
Chapter 8 stack (堆疊)

Speaker: Lung-Sheng Chien

Reference book: Larry Nyhoff, C++ an introduction to data structures

OutLine

• LIFO: from base-10 to base-2
• Array-based stack implementation
• Application 1: railroad switching yard
• Application 2: expression evaluation

- infix to postfix
- Reverse Polish Notation

Problem: display the base-2 representation of a
base-10 number

1 0

4 3 2 1 0

26 2 10 6 10
 16 8 2
 1 2 1 2 0 2 1 2 0 2

= × + ×
= + +

= × + × + × + × + ×

2 6 1 1 0 1 0

0212223242010110

How to transform

0 1 2
0 1 2

0
26 2 2 2 2 2

n
n k

n k
k

a a a a a
=

= × + × + × + + × =∑
()026 mod 2a≡

() 1 2
0 1 226 2 2 2n

na a a a− = × + × + + ×

() 1 1
0 1 2

113 26 2 2
2

n
na a a a −= − = + × + + ×

()113 mod 2a≡

Mathematical deduction [1]

0 0a =

1 1a =

() 1 2 2
1 2 3 4

16 13 2 2 2
2

n
na a a a a −= − = + × + × + + ×

()26 mod 2a≡

2 0a =

() 1 2 3
2 3 4 5

13 6 2 2 2
2

n
na a a a a −= − = + × + × + + ×

()33 mod 2a≡

Mathematical deduction [2]

3 1a =

() 1 2 4
3 4 5 6

11 3 2 2 2
2

n
na a a a a −= − = + × + × + + ×

()41 mod 2a≡

4 1a =

() 1 5
4 5 6

10 1 2 2
2

n
na a a a −= − = + × + + ×

5 60 na a a= = = =

stack: last-in-first-out (LIFO)

computation order

() () () () () ()0 1 2 3 4 50 1 0 1 1 0a a a a a a= → = → = → = → = → =

display order

() () () () ()4 3 2 1 01 1 0 1 0a a a a a= → = → = → = → =

1 1 0 1 0

0212223242

4a 3a 2a 1a 0a

Last In in the computation order is First Out in the display order

We call “stack” as a kind of data structure (資料結構)

http://en.wikipedia.org/wiki/Stack_(data_structure)
http://en.wikipedia.org/wiki/Stack

• a stack is an abstract data type and data
structure based on the principle of Last In
First Out (LIFO)

• Stack machine: Java Virtual Machine
• Call stack of a program, also known as a

function stack, execution stack, control
stack, or simply the stack

• Stack allocation in MSDN library
• Application: Reverse Polish Notation,

Depth-First-Search

OutLine

• LIFO: from base-10 to base-2
• Array-based stack implementation
• Application 1: railroad switching yard
• Application 2: expression evaluation

- infix to postfix
- Reverse Polish Notation

Stack container

• Collection of data elements (data storage)
an ordered collection of data items that can be accessed
at only one end, called the top of the stack

• Basic operations (methods)
- construct a stack (empty stack)
- empty: check if stack is empty
- top: retrieve the top element of the stack
- push: add an element at the top of the stack
- pop: remove the top element of the stack

Requirement of stack

• stackEle: data type
• type of physical storage: array, linked-list
• ordered mechanism: depends on physical

storage
• index to top element in the stack

integrate into
structure stack

• stack* stack_init(void)
• int empty(stack*)
• stackEle top(stack*)
• void push(stack*, stackEle)
• void pop(stack*)

Methods of
structure stack

Array-based stack: header file
stack.h

Type of physical storage

index to top element in the stack

Methods of structure stack

Question: what is “ordered mechanism” ?

Array-based stack: method [1]
stack.cpp

Set stack to empty is essential, or
error occurs when do push(), pop()
or top()

?myArray[4]

?myArray[3]
data encapsulation (資料隱藏)

You can change name of array
or index “myTop” without
notifying user.

?myArray[2]

?myArray[1]

?myArray[0]

myTop = -1

Array-based stack: method [2]
stack.cpp

Question 1 : what is purpose of “assert(s)” ?

Question 2: why is evaluation order of “s->myArray[s->myTop] ” ?

Array-based stack: method [3]
stack.cpp

ordered mechanism

Upper limit of stack: size is
fixed by STACK_CAPACITY

Lower limit of stack: empty or not

Question: maximum size of stack is limited by symbolic
constant STACK_CAPACITY, can you solve this constraint?

Array-based stack: driver
main.cpp

3

1

2
1 myArray[0]

myArray[1]
myArray[2]
myArray[3]
myArray[4]

myTop = 0
?
?
?
?

?

myTop = -1

?
?
?
?1 myArray[4]

myArray[3]
myArray[2]
myArray[1]

myArray[0]

2

3
? myArray[4]

? myArray[3]

? myArray[2]

? myArray[1]

1 myArray[0]

myTop = -1

Pro and cons: array-based tack

• pro (in favor of)
- easy to implement
- ordered mechanism is natural

• con (contra)
- maximum size is limited by STACK_CAPACITY
- type of stack element is fixed to only one type
- type of stack element must be primitive
- user must call stack_init() explicitly, or fetal error occurs

Exercise

• write a driver to test all methods and constraints in array-based
stack

• do base-10 to base-2 transformation by array-based stack

• modify array-based stack such that maximum size is not limited by
STACK_CAPACITY

• implement stack by linked-list

• how to solve “type of stack element must be primitive”

• how to allow more than two stacks of different type in a program

OutLine

• LIFO: from base-10 to base-2
• Array-based stack implementation
• Application 1: railroad switching yard
• Application 2: expression evaluation

- infix to postfix
- Reverse Polish Notation

Application 1: railroad switching yard

• Railroad cars numbered 1,2,…,n on the right track are to be
permuted and moved along on the left track.

• A car may be moved directly onto the left track, or it may be shunted
onto the siding to be removed at a later time and placed on the left
track.

• The siding operates like a stack
- push: move a car from the
right track onto the siding

-pop: move the “top” car from
the siding onto the left track

n=3, find all possible permutatoin of cars that can be
obtained by a sequence of these operation

1 2 3

1

2 3

push 1

push 2

1

3

2

1

3

2

move 3

n=3, find all possible permutation of cars that can be
obtained by a sequence of these operation

1

3 2

1

3

2 pop 2

pop 1

13 2

Hence 321 is a possible permutation

n=3, find all possible permutatoin of cars that can be
obtained by a sequence of these operation

permutation Operation sequence

123

132

213

231

312

321 push 1, push 2, move 3, pop 2, pop 1

n=4, find all possible permutatoin of cars

permutation Operation sequence permutation Operation sequence

1234 3124

1243 3142

1324 3214

1342 3241

1423 3412

1432 3421

2134 4123

2143 4132

2314 4213

2341 4231

2413 4312

2431 4321

OutLine

• LIFO: from base-10 to base-2
• Array-based stack implementation
• Application 1: railroad switching yard
• Application 2: expression evaluation

- infix to postfix
- Reverse Polish Notation

expression tree

()a b c× +

+

b c

×

a

a b×

×

a b

a b c× +
() ()()/a b c d e+ × −

+

a b

×

/

−

d e

c

×

a b

+

c

Infix notation: Left-Parent-Right order

×

a b

+

c

Left child of root “+”

×

a b

infix : a b×

a b×

+

c

()infix : a b c× +

Recursive

Left-Parent-Right

Replace subtree with infix notation

Recursive Left-Parent-Right again

postfix notation: Left-Right-Parent order

×

a b

+

c

:postfix ab c× +

+

a b

×

/

−

d e

c

: /postfix ab cde+ − ×

convert infix to postfix [1]

expression stack output comments

()7 8 2 3× − +

Display 77
top

()8 2 3× − +
Push * since stack
is empty7top×

()8 2 3− +

78top Display 8×

so far, we cannot say that 8 is right child

of operator * or left child of other operator

7 8

× 7

8

×

?or

convert infix to postfix [2]

expression stack output comments

()8 2 3− +

78top display 8×

()2 3− +

pop * and display it since
precedence of * is higher than –

78×

top

push –78×− top

()2 3+

push (since (is delimiter of sub-
expression

−
(top 78×

2 3)+

display 2

−
(78 2×top

convert infix to postfix [3]

expression stack output comments

3)+

top

−
(
+ push + since (is a delimiter of sub-

expression, not arithmetic operator, or
we can say precedence of (is lowest.

78 2×

3)
display 3

−
(
+ 78 23×top

so far, we cannot say that 3 is
right child of operator + or not

)
pop + and display + since right
delimiter of sub-expression is
reached−

(78 23× +top

pop (, sub-expression is exhausted− 78 23× +top

convert infix to postfix [4]

expression stack output comments

pop (, sub-expression is exhausted− 78 23× +top

no token No token is read, it means that right
child of – is exhausted, so pop –
and display it.

78 23× + −

top

: 78 23postfix × + −

Question: What is general procedure?

Initialize an empty
stack of operators

switch(token)

Pop and display stack
element until a left) is
encountered, but don’t
display)

If stack is empty or
token has higher
precedence than top
stack element, then
push token onto stack,
otherwise, pop and
display top stack
element; then repeat
the comparison of
token with new top
stack item

get next token in infix
expression

Push it onto
the stack

convert infix to postfix: flow chart [5]

Pop and display stack
items until the stack is
empty

YES
end of infix expression

NO

display it

(+,-,*,/
)

operand

terminate

convert infix to postfix: [6]
stack.h

main.cpp

Assumption: every token is a non-space character

RPN.cpp

Exercise

• Implement function RPN and test it

• We assume that token is a non-space character in first
version of function RPN, remove this assumption,
consider token as an identify or integer or double.
for example:

(delta + 5)/z – y
3.75 * z / pi

• We only take binary operator in our example, how to
deal with unary operator, or in general, a function with N
arguments.
for example

max(add(x, y) + c, d)
5.0 + sin(7.2 * cos(y))

OutLine

• LIFO: from base-10 to base-2
• Array-based stack implementation
• Application 1: railroad switching yard
• Application 2: expression evaluation

- infix to postfix
- Reverse Polish Notation

Reverse Polish Notation: postfix order

• Precedence of multiplication is higher than addition, we need parenthesis to
guarantee execution order. However in the early 1950s, the Polish logician
Jan Lukasiewicz observed that parentheses are not necessary in postfix
notation, called RPN (Reverse Polish Notation).

• The Reverse Polish scheme was proposed by F. L. Bauer and E. W.
Dijkstra in the early 1960s to reduce computer memory access and utilize
the stack to evaluate expressions .

+

1 5

×

−

−

4 1

8

() ()()infix: 1 5 8 4 1+ × − −

: 15 841postfix + − −×
parenthesis free

Evaluate RPN expression [1]

×
+ −

1 5 8 −
4 1

1 5 8 4 1 + − − ×

1 5 6+ =

×
6 −

8 −
4 1

6 8 4 1 − − ×

4 1 3− =

6 8 3 − × ×
6 −

8 3
8 3 5− =

Evaluate RPN expression [2]

×
6 5

6 5 ×

6 5 30× =

30 30

• Scanned from left to right until an operator is found, then the last two
operands must be retrieved and combined.

• Order of operands satisfy Last-in, First-out, so we can use stack to store
operands and then evaluate RPN expression

Initialize an empty
stack of operands

switch(token)

1. Pop the top two values from the
stack (if the stack does not contain
two items, an error due to malformed
RPN expression has occurred)

2. Apply the operator to these two
values

3. Push the resulting value back onto
the stack

Push onto the stack

get next token in
RPN expression

Evaluate RPN expression: flow chart [3]

YES
end of infix expression

NO

+,-,*,/ operand

Only one value is on
the stack

terminate

Evaluate RPN expression [4]

expression stack comments

15 841+ − −×

Push 1 onto stacktop1

5 841+ − −×
Push 5 onto stacktop5

1

841+ − −×
pop 5, 1 from stack
and do addition1 5

top
1 5 6+ =

top Push 6 onto stack6

841− −×

top8 Push 8 onto stack
6

Evaluate RPN expression [5]
expression stack comments

41− −×
top

6
8
4 Push 4 onto stack

1− −×
Push 1 onto stacktop

8
4
1

6

pop 1, 4 from stack
and do subtraction

− −×
top8 4 1

6
4 1 3− = Push 3 onto stack

top
8
3

6

Evaluate RPN expression [5]
expression stack comments

−×
pop 3, 8 from stack
and do subtraction

top6 8 3

8 3 5− =
top5 Push 5 onto stack

6
×

pop 5, 6 from stack
and do multiplication

6 5
top

6 5 11× =
Push 11 onto stacktop11

Only one value on the stack, this
value is final result

Exercise
• Implement flow chart of evaluating RPN expression, where RPN

expression comes from function RPN we have discussed.
You can focus on binary operator first.

• Can you extend to unary operator and general function?

• Think about How does MATLAB do
when you type an expression. Can
you write a MATLAB?

• survey
-stack-oriented programming
language

- RPN calculator

