Chapter 21 Cache

Speaker: Lung-Sheng Chien

Reference: [1] David A. Patterson and John L. Hennessy, Computer Organization & Design

[2] Bruce Jacob, Spencer W. Ng, David T. Wang, Memory Systems Cache,
DRAM, Disk

[3] Multiprocessor: Snooping Protocol,
www.cs.ucr.edu/~bhuyan/CS213/2004/LECTURES.ppt

[4] EEL 5708 High Performance Computer Architecture, Cache Coherency and
Snooping Protocol, classes.cecs.uct.edu/eel5708/ejnioui/mem_hierarchy.ppt

[5] Willian Stallings, Computer Organization and Architecture, 7th edition

[6] Intel 64 and |A-32 Architectures Software Developer’s Manual, volume 1:
Basic Architecture

[7] Intel 64 and |A-32 Architectures Optimization Reference Manual

OutLine

Basic of cache
- locality
- direct-mapped, fully associative, set associative

Cache coherence
False sharing
Summary

Basic logic gate

1. AND gate L2 [b lezab

oo
o
R O|O
P|IO|R|O
=|lO|O|O

2. OR gate T
c 0 1 1
b 1 0 1
1 1 1
3. inverter

0 i 0
d
4. multiplexer
a 0 0 a
c 1 b
b—1

Principle of locality

« Temporal locality (locality in time): if an item is referenced, it will tend to be
referenced again soon.

« Spatial locality (locality in space): if an item is referenced, items whose
addresses are close by will tend to be referenced soon.

« Algorithmic locality: traverse linked-list (may not be spatial locality)

A4 Multiply the two matrices together

for { ty = 0 ; ty < BLOCK SIZE ; ty++){ » for-loop is temporal locality
for | tx = 0 ; tx < BLOCK 3IEE ; tx++)i
Czsub = 0.0 ;
for (k = 0; k <« BLOCE 3IZE; ++k)4
Asub = As[tyl [k] » array is spatial locality
Esub = Bs[k][tx] :

Csub += Lsub * EBEsub ;
b
¢ = wBE ¥ BLOCE SIZE * by + BLOCE 3IZIE * hx;
Cle + wEB % ty + tx] += Csub;
VA4 for tx o
v/ for ty

Observation: temporal locality means that we don’t put all program into memory
whereas spatial locality means that we don'’t put all data into memory, hence we have
“Memory Hierarchy”

Memory Hierarchy

Memory technology Typical access time $ per MByte in 1997
SRAM (cache) 5-25 ns $100 - $250
DRAM (main memory) 60-120 ns $5- %10
Magnetic disk 10-20 ms $0.1-%0.2
Speed CPU Size Cost ($/bit)
fastest 1 cache [smallest highest
on chip v>
L2 cache
on chip ‘w
slowest Main memory [/ biggest lowest

Definition: If the data requested by processor appears in upper level, then this is called a
“hit” , otherwise, we call “miss”. Conventionally speaking, cache hit or cache miss

Definition: “Hit time” is the time to access upper level memory, including time needed to
determine whether the access is a hit or a miss.

Definition: “miss penalty’ is the time to replace a block in upper level with
corresponding block from lower level, plus the time to deliver this block to processor.

Basic of cache [1]

« Cache: a safe place for hiding or storing things

Direct-mapped cache: each memory location is mapped to exactly one location in cache
Mapping rule: (block address) modulo (number of cache block in the cache)

Main memory

0b00000
0b00001

0b00010

0b00011 cache

0b00100 0b000
0b00101 0b001
0b00110 0b010
0b00111 0b011
0b01000 0b100
ostes I o>
0b01010 0b110
0b01011 ob111
0b01100

0b01101

0b01110

0b01111

0b10000

0b10001

Observation: we only use 3 least significant bits to determine address.

Basic of cache [2]

Question 1: size of basic block of cache (also called cache line size)
Question 2:if data is in cache, how to know whether a requested word is in the cache or not?
Question 3: if data is not in cache, how do we know?

Address (showing bit position)

3130...1312 01
|
Tag ~._ 20 Basic block is a word (4 byte), since
each memory address binds a byte,
Index Valid Tag Data SO 4'byte reqUire 2 bits.
0
1 Use 10 bits to index address in cache,
2 Data otal number of block in the cache is
e A 1024
(] (] ([
B Tag contains the address information
1021 required to identify whether a word in
1022 the cache corresponding to the
1023 requested word.
S~ 20
v 32
(= Valid bit: indicates whether an entry

contains a valid address.
Hit C

Basic of cache

[3]
Configuration: Basic block of cache is word (4-byte), and cache has 4 blocks

Most significantbit 5 4 3 2 1 0
100|111

Least significant bit

v

—>
word
D BE—
tag

0b100000[33 0b010000[{7 0b000000 1
0b100001[34 0b010001 18 0b000001 > cache
0b100010[35 0b010010[19 0b000010 3 valid
0b100011[3¢ 0b010011[g 0b000011 4 tag
0b100100[37 0010100 o 0b000100 5 _ — dﬁtf‘
0b100101[3g 0010101 oo 00000101 6 index -
0b100110[39 0b010110[o3 0b000110 7 0000 | 1 00 4 | 3| 2 [1
—0b100111[4 0b010111[o4 06000111 8 0b01 | 1 00 s | 7 | 6 | 5
0b101000[41 0b011000[o5 0b001000 9 0b10 | 1 00 12 11 | 10 | 9
0b101001 42 0b011001 26 0b001001 10 Ob11 1 00 16 15 14 13
00101010 43 00011010 o7 0b001010[11
0b101011[44 0b011011[28 0b001011) 12 T word (4-byte)]
00101100 45 0b011100] o9 0b001100] 13
0b101101] 46 0b011101[3q 0001101 14
0b101110 47 O0b011110 31 0b001110 15
0b101111 48 0b011111[35 00011117 16

Basic of cache [4]

Question 4:is data with address 0b100111 in the cache?

tag word
+—> +—>
Most significantbit 5 4 3 2 1 0 Least significant bit

miss

A

11010 1 1 1
, cache
valid
ta

,_JL data

2 index — —-
0b00 | 4 00 4 | 3 | 2 | 1
0b01 ([1) 00 8 | 7|6 | 5
0b10 | + 00 12 11 10| 9
Ob11 | 1 00 16 | 15 | 14 | 13

word (4-byte)

Example of direct-mapped cache [1]

Initial state of cache

index [V | Tag | Data index [V | Tag | Data
000 0 000 0
001 0 001 0
010 0 1. Access 0b10110 010 0
011 0 » | 011 0
100 0 100 0
101 0 101 0
110 0 110 1 110 Memory(0b10110)
111 0 111 0
2. Access 0b11010 l

index | V | Tag | Data :

index |V | Tag | Data
000 0

000 0
001 0
010 1 | 11 M (0b11010) 001 0

emory
3. Access 0b10110 010 1 [11 | Memory(0b11010)
011 0 _
b 011 0

100 0

100 0
101 0

101 0
110 1 10 Memory(0b10110)

110 1 10 Memory(0b10110)
111 0

111 0

Example of direct-mapped cache

4. Access 0b10000

index |V | Tag | Data

000 0

001 0

010 1 11 Memory(0b11010)
011 0

100 0

101 0

110 1 10 Memory(0Ob10110)
111 0

index | V | Tag | Data

000 1 10 Memory(0Ob10000)
001 0

010 1 10 Memory(0b10010)
011 0 | 00 Memory(0b00011)
100 0

101 0

110 1 10 Memory(0b10110)
111 0

6. Access 0b10010

v

[2]

<
<

index | V | Tag | Data

000 1 10 Memory(0b10000)
001 0

010 1 11 Memory(0b11010)
011 0

100 0

101 0

110 1 10 Memory(0b10110)
111 0

5. Access 0b00011

index | V | Tag | Data

000 1 10 Memory(0b10000)
001 0

010 1 11 Memory(0b11010)
011 0 |00 Memory(0b00011)
100 0

101 0

110 1 10 Memory(0Ob10110)
111 0

Advantage of spatial locality

64kB cache with a word (4 byte) as block size

Address (showing bit position)

3130...17 16 01
offset
16 bits 32 bits
Valid Tag Data
1 Data
@ f P 16K
entries
v
. 16 32
()
\§
Hit (

[1]

for (]

paY

YA
v oS4 for i

for ([i = 0O;

Sum =
for (kK = 0:

C[1i * wB + 3] =
for]

i < hi; ++1)4

= 0; 3 < wB: ++731 1

0.0 ;

k < wik; ++kK) 1
a = A[i ¥ wh + Kk]:

bh = B[k * wB + 1j]:

sum += &a ¥ b

for k

Sum;

To take advantage of spatial locality,
we want to have a cache block that is

larger than one

word in length, why?

When a miss occurs, we will fetch
multiple words that are adjacent and
carry a high probability of being

needed shortly.

Advantage of spatial locality [2]
64kB cache using 4 words (16 byte) blocks

3130...17 16 32 01
Ta ~J_16 Byte offset
g ™~ Block offset
M‘ Data 128 bits ‘
Valid Tag g
4 Data
[] o [] [] 9 [] 4K
entries
~ 16 32 32 32 32 32
(=)
. v \ 4 2
HJt_C (I\/:ux):

1. Total number of blocks in cache is 4K, not 16K
2. We need signal block offset (2 bits) to determine which word we need
3. Mapping rule: (block address) modulo (number of cache block in the cache)

Advantage of spatial locality

Exercise 1: consider a cache with 64 blocks and a block size of 16 bytes. What block

number does byte address 1203 map to (assume 12-bit address)?
1203=4x16>+11x16+3 =0x4B3=060100 1011 0011

1 mask to 16 bytes (a block)
1203 and FF0=0x4B3- FF0=0x4B0

2 Find block address

0x4B0>>4=0x4B="75
3 mapping rule: (block address) modulo (number of cache block in the cache)

75=11(mod 64)
tag

+—>

Most significant bit 11

0

1

tag

A

109 8 7 6 5 4 3
ojlo|1|o|1|1]0
data

A~

Least significant bit

1] o

| Mem(4BC) | Mem(4B8) | Mem(4B4) | Mem(4B0) |

Advantage of spatial locality [4]

Miss rate

Black size (bytes) m 1HKB
& 8 KB
miss rate versus block size ® 16 KB
#+ 54 KB
& 256 KB

Exercise 2: take a simple for-loop, discuss lager block size can reduce miss rate

Question 5: why does miss rate increase when block size is more than 64 bytes?

Question 6: what is trend of mss penalty when block size is getting larger?

(miss penalty is determined by the time required to fetch the block from the next lower
level of memory hierarchy and load it into the cache. The time to fetch the block includes
1. latency to first word and 2. transfer time for the rest of the block)

Assumption :

Memory system versus cache [1]

1 clock cycle to send the address (Cache > DRAM)

15 clock cycles for each DRAM access initiated

1 clock cycle to send a word of data (depend on width of the bus)
Cache block is 4-words

CPU

]

\ 7/

Cache

T[]

Memory

(DRAM)

one-word-wide memory organization

miss penalty =1+4x15+4x1 =65 clock cycles

send address

initiate DRAM 4 times, each time for one word

T

v

send a word through bus one by one since
width of bus is one-word

4x4

Number of bytes transferred per clock cycle for a single miss = —— =0.25

65

CPU

v

Multiplexor

Memory system versus cache [2]

miss penalty =1 + 15+ 1 =17 clock cycles

send address

A

4

T

initiate DRAM one time and fetch 4 words

Cache

Bus

Memory
(DRAM)

4-word-wide memory organization

A

4

send 4 words through bus since width of bus is 4-words

4x4

Number of bytes transferred per clock cycle for a single miss = 17 0.94

Question 7: what is drawback of wide memory organization ?

Memory system versus cache [3]

miss penalty =1 + 15 + 4x1 =20 clock cycles

CPU
send address
initiate DRAM one time and fetch 4 words
Cache
send one words through bus one by one since width of
] Bus [bus is one word.

Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3

interleaved memory organization

4x4

Number of bytes transferred per clock cycle for a single miss = 0 0.8

Question 8: what is difference between wide memory organization and interleaved
memory organization ?

Two level decoder of DRAM [3]

1 row access chooses one row

Row i s and ac;’uvates corresponding
decoder array word line
11-t0-2048

2 contents of all the columns in

, the active row are stored in a
Address[10-0] =—e Column latches set of latches (page mOde)
. 3 column access selects data
—l-(Mux)
from the column latches
row access uses 11 bits to select a row
Dout
Total access time to Column access
Year introduced Ghlp size $ per MB a new rucholumn time to existing row
1980 _ 64 Kbit 1500 250 ns 150 ns
.1983 o 256_Hb|t & 500 185 ns . 100 ns
1985 | 1 mbit 200 | 135 ns ' 40 ns
1989 | 4 mbit | 50 | 110 ns 40 ns
1992 16 Mhbit 15 90 ns 30 ns

1996 . 64_Mb_itj 10 ~ 60ns 20 ns

Improve cache performance

* Reduce miss rate:
reduce probability that two different memory blocks will contend for the same cache

location.
* Reduce miss penalty:

add an additional level of hierarchy, say L1 cache, L2 cache and L3 cache.
Direct-mapped cache: each memory location is mapped to exactly one location in cache
Mapping rule: (block address) modulo (number of cache block in the cache)

Fully-associative cache: each block in memory may be associated with any entry in the
cache.

Mapping rule: exhaust search each entry in cache to find an empty entry

set-associative cache
Direct-mapped cache * > Fully-associative cache

Index is regular Index is at random

Example of fully-associative cache

Initial state of cache

index

<

Tag

Data

000

001

010

011

1. Access 0b10110

100

101

110

111

O|lOo|]Oo|J|O0Oo|]Oo|O|O|O

index

Tag

Data

000

10

001

11

Memory(Ob11010)

010

011

3. Access 0b10110

v

[1]

index | V | Tag | Data
000 1 10 Memory(0b10110)
001 0
010 0
011 0
100 0
101 0
110 0
111 0
2. Access 0b11010
Y
index |V | Tag | Data
000 1 10 Memory(0b10110)
001 1] 11 Memory(0b11010)
010

100

101

110

111

O|lOo|]Oo|O|]O|O

d
<

011

100

101

110

111

oO|lo|lo|Oo|O |O

Example of fully-associative cache

[2]

index |V | Tag | Data index | V | Tag | Data
000 1 |10 Memory(0b10110) 000 1 110 Memory(0b10110)
001 1] 11 Memory(0b11010) 001 1] 11 Memory(0b11010)
010 0 4. Access 0b10000 010 1 10 Memory(0b10000)
011 0 > 011 0
100 |0 100 |0
101 0 101 0
110 0 110 0
111 0 111 0
5. Access 0b00011

index | V | Tag | Data
000 |1 |10 | Memory(0b10110) index | V | Tag | Data
001 |1 [11 | Memory(b11010) 000 |1 |10 | Memory(0b10110)
010 |1 [10 [memoryprooony | o o oo 2:’; 1 1; memory(0b11010)
011 1 |00 | Memory(obooot1) | emory(0b10000)
100 |1 [10 | Memory(obtooto) | 011 1 _[00 | Memory(0b00O0TT)
101 |0 100 |0
10 |0 101 |0
11 |0 110 |0

0

111

set-associative cache

One-way set associative Two-way set associative

(direct mapped) Set Tag Data Tag Data

Block Tag Data 0

0 1

1 2

2 3

3

4 four-way set associative

5 Set Tag Data Tag Data Tag Data Tag Data
6 0

/ 1

eight-way set associative (fully-associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

A set-associative cache with nlocations for a block is called an n-way set-associative cache

Mapping rule: (block address) modulo (number of sets in the cache)

Associativity in cache [1]

Example: there are three small caches, each consisting of 4 one-word blocks. One cache is
fully-associative, a second is two-way set associative and the third is direct mapped. Find
the number of misses for each cache organization given the following sequence of block

addresses: 0, 8, 0, 6, 8.
Two-way set associative

One-way set associative Set Tag Data Tag Data
(direct mapped) 0
Block Tag Data 1
0
’ fully-associative
2 Tag Data Tag Data Tag Data Tag Data
3

1 Direct-mapped cache : (block address) modulo (number of block in the cache)

Block address Cache block

0 (O modulo 4) =0
6 (6 modulo 4) = 2
8 (8 modulo 4) =0

Associativity in cache

Address of memory Hit or Contents of cache blocks after reference
block accessed miss 1 o

0 Miss Memory|[0]

8 Miss Memory[8]

0 Miss Memory|[0]

6 Miss Memory[0] Memory[6]

8 Miss Memory|[8] Memory|[6]

2 two-way associative cache : (block address) modulo (number of sets in the cache)

Block address Cache set

0 (O modulo 2) =0
6 (6 modulo 2) =0
8 (8 modulo 2) =0

Replace least recently
used block

Address of memory Hit or Contents of cache blocks after reference
block accessed miss Set 0 Set 0 Set 1 Set 1
0 Miss Memory|[0]
8 Miss Memory|[0] Memory[8]
0 Hit Memory|[0] Memory|[8]
6 Miss Memory|[0] Memory|[6]
8 Miss Memory[8] Memory|[6]

Associativity in cache [3]

3 Fully associative cache : exhaust search for empty entry

Address of memory Hit or Contents of cache blocks after reference
B EERERREE == Block 0 Block 1 Block 2 Block 3
0 Miss Memory|[0]
8 Miss Memory[0] Memory[8]
0 Hit Memory|[0] Memory([8]
6 Miss Memory[0] Memory([8] Memory|6]
8 Hit Memory[0] Memory|[8] Memory|[6]

Number of Miss : Direct-mapped (5) > two-way associative (4) > fully associative (3)

Question 9: what is optimal number of miss in this example?

Question 10: How about if we have 8 blocks in the cache? How about 16 blocks in the
cache?

Implementation of set-associative cache

3130...1110 10
Tag \\22
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2

o (| (] (| [] (] L] (] (] L])
253
254
255

~N
/V v A\ 4 V\22

32

Hit

g - H 4-t0-1 Mux >

Data

The tag of every cache block with appropriate set is checked to see if it matches the block
address. In order to speedup comparison, we use 4 comparators to do in parallel

Reduce miss penalty using multi-level caches [1]

* Reduce miss rate:
reduce probability that two different memory blocks will contend for the same cache

location.

* Reduce miss penalty:
add an additional level o hierarchy, say L1 cache, L2 cache and L3 cache.

CPI : average clock cycles per instruction

CPU time = instruction count x CPI x clock cycle time

Components of performance Units of measure

CPU execution time for a program Seconds for the program
Instruction count Instructions executed for the program
Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle
1 R/W 2 miss 3 miss
CPU | L1 cache "| L2 cache | DRAM

~__ — —

4 RW
6 R/W D RW

Reduce miss penalty using multi-level caches [2]

Example: suppose a processor (clock rate 500MHz) with a base CPI of 1.0, assuming all
references hit in the L1 cache. Assume a main memory access time of 200ns, including
all the miss handling. Suppose miss rate per instruction at L1 cache is 5%. How much
faster will the machine be if we add a L2 cache that has 20 ns access time for either a hit
or a miss and is large enough to reduce miss rate to main memory to 2%?

500MHz _
R/W Miss rate 5 %

CPU > L1 cache

~_ —

Hit rate 95 % R/W need time 200ns

A 4

DRAM

1 500MHz - 2ns / clock cycle

2 Miss penalty to main memory = 200ns / 2ns = 100 clock cycles (CPU clock cycle)

3 The effective CPI with L1 cache is given by

Total CPI = base CPI + memory-stall cycles per instruction = 1.0 + 5% x 100 = 6.0

500MHz

R/W Miss rate 5 % Miss rate 2 %
CPU > L1 cache L2 cache

A\ 4

DRAM

A 4

.

R/W need time 10ns R/W need time 200ns

Reduce miss penalty using multi-level caches [3]

500MHz _ _
R/W Miss rate 5 % Miss rate 2 %

A 4
A 4

CPU >| L1 cache L2 cache DRAM

Pl

R/W need time 10ns R/W need time 200ns

4 Miss penalty of L1 cache for an access to L2 cache = 20ns / 2ns = 10 clock cycles

5 L1 cache

hit rate 9?7 wis rate 5 %

L2 cache

hit rate ?:V N/Iiss rate 2 %

Total CPI = 1.0 + stalls per instruction due to L1 cache miss and L2 cache hit stalls +
stalls per instruction due to L1 cache miss and L2 cache miss

=1+ (%5-%2) x 10 +2% x (10+100)=1+0.3+2.2=3.5

6 The machine with L2 cache is faster by 6.0/3.5=1.7

Remark: L1 cache focus on “hit time” to yield short clock cycle whereas L2 cache focus on “miss
rate” to reduce penal of long memory access time.

OutLine

Basic of cache

Cache coherence

- simple snooping protocol
- MESI

False sharing
Summary

Write policy in the cache

« Write-though: the information is written to both the block in cache and block in main
memory.

« Write-back: information is only written to the block in cache. The modified block is
written to main memory only when it is replaced.

Advantage of write-back

» Individual words can be written by the processor in the cache level, fast!
« Multiple writes within a block requires only one write to main memory

 When blocks are written back, the system can make effective use of a high
bandwidth transfer.

disadvantage of write-back

Interaction with other processors when RAW (Read after Write) hazard occurs, say
other processor will read the incorrect data in its own cache.

Advantage of write-through

Misses are simpler and cheaper because they never require a block in cache to be
written to main memory.

Easy to implement than write-back, a write-through cache only needs a write buffer.

disadvantage of write-through
» Cost since write to main memory is very slow

Consistency management in cache

Keep the cache consistent with itself: avoid two copies of a single item in different
places of the cache.

Keep the cache consistent with the backing store (main memory): solve RAW (Read
after Write) hazard

- write-through policy

- write-back policy

Keep the cache consistent with other caches

- L1 cache versus L2 cache in the same processor
- L1 cache versus L1 cache in different processors
- L1 cache versus L2 cache in different processors
- L2 cache versus L2 cache in different processors
two policies: inclusion or exclusion

CPU E'>
L1 cache E

on chip
'> Inclusion: L1 cache < L2 cache < DRAM (main memory)

~

Main memory D/

What Does Coherency Mean?

« Informally:

— “Any read must return the most recent write”

— Too strict and too difficult to implement
« Better:

— “Any write must eventually be seen by a read”

— All writes are seen in proper order (“serialization”)
« Two rules to ensure this:

— “If P writes x and P1 reads it, P’s write will be seen by P1 if the
read and write are sufficiently far apart”

— Writes to a single location are serialized:
seen in one order

» |Latest write will be seen

« Otherwise could see writes in illogical order
(could see older value after a newer value)

Potential Hardware Coherency Solutions

« Snooping Solution (Snoopy Bus):
— Send all requests for data to all processors
— Processors snoop to see if they have a copy and respond accordingly
— Requires broadcast, since caching information is at processors
— Works well with bus (natural broadcast medium)
— Dominates for small scale machines (most of the market)

« Directory-Based Schemes
— Keep track of what is being shared in one centralized place

— Distributed memory => distributed directory for scalability
(avoids bottlenecks)

— Send point-to-point requests to processors via network
— Scales better than Snooping
— Actually existed BEFORE Snooping-based schemes

Cache coherency in multi-processor: snooping protocol [1]

All cache controllers monitor (snoop) on the bus to determine whether or not
they have a copy of the shared block

Maintaining coherency has two components: read and write

- read: not a problem with multiple copies

- write: a processor must have exclusive access to write a word, so all processors
must get new values after a write, say we must avoid RAW hazard

The consequence of a write to shared data is either
- to invalidate all other copies or
- to update the shared copies with the value being written

Processor Processor e Processor

F 9 F 3 9

v v k A
Snoop b Cache tag Snoop Cache tag . Snoop Cache tag
tag and data tag and data tag and data

'y 1r Fy F 3 Y g

4 1} w k 4 L r

Single bus
F 1 b
w A
Memaory /0

Snoop tag is used to handle snoop requests

Cache coherency in multi-processor: snooping protocol [2]

/ Read hit : normal read

/

» Read miss : all caches check to see if they have a copy of the requested
block and then supply data to the cache that missed

write miss / hit : all caches check to see if they have a copy of the requested
block and then either invalidating or updating their copy

Snooping protocols are of two types

Write-invalidate: similar to write-back policy (commercial used)
- multiple readers, single writer
- write to shared data: an invalidate signal is sent to all caches which snoop and
invalidate any copies.
- Read miss:
(1) write-through: memory is always up-to-date
(2) write-back: snoop in caches to find most recent copy
Write-update: similar to write-through
- writing processor broadcasts the new data over the bus, then all copies are updated
with the new value. This would consume much bus bandwidth.

Write-invalidation protocol based on write-back policy. Each cache block has three states

Shared (Read only): this cache block is clean in all caches and up-to-date in
memory, multiple read is allowed.

Exclusive (Read/Write): this cache block is dirty in exactly one cache.
Invalid: this cache block does not have valid data

Simple snooping protocol [1]

color: bus signal, including read miss, write miss

color: CPU write write miss | GPU read hit !

color: CPU read

shared

|
i lace read miss on bus
Invalid P (Read only)

I CPU write, place write
| miss on bus

CPU read miss,
Write-back data
place read miss oA bus

—_—— e —— ——— —_—— e —

T

I CPU write,
| place write miss on bus

exclusive
(Read/Write) e
I read miss,

|
|
| Write-back data |

|
b

CPU read hit
CPU write hit

—_——— e —

I
| CPU write miss, |
| write-back data, |
| place write miss onbus |

—_—— e

. K \
I CPU read,

——

CPU read miss, |
place read miss on bus |

Simple snooping protocol [2]

Cache coherence mechanism receives requests from both the processor and the bus and responds to
these based on the type of request, state of cache block and hit/miss

State of source Request Function and explanation
cache block
invalid processor | Read miss place read miss on bus
processor | Write miss place write miss on bus
processor | Read hit Read data in cache
processor | Read miss Address conflict miss: place read miss on bus
shared processor | Write hit Place write miss on bus since data is modified and then other copies are
not valid
processor | Write miss Address conflict miss: place write miss on bus
bus Read miss No action: allow memory to service read miss
bus Write miss Attempt to rite shared block: invalidate the block (go to invalid state)
processor | Read hit Read data in cache
processor | Read miss Address conflict miss: write back block, then place read miss on bus
processor | Write hit Write data in cache
exclusive processor | Write miss Address conflict miss: write back block, then place write miss on bus
bus Read miss Attempt to shared data: place cache block on bus and change state to
shared
bus Write miss Attempt to write block that is exclusive elsewhere: write back the cache
block and make its state invalid

Example of state sequence [1]

Processor 1 Processor 2 Bus Memory
P1 P2 Bus Memory
step State | Addr | Value | State | Addr | Value | Action | Proc. | Addr | Value | Addr | Value
Invalid Invalid
P1: write 10 to A1
P1: read A1
P2: read A1
P2: write 20 to A1
P1: write 40 to A2
Assumption
1. Initial cache state is invalid
2. A1 and A2 map to same cache block P1 P2
but A1 is not A2
index | V | Tag | Data index [V | Tag | Data
? ? ? ?
P1 P2 0 / / 0 0 / /

bus

Example of state sequence [2]

P1 P2 Bus Memory
step State Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value

P1: write 10 to A1 invalid

P1: read A1

P2: read A1

P2: write 20 to A1

P1: write 40 to A2

P1 e, : P2

—_—_————— e —

i r
Invalid | CPU read, put

read miss on bus : . ,
Shtabliialicn Write miss signal on bus does not affect P2

shared

T == — —

S I CPU write, put 1

i 2 | | write miss on bus |

o< 1 _____

: R 8 I - -

I £ Q| | read miss,

22, | write-back d P1 -

SR | T
T T T T T T 1 - D . YRE; 5
"CPU write, put | index | V | Tag | Data index ag | Data
| write miss on bus | 0 1 | A1 10 0 0 |2 ”

CPU read hit) Wiite miss” bus

CPU write hit

Example of state sequence [3]

P1 P2 Bus Memory
step State | Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
P1: write 10 to A1 Excl Al 10 invalid WrMs | P1 Al
P1: read A1 Excl Al 10 invalid
P2: read A1
P2: write 20 to A1
P1: write 40 to A2
__________ P2
r a
P1 . . I CPU read hit—
write miss '-———————- -
. r- - TT—7o
Invalid) | CPUread,put | | shared
| read miss on bus |
ITTTTA ————————— |
3| | CPU write, put |
S| | Lyerite miss on bus P1 P2
WX | ____________
2 g r , y
EQI | read miss,
22 | write-back d index | V | Tag | Data index | V | Tag | Data
p— e I ___________
__;_i' 0 1 A1l 10 0 0o |7 ?
____________ :
| PU write, put |
| Wwrite miss on bus | bus

CPU read hit
CPU write hit

Example of state sequence [3]

P1 P2 Bus Memory
step State | Addr | Value | State | Addr | Value | Action | Proc. | Addr | Value | Addr | Value
P1: write 10 to A1 Excl Al 10 invalid WrMs | P1 Al
P1: read A1 Excl Al 10 invalid
P2: read A1 share | A1 RdMs | P2 Al
P2: write 20 to A1
P1: write 40 to A2
__________ P1
r a
P2 . . I CPU read hit—
write miss '——————-——— -
Invalid | CPU read, put 1
L read miss on bus |
I~ T T e e
| X | : CPU write, put : P P2
9 | write miss on bus
I -E | L ——
39| S index | V | Tag | Data index | V | Tag | Data
4 | read miss, 0 1 [A1 |10 0 BERE
| T E| | write-back ddta
EEW | T
A== ! <«——Ppys . >
CPU write, put ! read miss

Q/ CPU

CPU

read hit
write hit

|
L

| . .
write miss on bus

P2 has no A1, so it issues “read miss” signal to P1, then

P1 can reply its data to P2

Example of state sequence [4]

P1 P2 Bus Memory
step State | Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
P1: read A1 Excl Al 10 invalid
P2: read A1 share | A1 RdMs | P2 Al
shared | A1 10 WrBk Al 10
P2: write 20 to A1
P1: write 40 to A2
P1 e, : P2

/u
=
)
S
=
%)
|
1O
| O
| C
' 3
Q
o
| 5
=3

j

CPU read, put :
read miss on bus |

Invalid

I~ _
x| : CPU write, put : P P2
| Q| . .
2 | write miss on bus |
I o | L —— |
39| . index | V | Tag | Data index | V | Tag | Data
E21 | Treadmiss, 0 1 | A1 |10 0 EERE
| tE Lwrite-back
L = F —— write-back
A= 1 bus > >
| CPU write, put | 72 (A1.10)
| write miss on bus JI
P1 write (A1,10) back to DRAM DR,X\M
Q/ CPU read hit

CPU write hit

Example of state sequence [5]

P1 P2 Bus Memory
step State Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
P1: read A1 Excl Al 10 invalid
P2: read A1 share | A1 RdMs | P2 At
Shared | A1 10 WrBk | P1 Al 10 Al 10
Share | Al 10 RdDa | P2 Al 10 10
P2: write 20 to A1
P1: write 40 to A2
P1 P2 P1 P2
index | V | Tag | Data index [V | Tag | Data
0 A1l 10 0 1 | A1 10
*

P1 and P2 are all in state shared, this means that (A1, 10) is shared by two processors and both
processors can read (A1,10) at the same time from their own cache without any communication.

Example of state sequence [6]

P1 P2 Bus Memory
step State | Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
P2: read A1 share | A1 RdMs | P2 Al
Shared | A1 10 WrBk P1 Al 10 Al 10
share | A1 10 RdDa | P2 Al 10 10
P2: write 20 to A1 excl Al 20 WrMs | P2 Al 10
P1: write 40 to A2
P2 : | CPU read hltg—‘7 P1
write miss '—————————
N\
Invalid | CPU read, put :
| read miss on bus |
T e —————
| % | CPU write, put P1 P2
9 | write miss on bus |
I o] | L ——
L 2S ! ,)
£ g = ————— index | V | Tag | Data index | V | Tag | Data
e | read miss,
g g | write-back ddta 0 1 A 10 0 1 | A1 20
R N it
\ 4 — — —
CPU write, put Write-miss

CPU
CPU

read hit
write hit

|. write miss on bus J

P2 issues signal “write-miss” to P1, then P1 knows that
(A1, 10) is not valid. Then P2 update value of A1 to 20.

Example of state sequence [7]

P1 P2 Bus Memory
step State Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
Shared | A1 10 WrBk P1 Al 10 Al 10
share | A1 10 RdDa | P2 Al 10 10
P2: write 20 to A1 excl Al 20 WrMs | P2 Al 10
Invalid excl 10
P1: write 40 to A2
P1 " GPU read hit ’ P2

CPU read, put :

| read miss on bus |
L — e —— —_———

Invalid) |

—— e A | e —
| | cPuwite put | P1 P2
| 8 | ILwrite miss on bus
| o
|
i 3 'é | [=TT T index | V [Tag | Data index [V | Tag | Data
| E O | read miss, Y 1 1 .
o9 | write-back 0 0 0 0
Esy | | T o/~ A
=3 -
_____ N rite-miss
CPU write, put | +«——bus

write miss on bus JI

P1 set (A1,10) as invalid, then this data cannot be

used any more
Q/ CPU read hit y

CPU write hit

Example of state sequence [8]

P1 P2 Bus Memory
step State Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
Shared | A1 10 WrBk P1 Al 10 Al 10
share | A1 10 RdDa | P2 Al 10 10
P2: write 20 to A1 excl Al 20 WrMs | P2 Al 10
Invalid excl 10
P1: write 40 to A2
P1 " GPU read hit ’ P2

CPU read, put :

| read miss on bus |
L — e —— —_———

Invalid) |

- A | e —
| | cPuwite put | P1 P2
| 8 | ILwrite miss on bus
| o
i 3 'é i [=TT T index | V [Tag | Data index [V | Tag | Data
| E O | read miss, . Y = . 1 p
o9 | write-back
Esy | | T o/~ A
=3 -
_____ N rite-miss
CPU write, put | +«——bus

write miss on bus JI

P1 set (A1,10) as invalid, then this data cannot be

: used any more
CPU read hit

CPU write hit

Example of state sequence [9]

P1 P2 Bus Memory
step State Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
shared | A1 10 WrBk P1 Al 10 Al 10
share | A1 10 RdDa | P2 Al 10 10
P2: write 20 to A1 excl Al 20 WrMs | P2 Al 10
Invalid excl 10
P1: write 40 to A2 excl A2 40 WrMs | P1 A2
__________ P2
r a
P1 | CPU read hit—
write miss '-———-———— -
Invalid : CPU read, put :
| read miss on bus |
N F T P1 P2
=~ ~ 1 P '|
B I CPU write, put
g | write miss on bus | : :
5 index | V | Tag | Data index | V | Tag | Data
|
lgél [T T T T 0 1 | A2 40 0 1 | A1 20
' E S | read miss,
o o | write-back
SEV| | T o~ iy >
'__;_%J Write-miss ouS

___________ 1

CPU write, put |

write miss on bus JI

CPU read hit

P1 issues signal “write-miss” to P2, then P2 knows that
(A1, 20) is not valid. Then P2 must write (A1,20) back to

DRAM and then reset cache block to (A2,40)

CPU write hit

Example of state sequence [10]

P1 P2 Bus Memory
step State | Addr | Value | State Addr | Value | Action | Proc. | Addr | Value | Addr | Value
share | A1 10 RdDa | P2 Al 10 10
P2: write 20 to A1 excl Al 20 WrMs | P2 Al 10
Invalid excl 10
P1: write 40 to A2 excl A2 40 WrMs | P1 A2
excl invalid WrBk | P2 Al 20 A1 20
__________ P1
r a
P2 | CPU read hit—
write miss '-———-———— -
Invalid : CPU read, put :
| read miss on bus |
— P P2
I _:' : CPU write, put :
8 I | write miss on bus : :
I re b ——————— index | V | Tag | Data index | V | Tag | Data
|£'§I Z 0 1 | A2 40 0 0 | A1 20
E Qo I | read miss,
I L0 ILwrite-back Write-back
LE =\ 7 bus «— —»
—_— s |
| CPU le|te, put : (A1, 20)
write miss on bus JI
_____________ v
DRAM

CPU read hit
CPU write hit

Finite state controller for a simple snooping cache

[,
| Bus available, place
________ | read miss on bus

Invalid | '-——————— pending
"\ read /<

shared
(Read only)

|
I Bus available | I_(EF_)L_J Ie_a_d _nilfs__}
| write-back block

: Bus available |
| write-back biock |

—_—— e —— — —————

I Bus available

) I write-back block
pendng \ ,/ N\ —————-e\ | |rmmmmmmmmm——s
write-back 2 I Bus available

pending | write-back block
write-back 3} ‘-*-——————————-—--

pending
write-back 1

pending
write miss

I Bus available, place
| write miss on bus

exclusive
(Read/Write)

pendmg

CPU read hit
CPU write hit

MESI Protocol (Intel 64 and I1A-32 architecture)

» Modified: The line in the cache has been modified (different from main memory)
and is available only in this cache since we only accept multiple read, single write

« Exclusive : the line in the cache is the same as that in main memory and is not
present in any other cache.

« Shared : the line in the cache is the same as that in main memory and may be

present in another cache. This supports multiple read.

 Invalid: the line in the cache does not contains valid data.

valid

Invalid

Same as main memory <
Different from main memory <

One copy (Exclusive)

More than one copy (Shared)

One copy (Modified)

M@aﬁ@opy

Modified Exclusive Shared Invalid
This cache line valid? Yes Yes Yes No
The memory copy is out of date valid valid
Copies exist in other caches? No No Maybe Maybe

A write to this line

Does not go to
bus

Does not go to
bus

Goes to bus and
updates cache

Goes directly to
bus

Read miss [1]

When P1 has a read miss, then it initiates a memory read to read the line in main
memory (or other cache). So P17 inserts a read miss signal on bus that alerts
other processors.

Case 1: If P2 has a clean copy of the line in the exclusive state, it returns a signal
indicating that it shares this line. And then P2 transitions state from exclusive to
shared since data is shared by P71 and P2. P1 reads the line from bus and
transitions state from invalid to shared.

P1 P2

Invalid | [gpy read, put |

read miss, |
| put data on bus |
e o o — —— -

Modified Modified

Read miss [2]

When P1 has a read miss, then it initiates a memory read to read the line in main
memory (or other cache). So P17 inserts a read miss signal on bus that alerts
other processors.

« Case 2: If P2 has a clean copy of the line in the shared state, it returns a signal
indicating that it shares this line. And then P2 keep state as shared. P1 reads the
line from bus and transitions state from invalid to shared.

read miss,
| put data on bus |
e — — ——— -
i 2 O
Invalid) ['cpy read, put | shared
| read miss on bus |
e o — — ———
r——— "7
| read miss,

|
|
put data on bus |

|
L

Modified Modified @

Read miss [3]

When P1 has a read miss, then it initiates a memory read to read the line in main

memory (or other cache). So P17 inserts a read miss signal on bus that alerts
other processors.

Case 3: If P2 has a “modified” copy of the line in the modified state, it blocks
signal “memory read” and put data on bus. And then P2 transitions state from
modified to shared (since P2 goes to sate shared, it must update line in main
memory). P1 reads the line from bus and transitions state from invalid to shared.

| |
: read miss :
P1 P2 @ ______
invalid) MGpUvend pot | shared
| read miss on bus |
e — e —— —
T I '
read miss | I read miss :

write-back

exclusive

Modified Modified

Read miss [4]

When P1 has a read miss, then it initiates a memory read to read the line in main
memory (or other cache). So P17 inserts a read miss signal on bus that alerts
other processors.

« Case 4:If no other cache has a copy of the line (clean or modified), then no signals
are returned. P1 is the only processor having the data so P17 read data from main
memory and transitions state from invalid to exclusive.

|]
: read miss :

P1 P2 S “““
Invalid) | cpy read, put | | Shared shared
IL read miss on bus |

I read miss
write-back

Modified

exclusive

N S

Modified

Read hit

When P1 has a read hit, then it read the line from cache directly. There is no
state change, so state remains modified, shared, or exclusive.

e 1
T~ P2 : read miss |
20 T A
Invalid |_6|;J read, put | | Shared shared
| read miss on bus |

read miss v |r—00—0- I

SRR NG read miss read |

| CPU read, put : write-back —rfﬁ—Tl—S—S—'

| readmissombus ; TTTTET .
Modified Modified exclusive
[| CPU read hit I [| CPU read hit I

— — — — — — — — — —

Write hit [1]
When P17 has a write hit, then it update the line from cache directly.

- Case 1:If P1is in shared state, then it issues “write miss” signal to bus such that
all processor sharing the line will change their state from shared to invalid (only
P1 has the data).
P1 update the cache and transitions state from shared to modified.

__________ P2 : read miss '

— — — ﬁ ________
erte miss |
Invalid .‘555 read, put | Invalid shared
| read miss on bus | \‘

P N it Sl : read miss
| write-back

—_———— — —_—

—_——— —— — ——

Write hit [2]
When P17 has a write hit, then it update the line from cache directly.

- Case 2: If P1isin exclusive state, then it updates the cache and transitions state
from exclusive to modified since only P71 has the data but this data is different
from data in main memory, that is why P71 must go to state modified.

I cPUreadhnit
—————————— : read miss I
I write miss | [>
Invalid .‘555 read, put | Invalid shared
| read miss on bus | \1
_________________ |
JE N i | read miss | read miss I

|
| write-back

—_———— — —_—

—_— o —— ——

Write hit [3]
When P17 has a write hit, then it update the line from cache directly.

- Case 3: If P1is in modified state, then it updates the cache without state transition

I cPUreadhnit
—————————— : read miss I
I write miss | f>
Invalid .‘555 read, put | Invalid shared
| read miss on bus \4
_________________ |
JE N i | read miss | read miss I

|
| write-back

—_———— — —_—

| CPU write hit |

— — — — — —_— < — =

Write miss [1]

When P1 has a write miss (data is invalid or address conflict), then it issues a
signal read-with-intent-to-modify (RWITM) to bus. After P1 update data in cache,

then it transitions state to modified no matter which state (invalid, shared,
exclusive) it locates.

- Case 1: If P2is in modified state, then P2 must write-back data to main memory

since P2 will give its current data and P1 will have latest data. After write-back, P2
transitions state from modified to invalid.

I cPUreadhitr
__________ P2 : read miss I
[T——————— | [>
: write miss
Invalid .‘555 read, put | Invalid |« shared
| read miss on bus / \
el | N A T~
CF _wr_|te_m|s ________ } write hit |] reat rgnss ________ |
_________ | : o Ll_write miss || LovCo A] l_rfﬁci miss_|
I CPU write hit| | ' p 7 CPU write miss | - T

Modified

exclusive

Write miss [2]

When P1 has a write miss (data is invalid or address conflict), then it issues a
signal read-with-intent-to-modify (RWITM) to bus. After P1 update data in cache,
then it transitions state to modified no matter which state (invalid, shared,
exclusive) it locates.

« (Case 2:If P2is NOT in modified state, then P2 transitions state to invalid.

cPUreadnit | lwiemss | |
P2 : read miss I
cmzr S
e mis |
|_6|;J read, put | | Shared Invalid)< shared
| read miss on bus J ‘/ \\

J write hit I

__________ | : write miss
CPU write miss | | write-back

write miss
L

exclusive

Finite state controller of MESI protocol

| read miss, |
r] | putdataonbus |

I CPU read, place
| read miss on bus shared

Ceadmiss | ¥ @ ““““““ |
| | CPU read hit |

| write-back block . -~ | T - _—_ "~ ___|

Invalid

v

——————————— | | CPU read, place

' CPUwrite miss || | readmissonbusN ~_ 7~ |
‘ CPU write hit/miss | e —
______________ | read miss, |
——=-==7—~ | putdataonbus |
: write miss Lo
)\ 4 r____ _____ |
I write miss
" oPU rend rit | modified |+«— — exclusive
gk ‘ I CPU write hit/miss | | ' CPU read hit |

Basic of cache
Cache coherence

False sharing

Summary

OutLine

false sharing

“False sharing” occurs when two processors share two different part (words) that reside
in the same block. The full block is exchanged between processors even though
processors access different variables.

Time P1 P2

1 Write x1

2 Read x2
3 Write x1

4 Write x2
3} Read x2

P1

P1

P2

P2

index

Tag

Data

index

Tag

Data

XXX

x1

X2

XXX

x1

X2

bus

Exercise 3 : Assume that words x7 and x2 are in the same cache block in a clean state
of P1 and P2 which have previously read x7 and x2.

|dentify each miss as a true sharing miss or a false sharing miss by simple snooping
protocol.

w0 -1 moin e W

10
11
1z
1z [H
14
15
16
17
18
13
z0
21
zz
23
24
25 [H
26
27
z8
29
=0 [H
31
32
34
35
36
27 [
38
29
a0 [-]
41
4z
43
44

finclude
finclude
finclude
finclude
finclude
finclude

<omp . hi-
<sztdio.h>
<stdlib.h>
<assert.h>
<math.h>
<gdatetime.h:
fdefine NUM THREALDZ 4
int main{int
{

long int N

long int i

float *a ;
th id :

max A partial [WUM THREADI]

ghs A, max &4 :
£ QT timer

arge, char *arogw[])

Z00+*10z24+*1024 ;

int
float
float
OTime t:
a = [(float¥) malloc| sizeocf (float)*N) ; assertia) :
t.start () :

for (i=0 ; 1 <« N ; i++1{ // & i= increasing

Example of false sharing [1]

Objective: aH = max ‘a j‘
© 0<j<N-1
4 x4 =16 byte
N
- I

max_A_partial

»

al[i] = (floatii :

h

printf ("Time to initial a

= %d (m=)'n", t.elapsedi(i]:

for | i « NUM THREADZ :
max A partisal[i] = 0 :

i=0 : it f
B
L.start () :
fipraoma omp parallel default (none) hum threads (NUM THEEADS) Y,
shared(a,N,max A partisl)] private(th id,shs L,1)

th id omp_get thread num():
fipracma omp for sachedule | static)
for (i=0; i < MN; i++)1{
ghs L fabh=(al[i]l 1 :
max L partialfth id]
H
Y A% end of parallel section %S

nowait

QMAZE [wax L partial[th id], shs_ L)

-

»

ais increasing such that

Jal. =a[N 1]

) Executg every time since a is
increasing

Example of false sharing [2]

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 800 MB

max_A_partial Ox7fffaaca9568 | Ox7fff7fbaa048 | Ox7fffdba50ee8 | Ox7fffeff0b388
Time 1799 ms 6206 ms 4952 ms 19293 ms

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 800 MB

max_A_partial Ox7fff4faab260 | Ox7fff3097cee0 | Ox7fffb13c8910 | Ox7fff4021f380
Time 475 ms 427 ms 238 ms 205 ms

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 6400 MB

max_A_partial 0x7fff8443b9b8 | 0x7fff6a381828 | O0x7fffc4a01e98 | Ox7fff6fff7478
Time 14291 ms 46765 ms 90090 ms 113054 ms

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 6400 MB

max_A_partial Ox7fffab1306¢c0 | 0x7fff53985ee0 | Ox7fff9f5edb40 | Ox7ffffObfd130
Time 3848 ms 3501 ms 1814 ms 1427 ms

Example of false sharing

[macrolddoctetl falSE:sharing]$
[macrolddoctetl false sharing]s cat fproc/cpuinto

processor H I

wendor_id : Genuinelntel

cpu Lamily H -

model : 15

nodel name : Intel(R]) Xeon(R) CPU ¥5365 [3.00GH=
stepping : 11

cpu MH= : 2000, 000

cache size 4096 FE

physical id

P 0 e size of L2 cache

[3]

siblings HE

core id HER

Cpu Cores H

fpu : yes

fpu_exception : yes

cpuid lewel 10

4] Toyes

flags : fpu vme de pse LaEc msr pae moce o8 apic Sep mLrr pge mcoca Ccmov pat psedo clfl

ush dts acpli mmx £xsr s5e s3ed 55 ht tm pbe syscall nx lm constant tsc arch _perfmon pebs bts ¢

ep_good pni monitor ds_cpl wmx est tme ss5eld cxle xtpr deoa lahf 1lm
: B987.36
HI T

bogonips
clflush size

cache aligmment : od
3 addrezz =size= : 38 bits physical, 48 bits wirtual
power managenent:

2 Cache line size (block size) = 64 byte

Exercise 4 : show all max_A_partial[NUM_THREADS] fall into the same cache block, then
false sharing occurs.

3 Address line is 48 bits, check it

Example of false sharing

[4]

32

9 fdefine STRIDE 16
10 #define NUM_THREADS 4
11
.
g niiny sxee, ehar tergvil) use non-adjacent location in array
14 long int N = 200%1024%1024 ; max_A_partial to avoid false sharing
1E long int i :
18 float *a :
17 int th id, index :
18 float mwax L partial[3TRIDE * NUM THRELDS]
19 float abs:AT max L h O 16
Z0 QTime t; // 0T timer . . e . o o
max_A_partial
s0Hd for (i=0 ; i < STRILE * NUM THREADI ; i++]{
31 wmax L partial[i] = 0 ;
3z h
33
34 L.3tarti()
35 #Hpraogma omp parallel default (none) num threads (NUM THREALDS) !
36 shared(a,N,max_ A4 partial] priwvate(th id,sbs &, 1, index)
1
38 th id = omwp get thread num();
39
40 index = th id * 3ITRIDE :
41
4z g#pramna omp for schedule| static | nowait
a2 [for (i=0; i < N; i++){
44 ahs L = fabhs(al[i])
45
46 maxXx L partiall[index] = QMAE([mwax A partial[index], sbs i)
477
45 h
49 Y} /% end of parallel section %/

Question 11: why do we choose STRIDE = 167?

Can we choose smaller value or larger value? Write program to test it

Example of false sharing [J]
Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 800 MB

max_A_partial Ox7fffa3abaf18 | Ox7fff75cc70e8 | Ox7ffff3486828 | Ox7fffad4e3788
Time 1782 ms 891 ms 454 ms 231 ms

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 800 MB

max_A_partial 0x7fff39¢c50170 | Ox7fff17e2a300 | Ox7fff428b0890 | Ox7fff9a1ad550
Time 739 ms 400 ms 191 ms 184 ms

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 6400 MB

max_A_ partial 0x7fff9f906d68 Ox7fff23808c28 | Ox7fff6afc0368 | Ox7fffa9c36ed8
Time 13609 ms 7196 ms 3416 ms 1708 ms

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 6400 MB

max_A_partial Ox7fff190aabc0 | 0x7fff470064e0 | Ox7fffeb4f0990 Ox7fffdaa33dd0
Time 5882 ms 3077 ms 1490 ms 1097 ms

Question 11: performance is significant when number of threads increases,
this proves “false sharing”, right?

Exercise 5: chunk size versus false sharing

z #Hinclude <omp.hs

2 finclude <stdio.h>

4 finclude <stdlib.h>

5 g%nciuge cassern. b Do experiment for chunk size = 1

& include <gdatetime.h:> .

7 with threads 1, 2, 4, 8. you can

2 woid randomInit| float® data, int =size) @ H H H . _

: use optimization flag —O0 or —02,

10 int main{int arge, char *argv([] | what happens on timing? Explain.

11 [¢

1z long int N = Z0O0*1024%1024 »

1z int thread num = & ;

14 long int i:

15 float *am, *k, *C ; What is “good” choice of chunk size?

1s QTime t; /7 OT timer

17

12 g = [float™¥) malloc| sizecfifloat) *N) @ assertia)

132 b = [(float?®) malloc| sizecfifloat) *N) @ assert(b)

zZ0 o = [float™¥) malloc| sizecfifloat) *N) @ assert (o)

21

s L.start () :

232 randomInit (a, I): H

z4 randomInit (b, IN): Makeflle

2E printf ("To randowize a, b heeds %d (ws)Wn", t.elapsed()]: oo = ice

27 t.starti{) : i = icpe

28 #pragma omp parallel default (none) num threads (thread num) 3 LEX = flex

za shared(a,h,c,N) private (i) YACC = ¥3

I I CFLAGS = ——n:upenmp -mp - -pipe -Wall -

21 #pragmsa omp for schedule| static, 1] nowait ector --param=ssp-buffer-size=4 -wfd -DQT NO

32E| for (i=0; i < N; i++)4 7y I SUPPORT =

2:) T CHXFLAGS = ——n:upenmp -up -3 -pipe -Wall -

. o) R TR e ector --param=ssp-buffer-zize=4 -mad -DQT_N0O]
I SUPPORT

Chunk size = 1

Basic of cache
Cache coherence
False sharing

Summary

OutLine

Summary [1]

pitfall 1: where can a block be placed

Scheme name Number of sets Blocks per sete
Direct mapped Number of blocks in cache Seconds for the program
Set associative Number of blocks in cache Associativity (typically 2-8)

associativity

Fully associative 1 Number of blocks in cache

pitfall 2: how is a block found

Associativity Location method Comparison required
Direct mapped index 1
Set associative Index the set, search among elements | Degree of associativity
Fully associative Search all cache elements Size of the cache

pitfall 3: which block should be replaced

« random: use hardware assistance, fast

» Least recently used (LRU): we need to keep track which one is used for longest time,
it is slower.

» FIFO: first-in, first-out (least recently replaced)
» Cycle: the choice is made in a round-robin fashion

Summary [2]

pitfall 4: behavior of memory hierarchy, 3 C’s

« Compulsory misses: first access to a block not in the cache.
« Capacity misses: cache cannot contain all the blocks needed during execution.

« Conflict misses: when multiple blocks are mapped into the same set in set-
associative.

4-th C: cache Coherence : occurs in parallel architectures

Design change Effect on miss rate Possible negative

performance effect

Increase size Decrease capacity misses May increase access time

Increase associativity | Decreases miss rate due to conflict May increase access time
misses

Increase block size | Decrease miss rate for a wide range | May increase miss penalty
of block sizes

pitfall 5: how to utilize cache

« Loop-oriented optimization

« Software prefetching; a block of data is brought into the cache (L2 cache) before it is
actually referenced, this will decrease miss rate.
Example: search linked-list

« Hardware prefetching

Summary [3]

pitfall 6: cache information of commercial chip

CPU

L1 cache

L2 cache

Intel Pentium E2140

Data cache (per processor) 2 x 32 KBytes,
8-way set associative, 64-byte line size

Instruction cache (per processor) 2 x 32
KBytes, 8-way set associative, 64-byte
line size

(per processor) 2048 KBytes, 8-
way set associative, 64-byte line
size

Intel Core 2 Duo E4500

Data cache (per processor) 2 x 32 KBytes,
8-way set associative, 64-byte line size

Instruction cache (per processor) 2 x 32
KBytes, 8-way set associative, 64-byte
line size

(per processor) 2048 KBytes, 8-
way set associative, 64-byte line
size

Intel Core 2 Duo E6550

Data cache 2 x 32 KBytes, 8-way set
associative, 64-byte line size

Instruction cache 2 x 32 KBytes, 8-way
set associative, 64-byte line size

4096 KBytes, 16-way set
associative, 64-byte line size

Reference: http://www.pcdvd.com.tw/printthread.php?t=773280

Summary [4]

pitfall 7: larger associative?

0.1 I | | | I
Direct
2-way
4-wa)
001 = Y]
E 8-way "
Full
0.001 = -
[F]
m
wl
] 0.0001 = =
=
le-005 = -
le-006 = -
| | | | |
1k A4k 16K Gk 286k 1M Inf

cache size

Miss rate versus cache size on the integer portion of SPEC CPU2000

Reference: http://en.wikipedia.org/wiki/CPU_cache

Further read: http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/

pitfall 8: L1-L2 Cache Consistency

Summary

[5]

« L1 cache does not connect to the bus directly but L2 cache does

« L1 data cache and L2 cache have two MESI status flags per cache line.
- L1 adopts write-through policy: L1 write-though to L2, not to main memory, L1
cache is included in L2 cache (any data in L1 cache must be found in L2 cache)
- L1 adopts write-back policy: more complicated, Intel Processor adopts this.

Question 11:what is cost of read/write miss?

Micro-
code
ROM

-

| Instruction Fetch and Prelecode I(

2

Instruction Quewe

¥

Decode

1

Renamelslloc

Retirement Unit
{Re-Order Buffer)

Shared L2 Cache
Up te 10.7 GB/s
F5B

Scheduler

|

|

ALU
Branch
MMX/SSEIFP
Move

ALU
FAdd
MMXISSE

ALU
Fhul
MMXISSE

Load

Store

|

|

L1D Cache and DTLB

The Intel Core Microarchitecture

Architectual State | Architectual State

Architectual State | Architectual State

Execution Engine | Execution Engine

Execution Engine | Execution Engine

Local APIC Local APIC

Local APIC Local APIC

Second Level Cache

Second Level Cache

Bus Interface

Bus Interface

]

I

System Bus

Intel 64 processor, quad-core

Summary

[6]

Cache parameters of processors based on Intel Core Microarchitecture

Access Access
level capacity | Associativity | Line size | Latency | Throughput | write update
(ways) (bytes) (clocks) | (clocks) policy
Instruction cache | 32 KB 8 N/A N/A N/A N/A
L1 data cache 32 KB 8 64 3 Write-back
L2 cache 2,4 MB 8or16 64 14 Write-back
L3 cache 3,6 MB 12 or 24 64 15 Write-back
Characteristics of fetching first 4 bytes of different localities
Load Store
Data locality Latency Throughput Latency Throughput
DCU (L1 data cache) | 3 1 2 1
DCU of other core in | 14 + 5.5 bus 14 + 5.5 bus 14 + 5.5 bus
modified state cycles cycles cycles
L2 cache 14 3 14 3
memory 14 + 5.5 bus Depends on bus 14 + 5.5 bus Depends on bus
cycles + memory | read protocol cycles + memory | write protocol

Throughput is number of cycles to wait before the same operation can start again

Summary [7]

pitfall 9: cache statistics

Address: how the address is decomposed into the tag and cache index.

- cache index selects which line of the cache is checked;

- tag field of the address is matched against the tag entry for the cache line to
determine if there was a hit. The data select field selects the appropriate word/byte of
the cache data.

Cost: breaks out the cost of each of the cache components.

- Register/SRAM is the storage required to hold cache data, tag information, valid bit
and, if necessary, the dirty bit.

- Comparators are used to perform the tag comparisons, and

- 2-to-1 muxes (multiplexer) are needed when the words/line > 1 to select the
appropriate data word to return to the CPU.

Performance: enumerates how the cache has performed on all the memory
accesses since the simulation was last reset.

Example : a cache access takes 1 cycle and misses take an additional 4 cycles to
access the first word from main memory plus 1 additional cycle to fetch subsequent
words when words/line > 1. When the cache is off, each memory access takes 4
cycles.

Exercise 6: Can you write a cache simulator to report (1) number of cache hit (2)
number of cache miss in a single processor?

