted Linked-List?

13 28 35 49 62 66 80

Tree terminology [1]

• A tree consists of a finite set of elements called nodes and a finite
set of directed arcs that connect pairs of nodes.

• “root” is one node without incoming arc, and every other node can
be reached from root by following a unique sequence of consecutive
arcs.

• Leaf node is one node without outgoing arc.

• child node is successor (繼承者) of parent node, parent node is
predecessor (被繼承者) of child node

• Children with the same parent are siblings (兄弟姐妹) of each other

Tree terminology [2]

49

28 66

13 35 62 80

root

leaf leaf leaf leaf

right subtree of root

49

66

62 80

parent

child child

siblings

incoming arc

28

outgoing arc

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Binary Search Tree (BST)

• Collection of data elements (data storage)
a binary tree in which for each node x:
value in left child of x <= value in x <= value in right child of x

• Basic operations (methods)
- construct an empty BST
- determine if BST is empty
- search the BST for a given item
- Insert a new item in the BST and maintain BST property
- delete an item from the BST and maintain BST property
- Traverse the BST and visit each node exactly once. At least one of

the traversals, called an inorder traversal, must visit the values in
the nodes in ascending order

Variant of BST

• Treap: a binary search tree that orders the nodes by adding a
random priority attribute to a node, as well as a key. The nodes are
ordered so that the keys form a binary search tree and the priorities
obey the max heap order property.

• red-black tree: a type of self-balancing binary search tree, a data
structure used in computer science, typically used to implement
associative arrays.

• Heap: a specialized tree-based data structure that satisfies the heap
property: if B is a child node of A, then key(A) ≥ key(B).

• AVL tree: a self-balancing binary search tree.
• B-tree: a tree data structure that keeps data sorted and allows

searches, insertions, and deletions in logarithmic amortized time. It
is most commonly used in databases and filesystems.

• threaded binary tree : possible to traverse the values in the binary
tree via a linear traversal that is more rapid than a recursive in-order
traversal.

Requirement of BST

• treeEle: data type
• type of physical storage: linked-list
• ordered mechanism: depends on treeEle
• pointer to root node

integrate into
structure BST

• BST* BST_init(void)
• int empty(BST*)
• int search(BST*, treeEle)
• void insert(BST*, treeEle)
• void remove(BST*, treeEle)
• void traverse(BST*)

Methods of
structure BST

BST.h

Type of physical storage: linked-List

pointer to root node

Methods of structure BST

constructor of tree node (leaf node)

Linked-List BST: header file

BST method: constructor (建構子)

BST.cpp

data

left rightConstruct leaf node

empty tree

Data encapsulation: user does not see function newBinNode

BST method: binary search

BST.cpp

data

left-subtree right-subtree

item data< item data>

binary search

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

BST method: insert “64” into tree [1]

49

28 66

13 35 62 80

49

28 66

13 35 62 80

parent

root locptr

64 > 49, descend to right subtree

parent

locptr

root

BST method: insert “64” into tree [2]

64 < 66, descend to left subtree

49

28 66

13 35 62 80

root

parent

locptr

64 > 62, descend to right subtree

49

28 66

13 35 62 80

root

“64” is NOT in
the tee

parent
locptr

BST method: insert “64” into tree [3]

49

28 66

13 35 62 80

root

parent

64 locptr

new BinNode

• Step 1: locate where a given item is to be
inserted and set its parent node to pointer
parent

• Step 2: construct a leaf node with data = “64” and
attach to node pointed by pointer, parent.

BST method: insert [4]

step 1: locate parent node
of target data

step 2: create leaf node of
target data and attach to
parent node

BST.cpp

Question: why need we to compare item and parent->data again in step 2?

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Recursive definition of a binary tree

• A binary tree is either
empty

or
consists of a node called the root, which has pointers to two

disjoint binary subtrees called the left subtree and right
subtree

BST.cpp
• In-order traversal

traverse the left subtree
visit the root and process its content
traverse the right subtree

Termination condition

Inorder traversal [1]

Here root means staring node
of any tree output

49

28 66

13 35 62 80

root

(1) goto left subtree of node 49

28

13 35

root
(2) goto left subtree of node 28

13root(3) goto left subtree of node 13

Inorder traversal [2]
output

13(4) root is NULL, output 13

goto right subtree of node 13 13root

13(5) root is NULL, all children of node
13 have been visited,
go back to node 28

root 13

28

13 35

root

(6) output node 28,
goto right subtree of node 28 13,28

35(7) goto left subtree of node 35 root

13, 28

Inorder traversal [3]

35

output

(8) root is NULL, output 35,
goto right subtree of node 35

13, 28, 35
root

35(9) root is NULL, all children of
node 35 have been visited,
go back to node 28

13, 28, 35
root

28

13 35

root
(10) All children of node 28 have

been traversed,
go back to node 49

13, 28, 35

49

28 66

13 35 62 80

root(11) left-subtree of node 49 have
been traversed, output 49
and goto right subtree

13, 28, 35, 49

Inorder traversal [4]

66

62 80

root

output

13, 28, 35, 49
(12) goto left subtree of node 66

62 13, 28, 35, 49root(13) goto left subtree of node 62

(14) root is NULL, output 62,
goto right subtree of node 62 62 13, 28, 35, 49, 62

root

62(15) All children of node 62 have
been visited,
go back to node 66

13, 28, 35, 49, 62
root

66

62 80

root
(16) Let subtree of node 66 is

visited, output 66 and
goto right subtree of node 66

13, 28, 35, 49, 62, 66

Inorder traversal [5]

output

80root 13,28,35,49,62,66
(17) goto left subtree of node 80

80(18) root is NULL, output 80 and

goto right subtree of node 80
13,28,35,49,62,66,80

root

80(19) All children of node 80 have
been visited,
go back to node 66

13,28,35,49,62,66,80
root

66

62 80

root

(20) All children of node 66 have
been visited,
go back to node 49

13,28,35,49,62,66,80

Inorder traversal [6]
output

49

28 66

13 35 62 80

root(21) All children of node
49 have been visited,
terminate

13,28,35,49,62,66,80

49

28 66

13 35 62 80

Inorder in BST is ascending order, why?

Driver for Inorder traversal [1]
main.cpp

1

2

3

49insert(tree,49)

insert(tree,28)
49

28

49

28

13

insert(tree,13)

49

28

13 35

insert(tree,35)

Driver for Inorder traversal [2]

49

28 66

13 35

insert(tree,66)

insert(tree,62)

49

28 66

13 35 62 80

49

28 66

13 35 62

insert(tree,80)

Exercise

• Implement integer BST with methods newBinNode, BST_init,
empty, search, insert as we discuss above and write a method
(function) to show configuration of BST as follows.

49

28 66

13 35 62 80

0x804b888

0x804b8c80x804b898

0x804b8a8 0x804b8b8 0x804b8d8 0x804b8e8

Exercise

• Use recursive call to implement methods search and insert.
• Write a method to compute maximum depth of a BST.

depth = 0
49

28 66

13 35 62 80

depth = 1

depth = 2

• What is topology of a BST created by inserting 13, 28, 35, 49, 62, 66,
80 in turn.

• Can you modify an unbalanced BST into a balanced one?

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Delete a node x from BST [1]

G

F J

A

E

C

DB

H O

I M

K

L

N

P

case 1: x is a leaf node

x

G

F J

A

E

C

DB

H O

I M

K

L

N

P

x

free

Delete a node x from BST [2]

G

F J

A

E

C

DB

H O

I M

K

L

N

P

case 2: x has one child

x

G

F J

A

E

C

B

H O

I M

K

L

N

P

free

D

x

Delete a node x from BST [3]
case 3: x has two children

G

F J

A

E

C

DB

H O

I M

K

L

N

P

x

xsucc

Replace x with its inorder
successor xsucc G

F K

A

E

C

DB

H O

I M

K

L

N

P

xsucc

Delete a node x from BST [4]

delete xsucc

G

F K

A

E

C

DB

H O

I M

K
L

N

P

xsucc
free

BST method: remove item

Exercise

• Implement method remove and write a driver to test it, you can use
following BST as test example.
Note: you need to test all boundary cases

• Use recursive call to implement methods remove.

G

F J

A

E

C

DB

H O

I M

K

L

N

P

Exercise
• Construct following expression tree (note that you may need general

binary tree, not BST) and show its configuration.

• Show result of pre-order (prefix), in-order (infix) and post-order
(postfix) respectively.

() ()()/a b c d e+ × −

+

a b

×

/

−

d e

c

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Convert RPN expression to expression tree [1]

expression stack comments Binary tree

15 841+ − −×

1Create leaf node 1 and
push address onto stack

top1

5 841+ − −×
top Create leaf node 5 and

push address onto stack 1 55
1

841+ − −×
Create node “+” and pop 5, 1
from stack as its children.

1 5

+
top

top Push address of node “+” to stack+

841− −×

1 5

+
Create leaf node 8 and
push address onto stack

top8
8+

Convert RPN expression to expression tree [2]

expression stack comments Binary tree

41− −×

1 5

+top

+
8
4 Create leaf node 4 and

push address onto stack
48

1− −×

1 5

+Create leaf node 1 and
push address onto stack

top

8
4
1

48 1

+

4 1

-− −×

1 5

+Create node “-” and
pop 1, 4 from stack as
its children.

top8
+ 8

top
8
-

Push node ‘-’ onto stack

+

Convert RPN expression to expression tree [3]

expression stack comments Binary tree

−×
Create node “-” and pop
“-”, 8 from stack as its
children.

top

8
4 1

-

-+

1 5

+

top- Push node “-” onto stack
+

×

1 5

+

8
4 1

-

-
Create node “” and pop

“-”, “+” from stack as its
children.top

top* Push node “*” onto stack

Only one address on the stack, this
address is root of the tree

Exercise
• Depict flow chart of “convert RPN expression to expression tree”.
• Write program to do “convert RPN expression to expression tree”,

you can use following expression tree as test example.
• Use above binary tree to evaluate result (stack free, just traverse the

binary tree).

+

1 5

×

−

−

4 1

8

() ()()infix: 1 5 8 4 1+ × − −

: 15 841postfix + − −×
parenthesis free

OutLine

• Binary search versus tree structure
• Binary search tree and its implementation

- insertion
- traversal
- delete

• Application: expression tree
- convert RPN to binary tree
- evaluate expression tree

• Pitfall: stack limit of recursive call

Stack allocation in VC2005

• A function‘s prolog (prolog code sequence
起始設定) is responsible for allocating stack
space for local variables, saved registers,
stack parameters, and register parameters.

• The parameter area is always at the bottom
of the stack, so that it will always be
adjacent to the return address during any
function call.

• The stack will always be maintained 16-byte
aligned, except within the prolog (for
example, after the return address is pushed),
and except where indicated in Function
Types for a certain class of frame functions.

• When you define a local variable, enough
space is allocated on the stack frame to hold
the entire variable, this is done by compiler.

• Frame variabels are automatically deleted
when they go out of scope. Sometimes, we
call them automatic variables.

Stack frame by g++
g++ -O0 main.cpp

Low address

4byte

4byte

local variables
of callee

ebp
base pointer

of caller
Current base pointer

Stack
frame return address

of callerstack
order

function
Parameter

(right to left)
high addresscaller: 呼叫者, 如 main

callee: 被呼叫者, 如 foo x

a

b

foo

0xbfffed08

0xbfffed04

0xbfffed38

0x80484fc
0xbfffed0c

0xbfffed10

level
0xbfffed14

level = ebp[8]

ebp
x = ebp[-4]

a = ebp[12]

b = ebp[16]

0xbfffed18

0xbfffece4 address content variable

0xbfffeca4
x

a

0xbfffecc8

0x80485e0

0xbfffeca8

0xbfffecac

0xbfffecb0

0xbfffecb4

0xbfffecb8

0xbfffecbc
b

foo(0)

0xbfffecc4
x

0xbfffecd0

a

b

foo(1)

x

a

b

x

a

b

foo(3)

0xbfffece8
0xbfffed08

0x80485e0
0xbfffecec foo(2)

0xbfffecf0
level

0xbfffecf4
level

0xbfffecf8

0xbfffecfc

0xbfffed00

0xbfffecc00xbfffed04

0xbfffed080xbfffed28
0xbfffed38

0x80484fc
0xbfffecc80xbfffed0c低 0xbfffed2c

0xbfffece8

0x80485e0

main

b 0xbfffed10 0xbfffeccc0xbfffed30
levelaStack

order
0xbfffed140xbfffed34

levellevel
0xbfffed18 0xbfffecd40xbfffed38

0xbfffed58

0x42015574

高
0xbfffed1c 0xbfffecd80xbfffed3c

Old base pointer 0xbfffed20 0xbfffecdc0xbfffed40
argc 0xbfffece00xbfffed24Return address 0xbfffed44
argv

Actions to call a function

• Caller push parameters of callee to stack
• Caller execute command call, for example “call _Z3fooiii”.

- push return address (address of caller) to stack
- program counter points to function code address

• In callee
- push old ebp (base pointer of caller) to stack
- copy esp to ebp (ex: movl %esp, %ebp)
- reserve enough space for local variables

• When function return to caller
- callee move sp (stack pointer) to return address
- callee execute command ret, and then program counter points to

return address
- caller pop base pointer to restore original status

Cost to call a function

• Function calls (including parameter passing and placing object’s
address on the stack)

• Preservation of caller’s stack frame
• Return-value communication
• Old stack-frame restore
• Return (give program control back to caller)

• recursive call is easy to implement and code size is minimum,
however we need to pay a little overhead. That’s why we do not like
recursive call when dealing with computational intensive task.

Exercise: write quick sort with recursive version and non-recursive
version, then compare performance between them.

Exercise
• Modify following code to show address of function parameter, local

variable and content of return address, base pointer.
Use “g++ -O0” to compile your code on workstation and check
configuration of stack frame.

• What is configuration of stack frame using icpc –O0 ?
• What is configuration of stack frame in VC6.0 ?
• Is configuration of stack frame the same for each execution? Why?
• What’s size of function prolog

for compiler g++, icpc and vc6?

Stack limit

• In RedHat 9, 32-bit machine, default stack size is 8MB.
Use command “ulimit -a” to show this information.

• Visual studio C++ 6.0, default stack size is 1MB

Test stack limit in VC6.0

Recursive call

Level number cannot reach 1
since stack overflow

modify stack limit in VC6.0

Exercise
• Write driver to test stack limit in VC6.0 and modify stack size in

project setting dialog, does it work?

• Use the same driver, test stack limit on workstation with compiler
g++ and icpc respectively. Is stack size independent of compiler?

• if we modify function foo such that local variable word is of no use
what’s stack size on workstation?

Local variable word is of no use.

