
Chapter 2 primitive data type
and operator

Speaker: Lung-Sheng Chien

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

Fundamental type [1]
Page 36, section 2.2 in textbook

type description

char A single byte capable of holding one character in the
local character set

int An integer, typically reflecting the natural size of
integers on host machine

float Single-precision floating point

double Double-precision floating point

Fundamental type [2]
Page 36, section 2.2 in textbook

qualifier description

short Length of “short int” is less than “int”

long Length of “long int” is larger than “int”

signed Signed number can be positive, zero or negative

unsigned Unsigned number is always positive or zero

Search “fundamental type” in MSDN Library [1]

Search “fundamental type” in MSDN Library [2]

Search “integer limit” in MSDN Library

Compare table in MSDN with numbers in page 257 of textbook

Search “float limit” in MSDN Library

Compare table in MSDN with numbers in page 257 of textbook

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

What is integer

()0 1 2
0 1 2In real world, we use integer based 10 10 10 10 10n

na a a a= ± + + + +"

()0 1 2
0 1 2In computer, we use integer based 2 2 2 2 2n

nb b b b= ± + + + +"

Question 1: why choose base 2, not base 10 in computer?

Question 2: how to transform between base 2 and base 10?

Question 3: the range of exponent n ?

Question 4: How to represent negative number in base 2 (2’s complement)?

do we need to represent sign in computer?

Question 1: why choose base 2?

• Basic unit in computer in bit = {0,1} (位元). We use electronic
device to represent a bit, say 0:discharge(放電), 1:charge(充電).
Such representation has high tolerance during fluctuation of
voltage.

• Simple to evaluation, since 0+0=0, 0+1=1, 1+0=1, 1+1=0 (a carry),
we can use boolean algebra to implement adder (加法器).

Format of unsigned integer

12n− 22 12 02

1b2b"1nb − 0b

LSB(Least Significant Bit)MSB(Most Significant Bit)

0 1 2 3
0 1 2 37 2 2 2 2b b b b= + + +

Question 2: how to transform between base 2 and base 10?

For simplicity, we choose n = 4, consider

0 7 mod 2 1b = =

0
0

1
7 2 6mod 2 mod 2 3mod 2 1

2 2
bb −

= = = =

()0 1
0 1

2

7 2 2 4mod 2 mod 2 1mod 2 1
4 4

b b
b

− +
= = = =

()0 1 2
0 1 2

3

7 2 2 2
mod 2 0 mod 2 0

8

b b b
b

− + +
= = =

02122232

27 0111= = 10 1 1

Question 3: the range of n ?

Consider unsigned integer, maximum occurs when 1 jb j= ∀
0 1 2 1maximum 2 2 2 2 2 1n n−= + + + + = −"

n Bytes Maximum value

8 1

2

4

255

16 65535

32 4294967295

Byte (位元組) = 8 bits is unit of type where bit is basic unit in computation

Question 4: How to represent negative number in base 2?

2

0
2

n
k

k
k

b
−

=

±∑Magnitude representation = sign + number =

22n− 22 12 02

1b2b"2nb − 0b1±sign bit

+ −22 12 02 22 12 02

2+7 0111= = 10 1 1 26 1101− = = 11 0 1

Drawback: we have two representations for zero

+ −22 12 02 22 12 02

2+0 0000= = 000 0 20 1000− = = 001 0

Not good

2’s complement representation
Magnitude representation 2’s complement representation

22n− 22 12 02 22n− 22 12 02

1b2b"2nb − 0b+ 1b2b"2nb − 0b0x = 2'sx =

22n− 22n−2n 12n−22 12 02 22 12 02

1b2b"2nb − 0b− 00"0 001x =

− 1b2b"2nb − 0b0

1c2c"2nc − 0c12'sx =

2'if 0, then 2n
sx x x< = −

122222n−12n− 02

Another computation of 2’s complement

()2' 1'2 2 1 1 1n n
s sx x x x= − = − − + = + 1 if 0

0 if 1

is complement of

j
j

j

j

b
b

b

b

=⎧⎪= ⎨ =⎪⎩

11"112 1n − = 1

− 1b2b"2nb − 0b0

1b2b"
2nb − 0b11'sx = 1’s complement of x

+ 1

1c2c"2nc − 0c12'sx =

Example: 2’s complement of -5

122232 02

1142 1− = 1 1

− 10 5=0 1

101 1

01()1'
5

s
− = 01

+ 1

() 2'5 s− =

Exercise : under 2’s complement, representation of 0 is unique

Table of 2’s complement versus decimal

signed integer of 2’s complement ranges from -8 to 7

decimal 2’s (binary) decimal 2’s (binary)

0 0000 -8 1000

1 0001 -7 1001

2 0010 -6 1010

3 0011 -5 1011

4 0100 -4 1100

5 0101 -3 1101

6 0110 -2 1110

7 0111 -1 1111

Exercise: signed integer of 2’s complement ranges from 12n−− 12 1n− −to

Integer limit from MSDN Library, how can we confirm it?

Type Bytes Minimum value

1 SHRT_MIN

INT_MIN

LONG_MIN

2

4

Maximum value

(signed) short (int) SHRT_MAX

(signed) int INT_MAX

(signed) long (int) LONG_MAX

Question 1: how to determine size of data type for different machines?

Question 2: how to determine limit of range of the data type?

Question 1: how to determine size of data type?

• C provide a compile-time unary operator, sizeof, that
can be used to compute size of any object (data type)
format: sizeof (type name)
example: sizeof (int)

• Primitive types in C and C++ are implementation defined
(that is, not precisely defined by the standard), so we
need compiler to determine actual size of data type.

• ‘’sizeof’ is followed by a type name, variable, or
expression and return unsigned value which is equal to
size of data type in bytes.
see page 204 in textbook

Question 2: how to determine limit of the data type?

signed integer of 2’s complement under 4 bits range from -8 to 7

However if we add 7 by 1, then it becomes -8, not +8, so 7 is maximum

32 22 12 02

107 = 11

+ 00 0 1

01()2'
8

s
− = 0 0

Show size of type “short” and its limit

‘%d’ means to print integer

This shows SHRT_MAX is maximum of short

Why this number is not -32768

Beyond integer

• If someone want to compute prime number,
for example, up to 100 decimal
representation of integer, we cannot use type
int, why?

• How can we do to compute large prime
number? (if someone is interested in this
topic, take it as a project)

() ()3 332 3 10 3 10Limits of type int: 2 2 2 8 10 10= ⋅ ⋅∼ ∼

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

ASCII code

• American Standard Code for Information Interchange, 美
國信息互換標準代碼

• Map integers to symbols since computer only stores 0/1,
symbols are just interpretation by human being.

• 定義128個字元 (7 bits), 其中33個字元無法顯示(在DOS下
為笑臉, 撲克牌花式等等), 另外95個為可顯示字元, 代表英
文字母或數字或符號 (鍵盤上的符號)

• EASCII (Extended ASCII) 將ASCII code 由7 bits 擴充為8
bits, 包括表格符號, 計算符號, 希臘字母和特殊的拉丁符號

ASCII code, Hexadecimal arrangement

From http://www.jimprice.com/jim-asc.shtml

10 11 12 13 14 15

A-Z occupy 0x41 ~ 0x5A, monotone increasing

a-z occupy 0x61 ~ 0x7A, monotone increasing

0-9 occupy 0x30 ~ 0x39, monotone increasing

ASCII code Table

Extended ASCII code

Escape sequence

character description character Description

\a Alert (bell) character \\ Backslash

\b Backspace \? Question mark

\f Formfeed (page break) \’ Single quote

\n Newline \” Double quote

\r Carriage return \ooo Octal number

\t Horizontal tab \xhh Hexadecimal number

\v Vertical tab \0 0

Question: what is corresponding integral value of escape sequence?

Exercise: How to find integral value of escape sequence

Declaration (宣告), for type checking

Symbolic constant

1. Array “word” has 12 elements, each element is a character
2. We use single quote to define a character

3. “for-loop” executes i=0,1,2,…,11

4. %c: print character, %x: print hexadecimal value

#include <ctype.h>

Read page 248 ~ 249 and page 166 in textbook

isalnum(c) isalpha(c) or isdigit(c) is true

isalpha(c) isupper(c) or islower(c) is true

iscntrl(c) Nonzero if c is control character, 0 if not

isdigit(c) Nonzero if c is digit, 0 if not

isgraph(c) printing character except space

islower(c) Nonzero if c is lower case, 0 if not

isprint(c) printing character including space

ispunct(c) printing character except space or letter or digit

isspace(c) space, formfeed, newline, carriage return, tab, vertical tab

isupper(c) Nonzero if c is upper case, 0 if not

int tolower(int c) convert c to lower case

int toupper(int c) convert c to upper case

Character array (字元陣列)

0 1 2 3 4 5 6 7
Array index

8 9 10 11

\a \b \f \n \r \t \v \\ \? \’ \” \0word[12] =

• Array index in C starts from 0, array “word” has 12 elements, labeled
as word[0], word[1], …, word[11], value 11 is called array bound.

• Don’t access excess of array bound, or either memory fault may
happen and result is invalid. A common fault of programmers is to
use word[12]

String constant (string literal) versus Character array

“hello, world” is called string constant, the quotes are
not part of the string, just to delimit the string.

Corresponding character array

h e l l o , w o r l d

0 1 2 3 4 5 6 7 8 9 10 11 12Array index

\0

null character, to
terminate the string

Question: what happens if we remove ‘\0’ from the string?

Exercise: test string constant

It should be “hello, world!”, why?

#include <string.h>

Read page 249 ~ 250 and page 166 in textbook

char* strcpy (s,ct) copy string ct to string s, including ‘\0’, return s

char* strcat (s,ct) concatenate string ct to end of string s, return s

int strcmp (cs,ct) compare string cs to string ct, return <0 if cs < ct,
return 0 if cs ==ct, or return >0 if cs>ct

size_t strlen (cs) return length of cs

void *memcpy (s,ct,n) copy n characters from ct to s, return s

void* memset (s,c,n) place character c into first n characters of s,
return s

Example of strcat in MSDN Library

search for strcat

Why declare character array with 80 elements?

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

Fixed point versus floating point [1]

• Suppose fixed-point representation has 8 decimal digits, with radix
point (小數點) positioned after 6-th digit.
Example: 123456.78, 8765.43, 123.00

• Under 8 decimal digits, floating point representation can be
1.2345678, 1234567.8, 0.000012345678 or 1234567800000

• Floating point representation supports wider range of values than
fixed-point representation, however it needs more storage to encode
the position of radix point.

• Floating point representation is in scientific notation.

Fixed point versus floating point [2]

Consider a decimal floating-point system with 4 digits and 3 digits
after radix point.

Theoretical: requires 4 digits after radix point to

keep accuracy

0.12 0.12 0.0144× =

losses one-digit accuracy0.120 0.120 0.014× =Fixed-point:

() ()1 1 21.2 10 1.2 10 1.44 10− − −× × × = ×Floating-point:

maintains the same accuracy and only use 2-digits after
radix point

IEEE 754: standard for binary floating-point arithmetic

• Single-precision (32-bit)
• Double-precision (64-bit)
• Single-extended precision (> 42-bit, not commonly used)
• Double-extended precision (80-bit), used in Intel CPU

2Ev s m= × ×

: s sign bit= ± expE N= − 1 21.m b b= " normalized

1 20.m b b= " denormalized

Excess-N biased

Excess-N biased

2 1MN = −The exponent is biased by

where M is number of bits in exponent field

78, 2 1 127M N= = − =Single precision:
1011, 2 1 1023M N= = − =double precision:

This is different from 2’s complement

Single precision (32-bit, 4 bytes)

0 : 0s v= >

exp 01111100 0 7 7 16 12 124x C= = = × + = exp 127 3N = − = −

11.01 1 1.25
4

m = = + =

32 1.25 2 0.15625Ev s m −= × × = + × = +Normalized value

Exercise: example of single precision

Check the configuration has normalized decimal value -118.625

Limits of single precision

Exponent ranges from -126 to +127

Extreme of exponents are used to represent 0, NAN (not a number) and
infinity

() () ()10 , , , , , , , 1, log 2 ,sin 1.1
0

NaN −∞ ∞ −∞ −∞
= ∞+ −∞ ∞−∞ − −

∞ −∞ ∞ −∞

double precision (64-bit, 8 bytes)

Question: How to represent 12.456 ?

Question: what’s extreme value of double ?

Question

• How does compiler convert decimal value
into binary value

• How does function printf show decimal
value

• Size and limits of floating point
• Distribution of floating number
• Rounding error

Conversion between string and integral/floating

string

float / double int long

atof atolatoi

string

? ??

stdlib.h

double atof (const char* s)

int atoi (const char *s)

long atol (const char *s)

#include <math.h>

Read page 250,251 in textbook

sin(x) cos(x) tan(x) asin(x)

acos(x) atan(x) atan2(x) sinh(x)

cosh(x) tanh(x) exp(x) log(x)

log10(x) pow(x,y) sqrt(x) ceil(x)

floor(x) fabs(x)

Beyond double
• double-double 四精度: 32 decimal digit accuracy
• quadruple-double: 八精度: 64 decimal digit accuracy
• arbitrary precision: 任意精度: up to 1000 decimal digit

accuracy.

http://crd.lbl.gov/~dhbailey/mpdist/

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

Operator

• Relational operator
> (greater than) >= (greater or equal)
< (less than) <= (less or equal)
== (equal) != (not equal)

• Bitwise operator
& (and) | (or) ^ (exclusive or)
<< (left shift) >>(right shift)
~(1’s complement)

• Arithmetic operator
+ - * / % (modulus)

• Assignment operator
+= -= *= /= %= <<= >>= &= ^= |=

• Increment / decrement operator
++ - -

Assignment operator

expr1 += expr2 expr1 = (expr1) + (expr2)

() () 1x x y= ∗ + 1x y∗ = +

This form is awkward since we write x
twice, note that in Matlab we cannot
write x *= y+1

 2i + = 2i i= +

add 2 to i

take i, add 2, then put the result back in iincrement i by 2

Increment / decrement operator

• An operand of integral or floating type is incremented or decremented
by the integer value 1.

• The operand must have integral, floating, or pointer type.
• The unary operators (++ and – –) are called "prefix" (“postfix”)

increment or decrement operators when the increment or decrement
operators appear before (after) the operand.

• Postfix: The increment or decrement operation occurs after the
operand is evaluated.

postfix increment

Potential bug of equality operator

Question: which one (coding style) is better ?

When typing error occurs, ….

Wrong ! Why?

Good! Compiler help us to
detect typing error

Why 0 == x is better than x == 0

pseudo-logical bug, this kind of bug is very
difficult to find out, so write 0 == x always

Bitwise operator: AND

True table (真值表)

x y x & y
0 0 0
0 1 0
1 0 0
1 1 1

0 1 1 0 0 0 0 1‘a’ = 0x61

0 0 1 1 0 0 0 1‘1’ = 0x31&

0 0 1 0 0 0 0 1‘a’ & ‘1’ = 0x21

Bitwise operator: OR

True table (真值表)

x y x | y
0 0 0
0 1 1
1 0 1
1 1 1

0 1 1 0 0 0 0 1‘a’ = 0x61

0 0 1 1 0 0 0 1‘1’ = 0x31|

0 1 1 1 0 0 0 1‘a’ | ‘1’ = 0x71

Bitwise operator: exclusive OR

True table (真值表)

x y x ^ y
0 0 0
0 1 1
1 0 1
1 1 0

0 1 1 0 0 0 0 1‘a’ = 0x61

0 0 1 1 0 0 0 1‘1’ = 0x31&

0 1 0 1 0 0 0 0‘a’ ^ ‘1’ = 0x50

shift operator

0 1 1 0 0 0 0 1‘a’ = 0x61

truncate

0 1 1 0 0 0 0 10‘a’ >> 1 = 0x30

Fill zero

0 1 1 0 0 0 0 1 0‘a’ << 1 = 0xc2

OutLine

• Basic data type
- integral
- character and string
- floating point

• Operator
• Type conversion

Type conversion: done by compiler automatically

casting (coercion) 強制型別轉換
done by programmer

Do coercion as possible as you can.

