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Basic logic gate

1. AND gate 

2. OR gate 

3. inverter

4. multiplexer



Principle of locality

• Temporal locality (locality in time): if an item is referenced, it will tend to be 
referenced again soon.

• Spatial locality (locality in space): if an item is referenced, items whose 
addresses are close by will tend to be referenced soon. 

• Algorithmic locality: traverse linked-list (may not be spatial locality)

for-loop is temporal locality

array is spatial locality

Observation: temporal locality means that we don’t put all program into memory 
whereas spatial locality means that we don’t put all data into memory, hence we have 
“Memory Hierarchy”



Memory Hierarchy

$0.1 - $0.210-20 msMagnetic disk

$5 - $1060-120 nsDRAM (main memory)

$100 - $2505-25 nsSRAM (cache)

$ per MByte in 1997Typical access timeMemory technology

Speed Size Cost ($/bit)CPU

L1 cache
on chip

L2 cache
on chip

Main memory

fastest

slowest

smallest

biggest

highest

lowest

Definition: If the data requested by processor appears in upper level, then this is called a 
“hit” , otherwise, we call “miss”. Conventionally speaking, cache hit or cache miss

Definition: “Hit time” is the time to access upper level memory, including time needed to 
determine whether the access is a hit or a miss.

Definition: “miss penalty” is the time to replace a block in upper level with 
corresponding block from lower level, plus the time to deliver this block to processor.



Basic of cache        [1]

• Cache: a safe place for hiding or storing things

Direct-mapped cache: each memory location is mapped to exactly one location in cache

Mapping rule: (block address) modulo (number of cache block in the cache)

0b00000

0b00001

0b00010

0b00011

0b00100

0b00101

0b00110

0b00111

0b01000

0b01010

0b01011

0b01100

0b01101

0b01110

0b01111

0b10000

0b01001

0b000

0b001

0b010

0b011

0b100

0b101

0b110

0b111

0b10001

cache

Main memory

Observation: we only use 3 least significant bits to determine address.



Question 1: size of basic block of cache  (also called cache line size)

Question 2: if data is in cache, how to know whether a requested word is in the cache or not?

Question 3: if data is not in cache, how do we know?

Basic block is a word (4 byte), since 
each memory address binds a byte, 
so 4-byte require 2 bits.

Use 10 bits to index address in cache, 
total number of block in the cache is 
1024

Tag contains the address information 
required to identify whether a word in 
the cache corresponding to the 
requested word.

Valid bit: indicates whether an entry 
contains a valid address.

Basic of cache        [2]

Tag DataValidIndex

0
1
2

…..

……
……

1021
1022
1023

=

20

31 30 … 13 12 11 … 2 
Byte
offset

0 1

10
20

index
Tag

Hit

Data

32

Address (showing bit position)



10b000000

20b000001

30b000010

40b000011

50b000100

60b000101

70b000110

80b000111

90b001000

10

110b001010

120b001011

130b001100

140b001101

150b001110

160b001111

0b001001

170b010000

180b010001

190b010010

200b010011

210b010100

220b010101

230b010110

240b010111

250b011000

26

270b011010

280b011011

290b011100

300b011101

310b011110

320b011111

0b011001

10b00

50b01

90b10

130b11

cache

2

6

10

14

3

7

11

15

4

8

12

16

00

00

00

00

1

1

1

1

data
tag

index

valid

330b100000

340b100001

350b100010

360b100011

370b100100

380b100101

390b100110

400b100111

410b101000

42

430b101010

440b101011

450b101100

460b101101

470b101110

480b101111

0b101001

1 0 0 1 1 1

012345

word (4-byte)

word 

Index of the cache
tag 

Least significant bitMost significant bit

Basic of cache        [3]

Configuration: Basic block of cache is word (4-byte), and cache has 4 blocks



1 0 0 1 1 1

012345

word 

Index of the cache

tag 

Least significant bitMost significant bit

10b00

50b01

90b10

130b11

cache

2

6

10

14

3

7

11

15

4

8

12

16

00

00

00

00

1

1

1

1

data
tag

index

valid

word (4-byte)

2

=

2

10 00

0

1

miss 0

Basic of cache        [4]

Question 4: is data with address 0b100111 in the cache?



0111

0110

0101

0100

0011

0010

0001

0000

DataTagVindex

0111

Memory(0b10110)101110

0101

0100

0011

0010

0001

0000

DataTagVindex

Initial state of cache

1. Access 0b10110 

miss

0111

Memory(0b10110)101110

0101

0100

0011

Memory(0b11010)111010

0001

0000

DataTagVindex

2. Access 0b11010 miss

0111

Memory(0b10110)101110

0101

0100

0011

Memory(0b11010)111010

0001

0000

DataTagVindex

3. Access 0b10110 

hit

Example of direct-mapped cache        [1]



0111

Memory(0b10110)101110

0101

0100

0011

Memory(0b11010)111010

0001

0000

DataTagVindex

0111

Memory(0b10110)101110

0101

0100

0011

Memory(0b11010)111010

0001

Memory(0b10000)101000

DataTagVindex

4. Access 0b10000 

miss

0111

Memory(0b10110)101110

0101

0100

Memory(0b00011)000011

Memory(0b11010)111010

0001

Memory(0b10000)101000

DataTagVindex

5. Access 0b00011 miss

0111

Memory(0b10110)101110

0101

0100

Memory(0b00011)000011

Memory(0b10010)101010

0001

Memory(0b10000)101000

DataTagVindex

6. Access 0b10010 

miss

Example of direct-mapped cache        [2]



Advantage of spatial locality       [1]

64kB cache with a word (4 byte) as block size

To take advantage of spatial locality, 
we want to have a cache block that is 
larger than one word in length, why?

When a miss occurs, we will fetch 
multiple words that are adjacent and 
carry a high probability of being 
needed shortly.

Tag DataValid

=

16

31 30 … 17 16 15 … 5 4 3 2 0 1

14
16

index
Tag

Hit

Data

32

Address (showing bit position)

16 bits 32 bits

16K
entries

Byte 
offset



Advantage of spatial locality       [2]

64kB cache using 4 words (16 byte) blocks

1. Total number of blocks in cache is 4K, not 16K

2. We need signal block offset (2 bits) to determine which word we need 

3. Mapping rule: (block address) modulo (number of cache block in the cache)

Tag

Data

Valid

=

16

31 30 … 17 16 15 … 6 5 4  0 1

14
16

index
Tag

Hit

Data

32

16 bits 128 bits

4K
entries

Byte offset

3 2

32 32 32

Mux

32

2

Block offset



Advantage of spatial locality       [3]

Exercise 1: consider a cache with 64 blocks and a block size of 16 bytes. What block 

number does byte address 1203 map to (assume 12-bit address)?

2
1203 4 16 11 16 3 0 4 3 0 0100 1011 0011x B b= × + × + = =

1 mask to 16 bytes (a block)

1203 and 0 0 4 3 0 0 4 0FF x B FF x B= ⋅ =

2 Find block address

0 4 0 4 0 4 75x B x B>> = =

3 mapping rule: (block address) modulo (number of cache block in the cache)

( )75 11 mod  64≡

1 1 0 0 1 1

012345

4-words 
Index of the cache

tag 

Least significant bitMost significant bit

0 1 0 0 1 0

67891011

0

1

2

11 Mem(4BC)011

index

Mem(4B8) Mem(4B4) Mem(4B0)

tag
data



Advantage of spatial locality       [4]

miss rate versus block size 

Question 5: why does miss rate increase when block size is more than 64 bytes? 

Exercise 2: take a simple for-loop, discuss lager block size can reduce miss rate

Question 6: what is trend of mss penalty when block size is getting larger?
(miss penalty is determined by the time required to fetch the block from the next lower 

level of memory hierarchy and load it into the cache. The time to fetch the block includes 
1. latency to first word and 2. transfer time for the rest of the block)



Memory system versus cache       [1]
Assumption :

• 1 clock cycle to send the address (Cache � DRAM)

• 15 clock cycles for each DRAM access initiated

• 1 clock cycle to send a word of data (depend on width of the bus)

• Cache block is 4-words

one-word-wide memory organization 

miss penalty = 1 + 4 x 15 + 4 x 1 = 65  clock cycles

send address 

initiate DRAM 4 times, each time for one word 

send a word through bus one by one since 
width of bus is one-word 

Number of bytes transferred per clock cycle for a single miss = 
4 4

0.25
65

×
=

CPU

Cache

Memory

(DRAM)

Bus



Memory system versus cache       [2]

4-word-wide memory organization 

miss penalty = 1 + 15 +  1 = 17  clock cycles

send address 

initiate DRAM one time and fetch 4 words 

send 4 words through bus since width of bus is 4-words 

Number of bytes transferred per clock cycle for a single miss = 
4 4

0.94
17

×
=

Question 7: what is drawback of wide memory organization ?

CPU

Cache

Memory
(DRAM)

Bus

Multiplexor



Memory system versus cache       [3]

interleaved memory organization 

miss penalty = 1 + 15 +  4x1 = 20  clock cycles

send address 

initiate DRAM one time and fetch 4 words 

send one words through bus one by one since width of 
bus is one word. 

Number of bytes transferred per clock cycle for a single miss = 
4 4

0.8
20

×
=

Question 8: what is difference between wide memory organization and interleaved 
memory organization ?

CPU

Cache

Memory
bank 1

Bus

Memory
bank 0

Memory
bank 2

Memory
bank 3



row access uses 11 bits to select a row 

Two level decoder of DRAM       [3]

1 row access chooses one row 
and activates corresponding 
word line 

2 contents of all the columns in 
the active row are stored in a  
set of latches (page mode)

3 column access selects data 
from the column latches



Improve cache performance

• Reduce miss rate:
reduce probability that two different memory blocks will contend for the same cache 
location.

• Reduce miss penalty:
add an additional level of hierarchy, say L1 cache, L2 cache and L3 cache.

Direct-mapped cache: each memory location is mapped to exactly one location in cache

Mapping rule: (block address) modulo (number of cache block in the cache)

Fully-associative cache: each block in memory may be associated with any entry in the
cache.

Mapping rule: exhaust search each entry in cache to find an empty entry

Direct-mapped cache Fully-associative cache

set-associative cache

Index is regular Index is at random



0111

0110

0101

0100

0011

0010

0001

0000

DataTagVindex

0111

0110

0101

0100

0011

0010

0001

Memory(0b10110)101000

DataTagVindex

Initial state of cache

1. Access 0b10110 

miss

0111

0110

0101

0100

0011

0010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex

2. Access 0b11010 miss

3. Access 0b10110 

hit

Example of fully-associative cache        [1]

0111

0110

0101

0100

0011

0010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex



0111

0110

0101

0100

0011

Memory(0b10000)101010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex

4. Access 0b10000 

miss

5. Access 0b00011 miss

6. Access 0b10010 

miss

Example of fully-associative cache        [2]

0111

0110

0101

0100

0011

0010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex

0111

0110

0101

0100

Memory(0b00011)001011

Memory(0b10000)101010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex

0111

0110

0101

Memory(0b10010)101100

Memory(0b00011)001011

Memory(0b10000)101010

Memory(0b11010)111001

Memory(0b10110)101000

DataTagVindex



set-associative cache        

Tag  Data  Block   

0  

1  

2  

3  

4  

5  

6  

7  

One-way set associative

(direct mapped)
Tag  Data  Set   

0  

1  

2  

3  

Tag  Data  

Two-way set associative

Tag  Data  Set   

0  

1  

Tag  Data  

four-way set associative

Tag  Data  Tag  Data  

Tag  Data  

eight-way set associative (fully-associative)

Tag  Data  Tag  Data  Tag  Data  Tag  Data  Tag  Data  Tag  Data  Tag  Data  

A set-associative cache with n locations for a block is called an n-way set-associative cache 

Mapping rule: (block address) modulo (number of sets in the cache)



Associativity in cache     [1]      

Example: there are three small caches, each consisting of 4 one-word blocks. One cache is 
fully-associative, a second is two-way set associative and the third is direct mapped. Find 
the number of misses for each cache organization given the following sequence of block 
addresses: 0, 8, 0, 6, 8.

Tag  Data  Block   

0  

1  

2  

3  

One-way set associative

(direct mapped)
Tag  Data  Set   

0  

1  

Tag  Data  

Two-way set associative

Tag  Data  

fully-associative

Tag  Data  Tag  Data  Tag  Data  

(8 modulo 4) = 08

(6 modulo 4) = 26

(0 modulo 4) = 00

Cache blockBlock address

1 Direct-mapped cache : (block address) modulo (number of block in the cache)



Associativity in cache     [2]

Contents of cache blocks after reference

Memory[6]Memory[8]Miss 8

Memory[6]Memory[0]Miss6

Memory[0]Miss0

Memory[8]Miss8

Memory[0]Miss0

3210

Hit or 
miss

Address of memory 
block accessed

2 two-way associative cache : (block address) modulo (number of sets in the cache)

(8 modulo 2) = 08

(6 modulo 2) = 06

(0 modulo 2) = 00

Cache setBlock address

Contents of cache blocks after reference

Memory[6]Memory[8]Miss 8

Memory[6]Memory[0]Miss6

Memory[8]Memory[0]Hit0

Memory[8]Memory[0]Miss8

Memory[0]Miss0

Set 1Set 1Set 0Set 0

Hit or 
miss

Address of memory 
block accessed

Replace least recently 
used block



Associativity in cache     [3]

3 Fully associative cache : exhaust search for empty entry

Contents of cache blocks after reference

Memory[6]Memory[8]Memory[0]Hit8

Memory[6]Memory[8]Memory[0]Miss6

Memory[8]Memory[0]Hit0

Memory[8]Memory[0]Miss8

Memory[0]Miss0

Block 3Block 2Block 1Block 0

Hit or 
miss

Address of memory 
block accessed

Number of Miss :  Direct-mapped (5)  >  two-way associative (4)  >  fully associative (3) 

Question 9: what is optimal number of miss in this example? 

Question 10: How about if we have 8 blocks in the cache? How about 16 blocks in the 
cache?



Implementation of set-associative cache

The tag of every cache block with appropriate set is checked to see if it matches the block 
address. In order to speedup comparison, we use 4 comparators to do in parallel 

Tag DataVIndex

0

1

2

253

254

255

=

31 30 … 11 10 9 8… 2 1 0

822

index
Tag

Hit
Data

32

Tag DataV Tag Data Tag Data

= = =

22

OR
4-to-1 Mux

V V



CPI : average clock cycles per instruction

CPU time = instruction count x CPI x  clock cycle time

Seconds per clock cycleClock cycle time

Average number of clock cycles per instructionClock cycles per instruction (CPI)

Instructions executed for the programInstruction count

Seconds for the programCPU execution time for a program

Units of measureComponents of performance

Reduce miss penalty using multi-level caches  [1]

• Reduce miss rate:
reduce probability that two different memory blocks will contend for the same cache 
location.

• Reduce miss penalty:
add an additional level o hierarchy, say L1 cache, L2 cache and L3 cache.

CPU L1 cache L2 cache DRAM

R/W  1 miss  2 miss  3

R/W  4R/W  5R/W  6



Example: suppose a processor (clock rate 500MHz) with a base CPI of 1.0, assuming all 
references hit in the L1 cache. Assume a main memory access time of 200ns, including 
all the miss handling. Suppose miss rate per instruction at L1 cache is 5%. How much 
faster will the machine be if we add a L2 cache that has 20 ns access time for either a hit 
or a miss and is large enough to reduce miss rate to main memory to 2%?

Reduce miss penalty using multi-level caches  [2]

CPU L1 cache DRAM

500MHz  
Miss rate 5 %  

R/W need time 200ns Hit rate 95 %  

R/W  

1 500MHz � 2ns / clock cycle

2

The effective CPI with L1 cache is given by 

Total CPI = base CPI + memory-stall cycles per instruction = 1.0 + 5% x 100 = 6.0

3

Miss penalty to main memory = 200ns / 2ns = 100 clock cycles (CPU clock cycle) 

CPU L1 cache L2 cache

500MHz  
Miss rate 5 %  R/W  

DRAM

Miss rate 2 %  

R/W need time 200ns R/W need time 10ns 



Reduce miss penalty using multi-level caches  [3]

4 Miss penalty of L1 cache  for an access to L2 cache = 20ns / 2ns = 10 clock cycles 

5 L1 cache 

L2 cache 

Miss rate 5 %  hit rate 95 %  

hit rate 3 %  Miss rate 2 %  

Total CPI = 1.0 +  stalls per instruction due to L1 cache miss and L2 cache hit stalls + 
stalls per instruction due to L1 cache miss and L2 cache miss  

= 1+  (%5 - %2) x 10 + 2% x (10 + 100) = 1 + 0.3 + 2.2 = 3.5

6 The machine with L2 cache is faster by 6.0 / 3.5 = 1.7 

CPU L1 cache L2 cache

500MHz  
Miss rate 5 %  R/W  

DRAM

Miss rate 2 %  

R/W need time 200ns R/W need time 10ns 

Remark: L1 cache focus on “hit time” to yield short clock cycle whereas L2 cache focus on “miss
rate” to reduce penal of long memory access time.



OutLine

• Basic of cache

• Cache coherence
- simple snooping protocol
- MESI

• False sharing

• Summary 



Write policy in the cache

• Write-though: the information is written to both the block in cache and block in main 
memory.

• Write-back: information is only written to the block in cache. The modified block is 
written to main memory only when it is replaced.

Advantage of write-back

• Individual words can be written by the processor in the cache level, fast!

• Multiple writes within a block requires only one write to main memory

• When blocks are written back, the system can make effective use of a high 
bandwidth transfer.

Advantage of write-through

• Misses are simpler and cheaper because they never require a block in cache to be 
written to main memory. 

• Easy to implement than write-back, a write-through cache only needs a write buffer.

disadvantage of write-back

• Interaction with other processors when RAW (Read after Write) hazard occurs, say 
other processor will read the incorrect data in its own cache.

disadvantage of write-through

• Cost since write to main memory is very slow 



Consistency management in cache

• Keep the cache consistent with itself: avoid two copies of a single item in different 
places of the cache.

• Keep the cache consistent with the backing store (main memory): solve RAW (Read 
after Write) hazard 
- write-through policy
- write-back policy

• Keep the cache consistent with other caches
- L1 cache versus L2 cache in the same processor
- L1 cache versus L1 cache in different processors
- L1 cache versus L2 cache in different processors
- L2 cache versus L2 cache in different processors
two policies: inclusion or exclusion

CPU

L1 cache
on chip

L2 cache
off chip

Main memory

( )1   2    L cache L cache DRAM main memory⊂ ⊂Inclusion:  



What Does Coherency Mean?

• Informally:

– “Any read must return the most recent write”

– Too strict and too difficult to implement

• Better:

– “Any write must eventually be seen by a read”

– All writes are seen in proper order (“serialization”)

• Two rules to ensure this:

– “If P writes x and P1 reads it, P’s write will be seen by P1 if the 
read and write are sufficiently far apart”

– Writes to a single location are serialized: 
seen in one order

• Latest write will be seen

• Otherwise could see writes in illogical order
(could see older value after a newer value)



Potential Hardware Coherency Solutions

• Snooping Solution (Snoopy Bus):

– Send all requests for data to all processors

– Processors snoop to see if they have a copy and respond accordingly 

– Requires broadcast, since caching information is at processors

– Works well with bus (natural broadcast medium)

– Dominates for small scale machines (most of the market)

• Directory-Based Schemes

– Keep track of what is being shared in one centralized place

– Distributed memory => distributed directory for scalability
(avoids bottlenecks)

– Send point-to-point requests to processors via network

– Scales better than Snooping

– Actually existed BEFORE Snooping-based schemes



Cache coherency in multi-processor: snooping protocol  [1]  

All cache controllers monitor (snoop) on the bus to determine whether or not 
they have a copy of the shared block

• Maintaining coherency has two components: read and write
- read: not a problem with multiple copies
- write: a processor must have exclusive access to write a word, so all processors 
must get new values after a write, say we must avoid RAW hazard 

• The consequence of a write to shared data is either 
- to invalidate all other copies or
- to update the shared copies with the value being written

Snoop tag is used to handle snoop requests 



Cache coherency in multi-processor: snooping protocol  [2]

Read hit : normal read

Read miss : all caches check to see if they have a copy of the requested
block and then supply data to the cache that missed

write miss / hit : all caches check to see if they have a copy of the requested
block and then either invalidating or updating their copy

• Write-invalidate: similar to write-back policy (commercial used)
- multiple readers, single writer
- write to shared data: an invalidate signal is sent to all caches which snoop and 
invalidate any copies.
- Read miss: 

(1) write-through: memory is always up-to-date
(2) write-back: snoop in caches to find most recent copy

• Write-update: similar to write-through 
- writing processor broadcasts the new data over the bus, then all copies are updated 
with the new value. This would consume much bus bandwidth.

Snooping protocols are of two types

Write-invalidation protocol based on write-back policy. Each cache block has three states

• Shared (Read only): this cache block is clean in all caches and up-to-date in 
memory, multiple read is allowed.

• Exclusive (Read/Write): this cache block is dirty in exactly one cache. 

• Invalid: this cache block does not have valid data



Simple snooping protocol    [1]

shared
(Read only)

Invalid

exclusive
(Read/Write)

write miss 

write miss
write-back block

CPU read, 
place read miss on bus 

CPU read hit

CPU read miss, 
place read miss on busCPU write, place write 

miss on bus 

CPU read hit
CPU write hit

CPU write miss, 
write-back data,  
place write miss on bus

CPU read miss, 
Write-back data
place read miss on bus

CPU write,
place write miss on bus 

read miss, 
Write-back data

color: bus signal, including read miss, write miss

color: CPU write

color: CPU read



Attempt to shared data: place cache block on bus and change state to 
shared

Read missbus

Read data in cacheRead hitprocessor

shared

Address conflict miss: place read miss on busRead missprocessor

Place write miss on bus since data is modified and then other copies are 
not valid 

Write hitprocessor

Address conflict miss: place write miss on busWrite missprocessor

No action: allow memory to service read missRead missbus

Attempt to rite shared block: invalidate the block (go to invalid state)Write missbus

Read data in cacheRead hitprocessor

exclusive

Address conflict miss: write back block, then place read miss on busRead missprocessor

Write data in cacheWrite hitprocessor

Address conflict miss: write back block, then place write miss on busWrite missprocessor

Write miss

Write miss

Read miss

Request 

Attempt to write block that is exclusive elsewhere: write back the cache 
block and make its state invalid

place write miss on bus

place read miss on bus

Function and explanation

bus

processor

processor 

source

invalid 

State of 
cache block

Simple snooping protocol    [2]

Cache coherence mechanism receives requests from both the processor and the bus and responds to 
these based on the type of request, state of cache block and hit/miss



Processor 1 Processor 2 Bus Memory

Example of state sequence   [1]

InvalidInvalid

P1: write 40 to A2

P2: write 20 to A1

P2: read A1

P1: read A1

P1: write 10 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

Assumption 

1. Initial cache state is invalid

2. A1 and A2 map to same cache block
but A1 is not A2

Invalid Invalid

P1 P2 ??00

DataTagVindex

P1

??00

DataTagVindex

P2

bus



Example of state sequence   [2]

P1: write 40 to A2

P2: write 20 to A1

P2: read A1

P1: read A1

A1P1WrMsinvalid10A1ExclP1: write 10 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 10A110

DataTagVindex

P1

??00

DataTagVindex

P2

buswrite miss 

P1

Invalid

P2

Write miss signal on bus does not affect P2

read miss, 
write-back data



Example of state sequence   [3]

P1: write 40 to A2

P2: write 20 to A1

P2: read A1

invalid10A1ExclP1: read A1

A1P1WrMsinvalid10A1ExclP1: write 10 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit

CPU write hit

CPU write, put 
write miss on bus 

10A110

DataTagVindex

P1

??00

DataTagVindex

P2

bus

P1

Invalid

P2

read miss, 
write-back data



Example of state sequence   [3]

P1: write 40 to A2

P2: write 20 to A1

A1P2RdMsA1shareP2: read A1

invalid10A1ExclP1: read A1

A1P1WrMsinvalid10A1ExclP1: write 10 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

10A110

DataTagVindex

P1

??00

DataTagVindex

P2

bus

P2

exclusive

P1

read miss 

read miss, 
write-back data

P2 has no A1, so it issues “read miss” signal to P1, then 
P1 can reply its data to P2



Example of state sequence   [4]

10A110A1P1WrBk10A1shared

P1: write 40 to A2

P2: write 20 to A1

A1P2RdMsA1shareP2: read A1

invalid10A1ExclP1: read A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

10A110

DataTagVindex

P1

??00

DataTagVindex

P2

bus

P1

shared 

P2

(A1, 10)

read miss, 
write-back data

P1 write (A1,10) back to DRAM

write-back

DRAM



Example of state sequence   [5]

1010A1P2RdDa10A1share

10A110A1P1WrBk10A1shared

P1: write 40 to A2

P2: write 20 to A1

A1P2RdMsA1shareP2: read A1

invalid10A1ExclP1: read A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

10A110

DataTagVindex

P1

10A110

DataTagVindex

P2

bus

shared 

P2

(A1, 10)

P1 and P2 are all in state shared, this means that (A1, 10) is shared by two processors and both 
processors can read (A1,10) at the same time from their own cache without any communication.

shared 

P1



Example of state sequence   [6]

1010A1P2RdDa10A1share

10A110A1P1WrBk10A1shared

P1: write 40 to A2

10A1P2WrMs20A1exclP2: write 20 to A1

A1P2RdMsA1shareP2: read A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

P2

read miss, 
write-back data

shared 

P1

10A110

DataTagVindex

P1

20A110

DataTagVindex

P2

bus Write-miss

P2 issues signal “write-miss” to P1, then P1 knows that 
(A1, 10) is not valid. Then P2 update value of A1 to 20.



Example of state sequence   [7]

10exclInvalid

1010A1P2RdDa10A1share

10A110A1P1WrBk10A1shared

P1: write 40 to A2

10A1P2WrMs20A1exclP2: write 20 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

P1

read miss, 
write-back data

exclusive

P2

10A100

DataTagVindex

P1

20A110

DataTagVindex

P2

bus
Write-miss

P1 set (A1,10) as invalid, then this data cannot be 
used any more



Example of state sequence   [8]

10exclInvalid

1010A1P2RdDa10A1share

10A110A1P1WrBk10A1shared

P1: write 40 to A2

10A1P2WrMs20A1exclP2: write 20 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

P1

read miss, 
write-back data

exclusive

P2

10A100

DataTagVindex

P1

20A110

DataTagVindex

P2

bus
Write-miss

P1 set (A1,10) as invalid, then this data cannot be 
used any more



Example of state sequence   [9]

10exclInvalid

1010A1P2RdDa10A1share

10A110A1P1WrBk10A1shared

A2P1WrMs40A2exclP1: write 40 to A2

10A1P2WrMs20A1exclP2: write 20 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

P1

read miss, 
write-back data

exclusive

P2

40A210

DataTagVindex

P1

20A110

DataTagVindex

P2

busWrite-miss

P1 issues signal “write-miss” to P2, then P2 knows that 
(A1, 20) is not valid. Then P2 must write (A1,20) back to 
DRAM and then reset cache block to (A2,40)



Example of state sequence   [10]

A2P1WrMs40A2exclP1: write 40 to A2

10exclInvalid

1010A1P2RdDa10A1share

20A120A1P2WrBkinvalidexcl

10A1P2WrMs20A1exclP2: write 20 to A1

Value AddrValue AddrProc. Action Value AddrState Value AddrState step

MemoryBusP2P1

sharedInvalid

exclusive

write miss 

w
ri
te

 m
is

s
w

ri
te

-b
a

c
k
 b

lo
c
k

CPU read, put 
read miss on bus 

CPU read hit

CPU write, put 
write miss on bus 

CPU read hit
CPU write hit

CPU write, put 
write miss on bus 

P2

read miss, 
write-back data

exclusive

P1

40A210

DataTagVindex

P1

20A100

DataTagVindex

P2

bus

Write-back

DRAM

(A1, 20)



shared
(Read only)

Invalid

exclusive
(Read/Write)

write miss 

Bus available
write-back block

Bus available, place 
read miss on bus 

CPU read hit

CPU read hit
CPU write hit

CPU write miss

pending
read

CPU read 

CPU read miss 

pending
write-back 1

write miss 

pending
write-back 2

CPU read miss 

Bus available
write-back block

pending
write-back 3

pending
write miss

pending
write-back 4

Bus available
write-back block

CPU write

Bus available, place 
write miss on bus

CPU write

read miss 

Bus available
write-back block

Finite state controller for a simple snooping cache



MESI Protocol (Intel 64 and IA-32 architecture)

• Modified: The line in the cache has been modified (different from main memory) 
and is available only in this cache since we only accept multiple read, single write

• Exclusive : the line in the cache is the same as that in main memory and is not 
present in any other cache. 

• Shared : the line in the cache is the same as that in main memory and may be 
present in another cache. This supports multiple read.

• Invalid: the line in the cache does not contains valid data.

valid

Invalid

Same as main memory

Different from main memory

One copy (Exclusive)

More than one copy (Shared)

One copy (Modified)

More than one copy

Goes directly to 
bus

Goes to bus and 
updates cache

Does not go to 
bus

Does not go to 
bus

A write to this line

Maybe Maybe No No Copies exist in other caches?

----valid valid out of dateThe memory copy is

NoYes Yes Yes This cache line valid?

InvalidSharedExclusiveModified



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss, 
put data on bus

P2

Read miss         [1]

• Case 1: If P2 has a clean copy of the line in the exclusive state, it returns a signal 
indicating that it shares this line. And then P2 transitions state from exclusive to 
shared since data is shared by P1 and P2. P1 reads the line from bus and 
transitions state from invalid to shared.

When P1 has a read miss, then it initiates a memory read to read the line in main 
memory (or other cache). So P1 inserts a read miss signal on bus that alerts 
other processors. 



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss, 
put data on bus

P2

Read miss         [2]

• Case 2: If P2 has a clean copy of the line in the shared state, it returns a signal 
indicating that it shares this line. And then P2 keep state as shared. P1 reads the 
line from bus and transitions state from invalid to shared.

When P1 has a read miss, then it initiates a memory read to read the line in main 
memory (or other cache). So P1 inserts a read miss signal on bus that alerts 
other processors. 

read miss, 
put data on bus



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Read miss         [3]

• Case 3: If P2 has a “modified” copy of the line in the modified state, it blocks 
signal “memory read” and put data on bus. And then P2 transitions state from 
modified to shared (since P2 goes to sate shared, it must update line in main 
memory). P1 reads the line from bus and transitions state from invalid to shared.

When P1 has a read miss, then it initiates a memory read to read the line in main 
memory (or other cache). So P1 inserts a read miss signal on bus that alerts 
other processors. 

read miss

read miss
write-back



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Read miss         [4]

• Case 4: If no other cache has a copy of the line (clean or modified), then no signals 
are returned. P1 is the only processor having the data so P1 read data from main 
memory and transitions state from invalid to exclusive.

When P1 has a read miss, then it initiates a memory read to read the line in main 
memory (or other cache). So P1 inserts a read miss signal on bus that alerts 
other processors. 

read miss

read miss
write-backCPU read, put 

read miss on bus 



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Read hit         

When P1 has a read hit, then it read the line from cache directly. There is no 
state change, so state remains modified, shared, or exclusive.

read miss

read miss
write-backCPU read, put 

read miss on bus 

CPU read hit

CPU read hitCPU read hit



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Write hit      [1]        

When P1 has a write hit, then it update the line from cache directly. 

read miss

read miss
write-backCPU read, put 

read miss on bus 

CPU read hit

CPU read hitCPU read hit

• Case 1: If P1 is in shared state, then it issues “write miss” signal to bus such that 
all processor sharing the line will change their state from shared to invalid (only 
P1 has the data). 
P1 update the cache and transitions state from shared to modified.

write miss

CPU write hit



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Write hit      [2]        

When P1 has a write hit, then it update the line from cache directly. 

read miss

read miss
write-backCPU read, put 

read miss on bus 

CPU read hit

CPU read hitCPU read hit

• Case 2: If P1 is in exclusive state, then it updates the cache and transitions state 
from exclusive to modified since only P1 has the data but this data is different 
from data in main memory, that is why P1 must go to state modified.

write miss

CPU write hit

CPU write hit



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Write hit      [3]        

When P1 has a write hit, then it update the line from cache directly. 

read miss

read miss
write-backCPU read, put 

read miss on bus 

CPU read hit

CPU read hitCPU read hit

• Case 3: If P1 is in modified state, then it updates the cache without state transition 

write miss

CPU write hit

CPU write hit

CPU write hit



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Write miss      [1]        

When P1 has a write miss (data is invalid or address conflict), then it issues a 
signal read-with-intent-to-modify (RWITM) to bus. After P1 update data in cache, 
then it transitions state to modified no matter which state (invalid, shared, 
exclusive) it locates.

read miss

read miss
write-back

CPU read, put 
read miss on bus 

CPU read hit

CPU read hitCPU read hit

• Case 1: If P2 is in modified state, then P2 must write-back data to main memory 
since P2 will give its current data and P1 will have latest data. After write-back, P2 
transitions state from modified to invalid. 

write miss

CPU write hit

CPU write hit

CPU write hit

write miss

CPU write miss

CPU write miss

CPU write miss



sharedInvalid

Modified 

CPU read, put 
read miss on bus 

P1

exclusive

shared

exclusive

Invalid

Modified 

read miss

P2

Write miss      [2]        

When P1 has a write miss (data is invalid or address conflict), then it issues a 
signal read-with-intent-to-modify (RWITM) to bus. After P1 update data in cache, 
then it transitions state to modified no matter which state (invalid, shared, 
exclusive) it locates.

read miss

read miss
write-back

CPU read, put 
read miss on bus 

CPU read hit

CPU read hitCPU read hit

• Case 2: If P2 is NOT in modified state, then P2 transitions state to invalid. 

write miss

CPU write hit

CPU write hit

CPU write hit

write miss
write-back

CPU write miss

CPU write miss

CPU write miss

write miss

write miss



sharedInvalid

modified

write miss 

read miss
write-back block

CPU read, place
read miss on bus 

CPU read hit

CPU read hit

CPU write hit/miss

exclusive

read miss, 
put data on bus

read miss, 
put data on bus

CPU read, place
read miss on bus 

CPU read hitCPU write hit/miss

CPU write hit

CPU write miss

write miss 

write miss 

Finite state controller of MESI protocol
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false sharing

“False sharing” occurs when two processors share two different part (words) that reside 
in the same block. The full block is exchanged between processors even though 
processors access different variables.

Write x13

Write x24

Read x2

P2

Read x2

Write x1

P1

5

2

1

Time

x1 x2xxx10

DataTagVindex

P1 P2

bus

x1 x2xxx10

DataTagVindex

shared 

P2

shared 

P1

Exercise 3 : Assume that words x1 and x2 are in the same cache block in a clean state 
of P1 and P2 which have previously read x1 and x2. 

Identify each miss as a true sharing miss or a false sharing miss by simple snooping 
protocol. 



Example of false sharing   [1]

max_A_partial

4 x 4 = 16 byte

0 1

max j
j N

a a
∞ ≤ ≤ −

=Objective:

a is increasing such that 

Execute every time since a is 
increasing

[ ]1a a N
∞

= −



Example of false sharing     [2]

6206 ms

0x7fff7fbaa048

2

4952 ms

0x7fffdba50ee8

4

19293 ms

0x7fffeff0b388 

8

1799 ms

0x7fffaaca9568

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 800 MB

427 ms

0x7fff3097cee0

2

238 ms

0x7fffb13c8910

4

205 ms

0x7fff4021f380  

8

475 ms

0x7fff4faab260

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 800 MB

3501 ms

0x7fff53985ee0

2

1814 ms

0x7fff9f5edb40

4

1427 ms

0x7ffff9bfd130

8

3848 ms

0x7fffa51306c0

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 6400 MB

46765 ms

0x7fff6a381828

2

90090 ms

0x7fffc4a01e98

4

113054 ms

0x7fff6fff7478

8

14291 ms

0x7fff8443b9b8

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 6400 MB



Example of false sharing     [3]

1

2

3

size of L2 cache

2 Cache line size (block size) = 64 byte

Exercise 4 : show all max_A_partial[NUM_THREADS] fall into the same cache block, then 
false sharing occurs.

3 Address line is 48 bits, check it



Example of false sharing     [4]

Question 11: why do we choose STRIDE = 16? 
Can we choose smaller value or larger value? Write program to test it

use non-adjacent location in array 
max_A_partial to avoid false sharing 

max_A_partial ⋯ ⋯

0 16 32



Example of false sharing     [5]

891 ms

0x7fff75cc70e8

2

454 ms

0x7ffff3486828

4

231 ms

0x7fffad4e3788 

8

1782 ms

0x7fffa3abaf18

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 800 MB

400 ms

0x7fff17e2a300

2

191 ms

0x7fff428b0890

4

184 ms

0x7fff9a1ad550

8

739 ms

0x7fff39c50170

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 800 MB

3077 ms

0x7fff470064e0

2

1490 ms

0x7fffeb4f0990

4

1097 ms

0x7fffdaa33dd0

8

5882 ms

0x7fff190aa5c0

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O2, size(a) = 6400 MB

7196 ms

0x7fff23808c28

2

3416 ms

0x7fff6afc0368

4

1708 ms

0x7fffa9c36ed8

8

13609 ms

0x7fff9f906d68

1

Time

max_A_partial

Platform: octet1, with compiler icpc 10.0, -O0, size(a) = 6400 MB

Question 11: performance is significant when number of threads increases, 
this proves “false sharing”, right?



Chunk size = 1

Exercise 5: chunk size versus false sharing

Do experiment for chunk size = 1 
with threads 1, 2, 4, 8. you can 
use optimization flag –O0 or –O2, 
what happens on timing? Explain.

What is “good” choice of chunk size? 

Makefile
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1

Number of blocks in cache

_____________________

associativity

Number of blocks in cache

Number of sets

Number of blocks in cacheFully associative

Associativity (typically 2-8)Set associative

Seconds for the programDirect mapped

Blocks per seteScheme name

Search all cache elements

Index the set, search among elements

index

Location method

Size of the cacheFully associative

Degree of associativitySet associative

1Direct mapped

Comparison requiredAssociativity

Summary     [1]

pitfall 1: where can a block be placed

pitfall 2: how is a block found

pitfall 3: which block should be replaced

• random: use hardware assistance, fast

• Least recently used (LRU): we need to keep track which one is used for longest time, 
it is slower.

• FIFO: first-in, first-out (least recently replaced)

• Cycle: the choice is made in a round-robin fashion



Summary    [2]

pitfall 4: behavior of memory hierarchy, 3 C’s 

• Compulsory misses: first access to a block not in the cache.

• Capacity misses: cache cannot contain all the blocks needed during execution.

• Conflict misses: when multiple blocks are mapped into the same set in set-
associative.

Decrease miss rate for a wide range 
of block sizes

Decreases miss rate due to conflict 
misses

Decrease capacity misses

Effect on miss rate

May increase miss penaltyIncrease block size

May increase access timeIncrease associativity

May increase access timeIncrease size

Possible negative 
performance effect

Design change

pitfall 5: how to utilize cache

• Loop-oriented optimization 

• Software prefetching; a block of data is brought into the cache (L2 cache) before it is 
actually referenced, this will decrease miss rate. 
Example: search linked-list

• Hardware prefetching

4-th C: cache Coherence : occurs in parallel architectures



Summary    [3]

4096 KBytes, 16-way set 
associative, 64-byte line size 

(per processor) 2048 KBytes, 8-
way set associative, 64-byte line 
size 

(per processor) 2048 KBytes, 8-
way set associative, 64-byte line 
size 

L2 cache

Data cache 2 x 32 KBytes, 8-way set 
associative, 64-byte line size

Instruction cache 2 x 32 KBytes, 8-way 
set associative, 64-byte line size 

Data cache (per processor) 2 x 32 KBytes, 
8-way set associative, 64-byte line size 

Instruction cache (per processor) 2 x 32 
KBytes, 8-way set associative, 64-byte 
line size 

Data cache (per processor) 2 x 32 KBytes, 
8-way set associative, 64-byte line size 

Instruction cache (per processor) 2 x 32 
KBytes, 8-way set associative, 64-byte 
line size 

L1 cache

Intel Core 2 Duo E6550

Intel Core 2 Duo E4500

Intel Pentium E2140

CPU

Reference: http://www.pcdvd.com.tw/printthread.php?t=773280

pitfall 6: cache information of commercial chip



Summary    [4]

pitfall 7: larger associative?

Miss rate versus cache size on the integer portion of SPEC CPU2000

Reference: http://en.wikipedia.org/wiki/CPU_cache

Further read: http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/



The Intel Core Microarchitecture
Intel 64 processor, quad-core

Summary    [5]

• L1 cache does not connect to the bus directly but L2 cache does

• L1 data cache and L2 cache have two MESI status flags per cache line.
- L1 adopts write-through policy: L1 write-though to L2, not to main memory, L1

cache is included in L2 cache (any data in L1 cache must be found in L2 cache) 
- L1 adopts write-back policy: more complicated, Intel Processor adopts this.

Question 11: what is cost of read/write miss?

pitfall 8: L1-L2 Cache Consistency
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Summary    [6]

Cache parameters of processors based on Intel Core Microarchitecture

Store Load 
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Characteristics of fetching first 4 bytes of different localities

Throughput is number of cycles to wait before the same operation can start again



Summary    [7]
pitfall 9: cache statistics

• Address: how the address is decomposed into the tag and cache index. 
- cache index selects which line of the cache is checked; 
- tag field of the address is matched against the tag entry for the cache line to 
determine if there was a hit. The data select field selects the appropriate word/byte of 
the cache data.

• Cost: breaks out the cost of each of the cache components. 
- Register/SRAM is the storage required to hold cache data, tag information, valid bit 
and, if necessary, the dirty bit. 
- Comparators are used to perform the tag comparisons, and 
- 2-to-1 muxes (multiplexer) are needed when the words/line > 1 to select the 
appropriate data word to return to the CPU.

• Performance: enumerates how the cache has performed on all the memory 
accesses since the simulation was last reset. 
Example : a cache access takes 1 cycle and misses take an additional 4 cycles to 
access the first word from main memory plus 1 additional cycle to fetch subsequent 
words when words/line > 1. When the cache is off, each memory access takes 4 
cycles. 

Exercise 6: Can you write a cache simulator to report (1) number of cache hit (2) 
number of cache miss in a single processor?


