
Chapter 6 structures

Speaker: Lung-Sheng Chien

OutLine

• Basics of structures
- usage
- heterogeneous aggregation
- padding and alignment

• Structures and functions
• Arrays of structures
• Self-referential structure

Structure representation of 2D point [1]
point is called structure tag

()4,3pt =

()0,0

x and y in structure are called members

declare variable pt of type structure point, but
members x and y are not set.

Use dot operator . to access member x
of structure point

Initilize maxpt as x = 20 and y = 30
according to order of x and y in type
structure point

Size of structure point = sizeof(x) + sizeof(y)

Structure representation of 2D point [2]

?

?

?

0x0012ff7c

0x0012ff78

0x0012ff70

address content

maxpt.x

?

0x0012ff74 maxpt
maxpt.y

pt.x
pt

pt.y

按 F10

Unknown value since
we don’t set them

Structure representation of 2D point [3]

?

30

20

0x0012ff7c

0x0012ff78

address content

0x0012ff70
maxpt.x

0x0012ff74

pt.y

pt.x

maxpt.y

?

按 F10

Structure representation of 2D point [4]

address content

0x0012ff70

4

30

20 maxpt.x
0x0012ff74

maxpt.y
0x0012ff78

0x0012ff7c
pt.y

pt.x

?

按 F10

Structure representation of 2D point [5]

4

30

20

address content

0x0012ff70
maxpt.x

0x0012ff74
maxpt.y

0x0012ff78
pt.x

0x0012ff7c
3 pt.y

structure v.s. array [1]

address content

0x0012ff70

?

30

20 maxpt[0]
0x0012ff74

maxpt[1]
0x0012ff78

pt[0]
0x0012ff7c

? pt[1]

pt.x pt[0]

pt.y pt[1]

maxpt.x maxpt[0]

maxpt.y maxpt[1]

Question: why not use array?

structure v.s. array [2]
add a new field into structure

4

1

2

3

1. add a field, character string,
named name

2. add one more initilization
field, string copy is done by
compiler

3. Use strcpy to set name
field of pt

4. add one more output
filed

; is necessary

Advantage of structure: aggregation of heterogeneous data type

Question: How can you do when you use array to implement?

Padding and Alignment of structure [1]

address content

0x0012ff70
pt.x

0x0012ff74
pt.y

0x0012ff78 pt.name[0]

pt.name[1]

pt.name[2]

pt.name[3]
0x0012ff7c

pt.name[4]
pt.name[5]

0x0012ff80

size of structure point

!= 14 (4+4+6) Two bytes Padding by compiler

Padding and Alignment of structure [2]

• The padding and alignment of members of structures and whether a
bit field can straddle a storage-unit boundary.

• Structure members are stored sequentially in the order in which they
are declared: the first member has the lowest memory address and
the last member the highest

• Every data object has an alignment-requirement. For structures, the
alignment-requirement is the largest alignment-requirement of its
members. Every object is allocated an offset so that
offset % alignment-requirement == 0

• When you use the /Zp[n] option, where n is 1, 2, 4, 8, or 16, each
structure member after the first is stored on byte boundaries that are
either the alignment requirement of the field or the packing size (n),
default is 4.

Structure S3

Structure S2

Structure S1

Padding and Alignment of structure [3]

Example from MSDN Library

Padding and Alignment of structure [4]

suggested alignment for the scalar members of unions and structures

from MSDN Library

Padding and Alignment of structure [5]

alignment rules

• The alignment of an array is the same as the alignment of one of the
elements of the array.

• The alignment of the beginning of a structure is the maximum
alignment of any individual member. Each member within the
structure must be placed at its proper alignment as defined in the
previous table, which may require implicit internal padding,
depending on the previous member.

• Structure size must be an integral multiple of its alignment.

• It is possible to align data in such a way as to be greater than the
alignment requirements as long as the previous rules are maintained.

• An individual compiler may adjust the packing of a structure for size
reasons.

1. pt->x is equivalent to (*p).x

2. *p.x is equivalent to *(p.x)
since dot operator has higher
precedence than dereference
operator

pointer to structure

2

1

Nested structure

()2 4,3pt =

()1 0,0pt =

screen

screen.pt1.x is equivalent to (screen.pt1).x

Since dot operator has left-right assciativity

and screen.pt1 is alos a (point) structure

OutLine

• Basics of structures
• Structures and functions
• Arrays of structures
• Self-referential structure

3

1

2

Function returns structure [1]

1. declare function makePoint which
accepts two integer and return a
structure

3. assign return-value (structure temp)
to structure screen.pt1. Such
assignment is done by compiler, it does
memory copy.

2. structure temp is a local variable, x of temp.x
is a field name but x itself is also a local variable,
both x’s have different meanings.

Function returns structure [2]

按 F11 進入 makePoint

Function returns structure [3]

按 F10 二次, assign x and y to temp

按 F10 離開 makePoint

Function returns structure [4]

按 F10 作 copy 動作

update screen.pt1

Header file (標頭檔) [1]

main.cpp makePoint.cpp

Question: can we eliminate duplication of
structure definition?

Header file (標頭檔) [2]

main.cpp

1. 選擇 header file

2. 檔名 point_rect.h

makePoint.cpp

point_rect.h

Header file (標頭檔): typedef [3]

point_rect.h

symbol pointType is equivalent to struct point

main.cpp

makePoint.cpp

OutLine

• Basics of structures
• Structures and functions
• Arrays of structures

- initialization
- linear search and binary search

• Self-referential structure

Array of structures [1]

1. number of elements in array keytab is determined by compiler

1

3

2 2. Since compiler know number of elements
in array keytab, hence NKEYS can be
determined by coompiler

3. keytab[i].word is equivalent to (keytab[i]).word

since [] and . Have the same precedence and
associativity is left-right

Array of structures [2]

address content

0x00424a30

0x00422114

0

0x0042211c keytab[0].word
0x00424a34

keytab[0].count

0x00424a38
keytab[1].word

0x00424a3c

0 keytab[1].count
0x00424a40

0x00422110

0

keytab[2].word

0x00424a44keytab is unsorted array under lexicographic order
keytab[2].count

Array of structures [3]

0x00422110 i

n
t

\0

address content

0x00424a30

0x00422114

0

0x0042211c keytab[0].word
0x00424a34

0

keytab[0].count

keytab[1].word

keytab[1].count

0x00424a38

0x00424a3c

0x00422110

0

keytab[2].word

keytab[2].count

a0x0042211c

u
t

o

\0
0x00422120

l

e
\0

d

o
u

b
0x00422118

0x00422114

0x00424a40

0x00424a44

keytab[i].word is only a pointer, we can use
quick sort to sort them.

Array of structures [4]

sorted keytab

Array of structures: linear search [5]

() ()
0 if

: strcmp , return 0 if
0 if

s t
protocol s t s t

s t

< <⎧
⎪= =⎨
⎪> >⎩

協定

main.cpp

linear_search.cpp

Observation of linear search
• Data type of key and base are immaterial, we only need to

provide comparison operator. In other words, framework of
linear search is independent of comparison operation.

• We have two choices for “return location of base[j] ”, one is
array index and the other is address of base[j] , which one is
better?

pseudocode

[]

[]
[]

Given array 0 : 1 and a search
and may have different data type
 0 :1: 1

 if then

 return location of

return not-found

base n key
key base
for j n

base j key

base j
endfor

−

= −

==

User-defined comparison operation

drawback of current version

1. Explicitly specify type of key and type of base, this violates
observation “data type of key and base are immaterial”

2. Explicitly specify comparison operation strcmp, this violates
“comparison operator is independent of linear search”

3. Specify base[i].word, word is a
field binding to data type keyType,
this violates “data type of key and
base are immaterial”.

Besides, base[i] require data type of
base implicitly since compiler needs to
translate address of base[i] as
base+sizeof(keyType)*i , this violates
“data type of key and base are
immaterial”.

3

1

2

framework of linear search [1]

3

1

2

1. NOT explicitly specify type of key and type of base

2. NOT explicitly specify comparison operation strcmp

3. NOT specify base[i].word, also replace &base[i] by base+sizeof(keyType)*i

Question: why do we need character pointer a? Can we use base directly?

framework of linear search [2]

2

1

1

2
2

2

1. search key must be consistent with
keyval in comparison operator, say key
and keyval have the same data type,
pointer to content of search key

2. keytab[i] must be consistent with
*found_key, they must be the same type and
such type has sizeof(keyType) bytes

framework of binary search [1]

since “endfor” is not a keyword, under linear search algorithm, we
need to compare all keywords to reject “endfor”. We need another
efficient algorithm, binary search, which is the best.

framework of binary search [2]

mid = 16low = 0 high = 32key = “endfor”
keytab[0] keytab[16] keytab[31]

auto int while

“endfor” keytab[16] = “int”<

high = 16low = 0 mid = 8

keytab[0] keytab[8] keytab[16]

double int

“endfor” keytab[8] = “double”>

auto

low = 9 high = 16mid = 12

keytab[12] keytab[16]keytab[9]

floatelse

“endfor” keytab[12] = “float”<

int

framework of binary search [3]

mid = 10 high = 12low = 9
keytab[10] keytab[12]keytab[9]

enum floatelse

“endfor” keytab[10] = “enum”<

high = 10mid=9low = 9
keytab[10]keytab[9]keytab[9]

enumelseelse

“endfor” keytab[9] = “else”>

low=10 high = 10
keytab[9] keytab[10]

enumlow == high, not found enum

framework of binary search : standard library [4]

Page 253 in textbook, binary search algorithm is included in stadard C library,
stdlib.h

void* bsearch(const void *key, const void *base,

size_t n, size_t size,

int (*cmp)(const void *keyval, const void *datum))

Objective : bsearch seraches base[0],…, base[n-1] for an item that matches *key

Requirement : base must be in ascending order

() ()
0 if

: cmp , return 0 if
0 if

s t
protocol s t s t

s t

< <⎧
⎪∗ = =⎨
⎪> >⎩

協定

Return : pointer to a matching item or NULL if none exists

OutLine

• Basics of structures
• Structures and functions
• Arrays of structures
• Self-referential structure (linked list)

- formulation
- traversal
- de-allocation

Self-referential structure: linked list [1]

keytab[0] keytab[1] keytab[2] keytab[31]

auto

0

break

0

case while
contiguous (array)

0 0

keytab[0] keytab[1] keytab[2] keytab[31]

dis-contiguous

(Linked list)
auto

0

break case while

0 0 0

We need pointerHow to implement such logical link?

Self-referential structure: linked list [2]
keyList.h key.h

word

count
next

auto

0

break

0

case

0

while

0

char

0

Discontiguous (Linked list)

null

Question: How to write code to implment this graph?

Self-referential structure: linked list [3]

3

1

2

1. create an element of keyword “auto” and
set its address to keytabList

2. create an element of keyword “break” and set it
to be next element of keytabList

3. sweep list pointed by keytabList

Self-referential structure: linked list [4]

address content

address content 0x003749D0

0

auto\0

0x00374A18

0

break\0

0x00374A18

0x003749E0

0x003749E4

0x003749E8

word[16]

word[16]

count

next

0x0000000

0x00374A28
count

0x00374A2c
next

0x00374A30

Self-referential structure: linked list [5]

0x00000000 empty listkeytabList

unitEle

0

auto\0

0x003749D0

0x00000000

0x003749E0

0x003749E4

word[16]

count

next

0x003749D0

0x003749D0keytabList

0

auto\0

0x003749D0

0x00000000

0x003749E0
0x003749D0

word[16]
unitEle

count
0x003749E4

next

Self-referential structure: linked list [6]

0x00374A18

0

break\0

0x00374A18

0x0000000

unitEle

word[16]

0x00374A28
count

0x00374A2c
next

keytabList

0

break\0

0x00374A18

0x0000000

0x00374A28

0x00374A2c

word[16]

count

next

0

auto\0

0x003749D0

0x00374A18

0x003749E0

0x003749E4

0x003749D0

word[16]

count

next

Self-referential structure: traverse linked list [7]

0

auto\0

0x003749D0

0x00374A18

0x003749D0keytabList

0x003749E0
0x003749D0 word[16]elePtr

count
0x003749E4

next

elePtr = 0x003749D0 != 0

0x00374A18elePtr

Self-referential structure: traverse linked list [8]

0x00374A18

0

break\0

0x0000000

0x00374A28

0x00374A18 word[16]elePtr

count
elePtr = 0x00374A18 != 0 0x00374A2c

next

0x00000000elePtr

elePtr = 0x0000000 == 0, terminate

Self-referential structure: de-allocation [9]

prevElePtr

elePtr

free(prevElePtr)

elePtr

Self-referential structure: wrong de-allocation [10]

