
Chapter 19 OpenMP

Speaker: Lung-Sheng Chien

Reference: [1] OpenMP C and C++ Application Program Interface v2.0
[2] OpenMP C and C++ Application Program Interface v3.0
[3] OpenMP forum, http://www.openmp.org/forum/
[4] OpenMP tutorial: https://computing.llnl.gov/tutorials/openMP/
[5] Getting Started with OpenMP:

http://rac.uits.iu.edu/hpc/openmp_tutorial/C/

OutLine

• OpenMP introduction
- shared memory architecture
- multi-thread

• Example 1: hello world
• Example 2: vector addition
• enable openmp in vc2005
• Example 3: vector addition + Qtime
• Example 4: matrix multiplication
• Example 5: matrix multiplication (block version)

What is OpenMP

http://en.wikipedia.org/wiki/OpenMP

• The OpenMP (Open Multi-Processing) is an application
programming interface (API) that supports multi-platform shared
memory multiprocessing programming in C/C++ and Fortran on
many architectures, including Unix and Microsoft Windows platforms.
It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior.

• OpenMP is a portable, scalable model that gives programmers a
simple and flexible interface for developing parallel applications for
platforms ranging from the desktop to the supercomputer.

• An application built with the hybrid model of parallel programming
can run on a computer cluster using both OpenMP and Message
Passing Interface (MPI).
OpenMP: shared memory
MPI: distributed memory

History of OpenMP

• The OpenMP Architecture Review Board (ARB) published its first
API specifications, OpenMP for Fortran 1.0, in October 1997.
October the following year they released the C/C++ standard.

• 2000 saw version 2.0 of the Fortran specifications with version 2.0 of
the C/C++ specifications being released in 2002.

• Version 2.5 is a combined C/C++/Fortran specification that was
released in 2005.

• Version 3.0, released in May, 2008, is the current version of the API
specifications. Included in the new features in 3.0 is the concept of
tasks and the task construct. These new features are summarized
in Appendix F of the OpenMP 3.0 specifications.

Goals of OpenMP

• Standardization:
Provide a standard among a variety of shared memory
architectures/platforms.

• Lean and Mean:
establish a simple and limited set of directives for programming
shared memory machines. Significant parallelism can be
implemented by using just 3 or 4 directives.

• Ease of Use:
-Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an all or
nothing approach

-Provide the capability to implement both coarse-grain and fine-grain
parallelism

• Portability:
-Supports Fortran (77, 90, and 95), C, and C++
-Public forum for API and membership

Website: http://openmp.org/wp/

http://www.openmp.org/forum/OpenMP forum:

Please register in this forum and browse articles in “General” item

multithreading• OpenMP is an implementation of , a method of parallelization whereby
the master "thread" (a series of instructions executed consecutively) "forks" a
specified number of slave "threads" and a task is divided among them. The threads
then run concurrently, with the runtime environment allocating threads to different
processors.

• The runtime environment allocates threads to processors depending on usage,
machine load and other factors. The number of threads can be assigned by the
runtime environment based on environment variables or in code using functions. The
OpenMP functions are included in a header file Clabelled "omp.h" in /C++

Multithread (多執行緒)

Core elements

A compiler directive in C/C++ is called a pragma (pragmatic information).
It is a preprocessor directive, thus it is declared with a hash (#). Compiler
directives specific to OpenMP in C/C++ are written in codes as follows:

OpenMP programming model [1]

• Shared Memory, Thread Based Parallelism:
OpenMP is based upon the existence of multiple threads in the shared memory
programming paradigm. A shared memory process consists of multiple threads.

• Explicit Parallelism:
OpenMP is an explicit (not automatic) programming model, offering the programmer
full control over parallelization.

• Fork - Join Model:
- OpenMP uses the fork-join model of parallel execution
- All OpenMP programs begin as a single process: the master thread. The

master thread executes sequentially until the first parallel region construct
is encountered

- FORK: the master thread then creates a team of parallel threads
- The statements in the program that are enclosed by the parallel region construct are

then executed in parallel among the various team threads
- JOIN: When the team threads complete the statements in the parallel

region construct, they synchronize and terminate, leaving only the master
thread

OpenMP programming model [2]

• Compiler Directive Based:
OpenMP parallelism is specified through the use of compiler directives.

• Nested Parallelism Support:
- The API provides for the placement of parallel constructs inside of other parallel

constructs
- Implementations may or may not support this feature.

• Dynamic Threads:
-The API provides for dynamically altering the number of threads which may used to

execute different parallel regions
- Implementations may or may not support this feature.

• I/O:
-OpenMP specifies nothing about parallel I/O. This is particularly important if multiple

threads attempt to write/read from the same file.
-If every thread conducts I/O to a different file, the issues are not as significant.
-It is entirely up to the programmer to insure that I/O is conducted correctly within the
context of a multi-threaded program.

• FLUSH Often?:
-OpenMP provides a "relaxed-consistency" and "temporary" view of thread memory

(in their words). In other words, threads can "cache" their data and are not required
to maintain exact consistency with real memory all of the time.

-When it is critical that all threads view a shared variable identically, the programmer
is responsible for insuring that the variable is FLUSHed by all threads as needed.

OutLine

• OpenMP introduction

• Example 1: hello world
- parallel construct

• Example 2: vector addition
• enable openmp in vc2005
• Example 3: vector addition + Qtime
• Example 4: matrix multiplication
• Example 5: matrix multiplication (block version)

Example 1: hello world [1]
hello.c

Makefile

The #pragma directives offer a way for each compiler to offer machine- and operating system-
specific features while retaining overall compatibility with the C and C++ languages. Pragmas are
machine- or operating system-specific by definition, and are usually different for every compiler.

If the compiler finds a pragma it does not recognize, it issues a warning, but compilation continues.

header file “omp.h” is necessary for
OpenMP programming

MSDN library 2005

man icpc

Example 1: hello world [2]

hello.c

Machine quartet2 has 4 cores

Example 1: hello world [3]

octet1 Machine octet1 has 8 cores (two quad-core)

hello.c
Question 1: How to impose number of threads in code?

environment variable OMP_NUM_THREADS

Example 1: hello world [4]
Question 2: How can we run the same code in sequential mode?

hello.c Makefile

sequential version

quartet2
octet1

only one core executes

Example 1: hello world [5]
Question 3: How can we issue number of threads explicitly in code?

hello.c

synchronization

wait until all 5 threads execute
“printf” statement.

use 5 threads (explicit) to execute
concurrently

every thread has its own copy

Example 1: hello world [6]

quartet2 octet1

th_id

core 0

th_id

core 1

th_id

core 2

th_id

core 3

th_id

core 4

Directive Format

The syntax of an OpenMP directive is formally specified by the grammar

Each directive starts with #pragma omp, to reduce the potential for conflict with
other (non-OpenMP or vendor extensions to OpenMP) pragma directives with the
same names. White space can be used before and after the #, and sometimes
white space must be used to separate the words in a directive. Preprocessing
tokens following the #pragma omp are subject to macro replacement.

PARALLEL construct for Directive

Conditional compilation

Work-sharing construct
sections Directive

workshare Directive

single Directive

Parallel construct

• The number of physical processors hosting the threads is implementation-defined.
Once created, the number of threads in the team remains constant for the duration of
that parallel region.

• When a thread reaches a PARALLEL directive, it creates a team of threads and
becomes the master of the team. The master is a member of that team and has
thread number 0 within that team.

• Starting from the beginning of this parallel region, the code is duplicated and all
threads will execute that code.

• There is an implied barrier at the end of a parallel region. Only the master thread of
the team continues execution at the end of a parallel region.

How many threads

• The number of threads in a parallel region is determined by the following
factors, in order of precedence:
- evaluation of the IF clause
- setting of the NUM_THREADS clause
- use of the omp_set_num_threads() library function
- setting of the OMP_NUM_THREADS environment variable
- implementation default - usually the number of CPUs on a node,
though it could be dynamic.

• Threads are numbered from 0 (master thread) to N-1.

• Master thread is numbered as 0.

Question 4: How to write parallel code such that it is independent of number of
cores of host machine?

Question 5: What happens if number of threads is larger than number of cores of
host machine?

Private clause

The PRIVATE clause declares variables in its
list to be private to each thread.

“private variable” means each thread has its
own copy and cannot interchange information.

• PRIVATE variables behave as follows:
- a new object of the same type is declared once for each thread in
the team

- all references to the original object are replaced with references to
the new object

- variables declared PRIVATE are uninitialized for each thread

Exercise 1: modify code of hello.c to show “every thread has its own private
variable th_id”, that is, shows th_id has 5 copies.

Exercise 2: modify code of hello.c, remove clause “private (th_id)” in #pragma
directive, what happens? Can you explain?

OutLine

• OpenMP introduction
• Example 1: hello world

• Example 2: vector addition
- work-sharing construct: for Directive

• enable openmp in vc2005
• Example 3: vector addition + Qtime
• Example 4: matrix multiplication
• Example 5: matrix multiplication (block version)

Work-sharing construct
• A work-sharing construct divides the execution of the enclosed code region among the members

of the team that encounter it

• A work-sharing construct must be enclosed dynamically within a parallel region in order for the
directive to execute in parallel

• Work-sharing constructs do not launch new threads

• There is no implied barrier upon entry to a work-sharing construct, however there is an implied
barrier at the end of a work sharing construct

sections: breaks work into separate,
discrete sections. Each section is
executed by a thread.
A type of functional parallelism

single: serializes a
section of code.

for: shares iterations of a loop
across the team.
A type of data parallelism

Example 2: vector addition [1]

vecadd.c walltime.c

parameter

Tool for measuring time

only valid in Linux system

vecadd.c

Example 2: vector addition [2]

vecadd.c

Makefile

“O0” means no optimization

shared clause and default clause

The SHARED clause declares variables
in its list to be shared among all threads
in the team

• A shared variable exists in only one memory location and all threads can read or write
to that address (every thread can “see” the shared variable)

• It is the programmer's responsibility to ensure that multiple threads properly access
SHARED variables (such as via CRITICAL sections)

Question 6: Why index i must be private variable and a,b,c,N can be shared
variable? What happens if we change i to shared variable? What happens if we
change a,b,c,N to private variable?

The DEFAULT clause allows the user to specify a default PRIVATE, SHARED,
or NONE scope for all variables in the lexical extent of any parallel region.

Work-Sharing construct: for Directive

• SCHEDULE: Describes how iterations of the loop are divided among the
threads in the team
- static: loop iterations are divided into pieces of size chunk and then

statically assigned to threads. If chunk is not specified, the iterations
are evenly (if possible) divided contiguously among the threads

- dynamic: loop iterations are divided into pieces of size chunk, and
dynamically scheduled among the threads; when a thread finishes
one chunk, it is dynamically assigned another.
The default chunk size is 1.

• nowait: If specified, then threads do not synchronize at the end of the
parallel loop.

Example of static schedule

Assume we have 16 array elements, say a[16], b[16] and c[16] and use 4 threads

no chunk is specified, compiler would divide 16 elements into 4 threads 1

0 3Thread ID
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a

1 2

chunk = 22

0 2Thread ID 0 1 2 3 1 3

Results of example 2
82 10N = ×

compiler: Intel C compiler icpc 10.0

Compiler option: -O0

Number of
thread

quartet2 Octet1

1 1.6571 (s) 1.5451 (s)

2 0.9064 (s) 0.9007 (s)

4 0.5433 (s) 0.5165 (s)

8 0.6908 (s) 0.4830 (s)

16 0.7694 (s) 0.5957 (s)

32 0.9263 (s) 0.7098 (s)

64 0.9625 (s) 0.7836 (s)

()
()

single 1.5451 3.199
8 0.483

T
T core

= =
−

Octet1:

()
()

single 1.6571 3.05
4 0.5433

T
T core

= =
−

quartet2:

Question 7: the limitation of performance
improvement is 3, why? Can you use different
configuration of schedule clause to improve this
number?

OutLine

• OpenMP introduction
• Example 1: hello world
• Example 2: vector addition

• enable openmp in vc2005
- vc2005 supports OpenMP 2.0
- vc 6.0 does not support OpenMP

• Example 3: vector addition + Qtime
• Example 4: matrix multiplication
• Example 5: matrix multiplication (block version)

Example 1 (hello world) in vc2005 [1]

Step 1: create a empty consol application

Example 1 (hello world) in vc2005 [2]

Example 1 (hello world) in vc2005 [3]

Step 2: copy hello.c to this project and add hello.c to project manager

Example 1 (hello world) in vc2005 [4]

Step 3: change platform to x64

Example 1 (hello world) in vc2005 [5]

choose option “x64”

update platform as “x64”

Example 1 (hello world) in vc2005 [6]

Step 4: enable “openmp” support

vc 2005 support OpenMP 2.0

Example 1 (hello world) in vc2005 [7]

Step 5: compile and execute

Example 2 (vector addition) in vc2005 [1]
walltime.c only works in Linux machine since no “sys/time.h” in windows

In time.h of ANCI C, no function “gettimeofday”, hence we give up walltime.c

Example 2 (vector addition) in vc2005 [2]

time_t time(time_t *tp)

returns the current calendar time or -1 if the time
is not available. If tp is not NULL, the return
value is also assigned to *tp.

double difftime(time_t time_2, time_t time_1)

returns time_2 – time_1 expressed in seconds

vecadd.cpp

OutLine

• OpenMP introduction
• Example 1: hello world
• Example 2: vector addition
• enable openmp in vc2005

• Example 3: vector addition + Qtime

• Example 4: matrix multiplication
• Example 5: matrix multiplication (block version)

Example 3: vector addition (Qtime) [1]
vecadd.cpp

constructs the time 0 hours, minutes,
seconds and milliseconds, i.e.
00:00:00.000 (midnight).

This is a valid time.

• A QTime object contains a clock time, i.e. the number of hours, minutes, seconds, and
milliseconds since midnight

• QTime uses the 24-hour clock format; it has no concept of AM/PM. It operates in local time; it
knows nothing about time zones or daylight savings time.

• QTime can be used to measure a span of elapsed time using the start(), restart elapsed(), and ()
functions

Example 3: vector addition (Qtime) [2]

vecadd.cpp

Example 3: vector addition (Qtime) [3]

generate project file vecadd_qt.pro

generate Makefile

Makefile

Example 3: vector addition (Qtime) [4]

Embed Qt 3.2.1 non-comercial version into vc 2005

Step 1: setup an empty project

Example 3: vector addition (Qtime) [5]

Step 2: copy vecadd.cpp into this project

Step 3: add item “vecadd.cpp” in project manager

Example 3: vector addition (Qtime) [6]

Step 4: project properties C/C++ General Additional include Directories

.;$(QTDIR)\include;C:\Qt\3.2.1NonCommercial\mkspecs\win32-msvc

Example 3: vector addition (Qtime) [7]

Step 5: project properties C/C++ Preprocessor Preprocessor Definitions

WIN32;_DEBUG;_CONSOLE;_MBCS;UNICODE;QT_DLL;QT_THREAD_SUPPORT

Step 6: project properties C/C++ Language OpenMP Support

Example 3: vector addition (Qtime) [8]

Step 7: project properties Linker General Additional Library Directories

$(QTDIR)\lib;C:\Program Files (x86)\Microsoft Visual Studio 8\VC\lib

Example 3: vector addition (Qtime) [9]

Step 8: project properties Linker Input Additional Dependence

"qt-mtnc321.lib" "qtmain.lib" "kernel32.lib"

Step 9: compile and execute

Restriction: QT3 in windows only support 32-bit application, we must choose
platform as “Win32”, we will solve this problem after installing QT4

OutLine

• OpenMP introduction
• Example 1: hello world
• Example 2: vector addition
• enable openmp in vc2005
• Example 3: vector addition + Qtime

• Example 4: matrix multiplication

• Example 5: matrix multiplication (block version)

Example 4: matrix multiplication [1]matrixMul.h

1

wA

i

matrixMul.cpp

j ik kj
k

c a b
=

= ∑

[]ika A i wA k= ⋅ +

[]kjb A k wB j= ⋅ +

[]ijc A i wC j= ⋅ +

sequential version

row-major index

Example 4: matrix multiplication [2]

matrixMul.cpp

parallel version

Question 8: we have three for-loop, one is for “i”, one is for “j” and last one is for “k”,
which one is parallelized by OpenMP directive?

Question 9: explain why variable i, j, k, sum, a, b are declared as private? Can we
move some of them to shared clause?

Example 4: matrix multiplication [3]main.cpp

use QT timer

Example 4: matrix multiplication [4]
main.cpp

use qmake to generate Makefile

Example 4: matrix multiplication [5]

Let BLOCK_SIZE = 16 and () () () ()2_size A size B size C N BLOCK SIZE= = = ⋅

() () ()total memory usage floatsize A size B size C= + +

Platform: oectet1, with compiler icpc 10.0, -O2

N Total size Thread 1 Thread 2 Thread 4 Thread 8

16 0.75 MB 53 ms 31 ms 21 ms 24ms

32 3 MB 434 ms 237 ms 121 ms 90 ms

64 12 MB 17,448 ms 8,964 ms 6,057 ms 2,997 ms

128 48 MB 421,854 ms 312,983 ms 184,695 ms 92,862 ms

256 192 MB 4,203,536 ms 2,040,448 ms 1,158,156 ms 784,623 ms

Large performance gap amogn N = 32, N = 64 and N = 128, so this algorithm is NOT
good. Besides improvement of multi-thread is not significant.

Example 4: matrix multiplication [6]

running

Use command “top” to see resource usage

CPU usage is 800 %, 8 cores are busy

Exercise 3: verify subroutine matrixMul_parallel

matrixMul.cpp

matrixMul.cpp

Combine Parallel Work-sharing constructs

Exercise 4: verify following subroutine matrix_parallel, which parallelizes loop-j ,
not loop-i.

1. Performance between loop-i and loop-j

2. why do we declare index i as shared variable? What happens if we declare
index i as private variable?

matrixMul.cpp

OutLine

• OpenMP introduction
• Example 1: hello world
• Example 2: vector addition
• enable openmp in vc2005
• Example 3: vector addition + Qtime
• Example 4: matrix multiplication

• Example 5: matrix multiplication (block version)

Example 5: matrix multiplication (block version) [1]

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

6 4A R ×∈

4 6B R ×∈
6 6C R ×∈

× =

x

y

0 1

54

2 3

76

8 9

1312

10 11

1514

16 17

2120

18 19

2322

6 4A R ×∈

hA

wA

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

6 4A R ×∈

bx

by

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

tx

ty

0

0
0

0

2

1

1
1

1
blocksize by×

blocksize bx× tx

ty

global index
() ()(), , ,bx by tx ty (), blocksize bx tx blocksize by ty× + × + row-major

Example 5: matrix multiplication (block version) [2]
matrixMul_block.cpp

Shared memory in GPU

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

6 4A R ×∈

4 6B R ×∈

×

_ 3hA grid = _ 2wA grid = _ 3wB grid =

Example 5: matrix multiplication (block version) [3]

matrixMul_block.cpp

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

6 4A R ×∈

4 6B R ×∈

×
aBegin = physical index of first entry in block A (0,1)

bBegin = physical index of first entry in block B (1,0)

copy global data to small block, why?

Example 5: matrix multiplication (block version) [4]
matrixMul_block.cpp

Compute submatrix of C sequentially

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

() () ()
1

, , ,
wA

k
C i j A i k B k j

=

= ∑
for all () (), 1,1i j block∈

× =
4 6B R ×∈

6 6C R ×∈6 4A R ×∈

A (0,1) B (1,0) (1,1)A B (1,1) = (1,1)Cor equivalently +

Example 5: matrix multiplication (block version) [5]

Parallel version
GPU code

Example 5: matrix multiplication (block version) [6]
Let BLOCK_SIZE = 16 and () () () ()2_size A size B size C N BLOCK SIZE= = = ⋅

() () ()total memory usage floatsize A size B size C= + +

Platform: oectet1, with compiler icpc 10.0, -O2

N Total size Thread 1 Thread 2 Thread 4 Thread 8

16 0.75 MB 40 ms 34 ms 34 ms 44 ms

32 3 MB 301 ms 309 ms 240 ms 219 ms

64 12 MB 2,702 ms 2,310 ms 1,830 ms 1,712 ms

128 48 MB 24,548 ms 19,019 ms 15,296 ms 13,920 ms

256 192 MB 198,362 ms 151,760 ms 129,754 ms 110,540 ms

Non-block version

N Total size Thread 1 Thread 2 Thread 4 Thread 8

16 0.75 MB 53 ms 31 ms 21 ms 24 ms

32 3 MB 434 ms 237 ms 121 ms 90 ms

64 12 MB 17,448 ms 8,964 ms 6,057 ms 2,997 ms

128 48 MB 421,854 ms 312,983 ms 184,695 ms 92,862 ms

256 192 MB 4,203,536 ms 2,040,448 ms 1,158,156 ms 784,623 ms

Question 10: non-block version is much slower than block version, why?

Example 5: matrix multiplication (block version) [7]

Block version, BLOCK_SIZE = 512
N Total size Thread 1 Thread 2 Thread 4 Thread 8

2 12 MB 3,584 ms 1,843 ms 961 ms 453 ms

4 48 MB 27,582 ms 14,092 ms 7,040 ms 3,533 ms

8 192 MB 222,501 ms 110,975 ms 55,894 ms 28,232 ms

Block version, BLOCK_SIZE = 16

N Total size Thread 1 Thread 2 Thread 4 Thread 8

64 12 MB 2,702 ms 2,310 ms 1,830 ms 1,712 ms

128 48 MB 24,548 ms 19,019 ms 15,296 ms 13,920 ms

256 192 MB 198,362 ms 151,760 ms 129,754 ms 110,540 ms

Question 11: larger BLOCK_SIZE implies better performance when using multi-thread, why?

Question 12: small BLOCK_SIZE is better in single thread, why?

Question 13: matrix-matrix multiplication is of complexity O(N^3), which algorithm is
“good” to achieve this property?

Example 5: matrix multiplication (block version) [8]

Cache has 4 MB, we can have large BLOCK_SIZE

cache line is 64 byte (16 float)

In CPU
() () 2 2512 1024 1size Bs size As float Byte MB= = = =BLOCK_SIZE = 512

In GPU
() () 216 1size Bs size As float kB= = =BLOCK_SIZE = 16

Exercise 5: verify subroutine matrixMul_block_seq with non-block version, you
can use high precision package.

Non-block version

Exercise 6: if we use “double”, how to choose value of BLOCK_SIZE, show your
experimental result.

Exercise 7: Can you modify subroutine matrixMul_block_parallel to improve its
performance?
Exercise 8: compare parallel computation between CPU and GPU in your host
machine

