
Chapter 18 GPU (CUDA)

Speaker: Lung-Sheng Chien

Reference: [1] NVIDIA_CUDA_Programming_Guide_2.0.pdf
[2] CudaReferenceManual_2.0.pdf
[3] nvcc_2.0.pdf
[4] NVIDIA forum, http://forums.nvidia.com/index.php?act=idx

OutLine

• CUDA introduction
- process versus thread
- SIMD versus SIMT

• Example 1: vector addition, single core
• Example 2: vector addition, multi-core
• Example 3: matrix-matrix product
• Embed nvcc to vc2005

Process versus thread

Reference: http://en.wikipedia.org/wiki/Thread_(computer_science)

• A process is the "heaviest" unit of kernel scheduling. Processes own
resources allocated by the operating system. Resources include
memory, file handles, sockets, device handles, and windows.
Processes do not share address spaces or file resources except
through explicit methods such as inheriting file handles or shared
memory segments, or mapping the same file in a shared way.

• A thread (執行緒, 線程) is the "lightest" unit of kernel scheduling. At
least one thread (main thread) exists within each process. If multiple
threads can exist within a process, then they share the same
memory and file resources. Threads do not own resources except
for a stack, a copy of the registers including the program counter

Spec [1]

Each multiprocessor is composed of 8 processors, so that a multiprocessor is able to
process the 32 threads of a warp in 4 clock cycles

fluid-02

matrix
Support double-
precision

fluid-01

Product information: http://shopping.pchome.com.tw/ and http://www.sunfar.com.tw

Geforce GTX 260Geforce GTX 280

Geforce 9600GT

Geforce 8800GT

Geforce 9600GT Spec [2]

Geforce 8800GT

Spec [3]

Geforce GTX260

NVIDIA GPU and CUDA
GPU (graphic processor unit): embedded in graphic card (顯示卡)
CUDA is a parallel programming model provided by NVIDIA

GPU has larger memory
bandwidth than CPU

Data from NVIDIA_CUDA_Programming_Guide_2.0.pdf

Spec for compute capability 1.0

• The maximum number of threads per block is 512
• The maximum sizes of the x-, y-, and z-dimension of a thread block

are 512, 512, and 64, respectively.
• The maximum size of each dimension of a grid of thread blocks is

65535
• The warp size is 32 threads
• The number of registers per multiprocessor is 8192 (one

multiprocessor has 8 processors, one processor has 1024 registers)
• The amount of shared memory available per multiprocessor is 16KB

organized into 16 banks.
• The maximum number of active blocks per multiprocessor is 8
• The maximum number of active warps per multiprocessor is 24
• The maximum number of active threads per multiprocessor is 768

cuda
Reference: http://en.wikipedia.org/wiki/CUDA

• CUDA (Compute Unified Device Architecture) is a compiler and
set of development tools that enable programmers to use a variation
of C based on the PathScale C compiler to code algorithms for
execution on the graphics processing unit (GPU).

• CUDA has been developed by NVIDIA and to use this architecture
requires an Nvidia GPU and drivers.

• Unlike CPUs, GPUs have a parallel "many-core" architecture, each
core capable of running thousands of threads simultaneously.

• core are three key abstractions – a hierarchy of thread groups,
shared memories, and barrier synchronization.

• the GPU is well-suited to address problems that can be expressed
as data-parallel computations – the same program is executed on
many data elements in parallel – with high arithmetic intensity – the
ratio of arithmetic operations to memory operations.

SIMD (vector machine)
Reference: http://en.wikipedia.org/wiki/SIMD

• SIMD (Single Instruction, Multiple Data) is a
technique employed to achieve data level
parallelism, as in a vector processor.
- supercomputers
- MMX of pentium 4
- SSE (Streaming SIMD Extensions) of x86
architecture

[]0A []1A []2A []3A

[]0B []1B []2B []3B
+

[]0C []1C []2C []3C

SIMT (CUDA, Tesla architecture)

• SIMT (single-instruction, multiple-thread): The multiprocessor maps each
thread to one scalar processor core, and each scalar thread executes
independently with its own instruction address and register state.

• The multiprocessor SIMT unit creates, manages, schedules, and executes
threads in groups of 32 parallel threads called warps.

• Individual threads composing a SIMT warp start together at the same
program address but are otherwise free to branch and execute
independently.

• When a multiprocessor is given one or more thread blocks to execute, it
splits them into warps that get scheduled by the SIMT unit.

• A warp executes one common instruction at a time, so full efficiency is
realized when all 32 threads of a warp agree on their execution path.

on-chip share memory

8 scalar processor (SP)

Multithreaded instruction unit

special function unit

multiprocessor

A set of multiprocessors with on-chip shared memory

Geforce 8800GT has 14 multiprocessors

Shared memory (on-chip) is shared
by all scalar processor cores

One multiprocessor has
8 SP (scalar processor)

Global memory (DRAM): not on-chip

Software stack

C-code, mixed CPU and GPU

CPU, main memory

CUFFT: FFT package

CUBLAS: blas package

GPU

OutLine

• CUDA introduction

• Example 1: vector addition, single core
• Example 2: vector addition, multi-core
• Example 3: matrix-matrix product
• Embed nvcc to vc2005

Example 1: vector addition [1]

Tell C++ compiler to compile function
computeGold as C-functionvecadd_gold.cpp

measure time

:C A B= +

clcok_t clock(void)
returns the processor time used by the program since the beginning of execution, or -1 if unavailable.
clock()/CLOCKS_PER_SEC is a time in seconds

Question: how to write vector addition in GPU version?

Example 1: vector addition [2]
vecadd_GPU.cu1

2

3

4

5

extension .cu means cuda file, it cannot be compiled by g++/icpc, we must use cuda
compiler nvcc to compile it first, we will discuss this later

1

Header file in directory /usr/local/NVIDIA_CUDA_SDK\common\inc2

Tell C++ compiler to compile function vecadd_GPU as C-function3

cudaMalloc allocates device memory block in GPU device, the same as malloc4

Example 1: vector addition [3]

cudaMemcpy copies data between GPU and host, the same as memcpy5

Example 1: vector addition [4]

6

7
Measure time

In fact, we can use
assert() to replace it

Header file util.h

7

Example 1: vector addition [5]

vecadd<<< 1, N >>>(d_C, d_A, d_B, N) ; is called kernel function in vecadd_kernel.cu

N threads per thread block 1 thread block

vecadd_kernel.cu

8

9

10

8

9 If we emulation (仿效) GPU under CPU, then we can use standard I/O, i.e. printf,
however if we execute on GPU, printf is forbidden.

In emulation mode, macro __DEVICE_EMULATION__ is set.

Example 1: vector addition [6]

10

Each of the threads that execute a kernel is given a unique thread ID that
is accessible within the kernel through the built-in threadIdx variable.

Thread 0 Thread 1 Thread 2 Thread N

[]0A

[]0B

[]0C

+

[]1A

[]1B

[]1C

+

[]2A

[]2B

[]2C

[]A N

[]B N

[]C N

+

run simultaneously

+

Question 1: how many threads per block, arbitrary?

Question 2: can we use more than two thread blocks?

Example 1: vector addition [7]

Question 1: how many threads per block, arbitrary?

Question 3: what happens if we use more than 512 threads in a thread block?

Question 2: can we use more than two thread blocks?

• How many blocks a multiprocessor can process at once depends on how
many registers per thread and how much shared memory per block are
required for a given kernel.

• If there are not enough registers or shared memory available per
multiprocessor to process at least one block, the kernel will fail to launch. A
multiprocessor can execute as many as eight thread blocks concurrently.

Question 4: how to issue more than two thread blocks?

We will answer question 3 and question 4 after we finish this simple example

Example 1: vector addition (driver) [8]

vecadd.cu

use macro CUT_EXIT

Include cuda source code such that we only
need to compile one file

Tell C++ compiler to compile function vecadd_GPU and computeGold as C-function

Example 1: vector addition (driver) [9]

Allocate host memory for vector A, B and C

Do C = A+ B in GPU

compute golden vector
in CPU

Example 1: vector addition (driver) [10]

Allocate host memory for
vector A, B and C

random A and B

Do C = A+ B in GPU

compute golden vector
in CPU

Example 1: vector addition (compile under Linux) [11]

Step 1: upload all source files to workstation, assume you put them in directory vecadd

Type “man nvcc” to see manual of NVIDIA CUDA compiler

Example 1: vector addition (compile under Linux) [12]

Step 2: edit Makefile by “vi Makefile”

$(SRC_CU) means vecadd.cu

-L[library path]

-lcuda = libcuda.a

Macro definition

target

Example 1: vector addition (compile under Linux) [13]

Step 3: type “make nvcc_run”

1
2

3

“Device is Geforce 9600 GT” means
GPU is activated correctly.

1

128N =

2 To execute C = A + B in GPU costs

0.046 ms

3 To execute C = A + B in CPU costs

0.0 ms

Question 5: we know number of threads per block is 512, how to verify this?

Question 6: It seems that CPU is faster than GPU, what’s wrong?

Example 1: vector addition (compile under Linux) [14]

Modify file vecadd.cu, change N to 512, then compile and execute again

Modify file vecadd.cu, change N to 513, then compile and execute again, it fails

Example 1: vector addition (compile under Linux) [15]

vecadd_GPU.cuvecadd_GPU.cu

Including C = A + B in GPU and data transformation
from device to Host

CPU is faster than GPU for small N, how about for large N ?

Example 1: vector addition (double precision) [16]

Makefile

-arch sm_13

enable double precision (on compatible
hardware, say Geforce GTX260 in fluid-
01.am.nthu.edu.tw)

Remember to replace “float” by “double”

in source code

man nvcc

OutLine

• CUDA introduction
• Example 1: vector addition, single core

• Example 2: vector addition, multi-core
• Example 3: matrix-matrix product
• Embed nvcc to vc2005

Example 2: multicore vector addition [1]

vecadd_kernel.cu

vecadd_kernel.cu

More than two thread blocks, each
block has 512 threads

Built-in blockIdx variable denotes
which block, starting from 0

Built-in threadIdx variable denotes
which thread, starting from 0

Question 7: how does multi-thread-block work?

Question 8: how to invoke multi-thread-block?

Example 2: multicore vector addition [2]

0SP 1SP 2SP 3SP

[]0block []1block []2block []3block

[]0thread []1thread []2thread []3thread

4threads =

()# 4 4 16N of block threads= × = × =

[]0A []1A []2A []3A []4A []5A []6A []7A []8A []9A []10A []11A []12A []13A []14A []15A

[]0block []1block []2block []3block
i = bx*threads + threadIdx.x

Example 2: multicore vector addition [3]

vecadd_GPU.cu

one-dimension thread block

one-dimension grid

Example 2: multicore vector addition [4]

two-dimension grid

two-dimension thread block

When do matrix – matrix product, we will use two-dimensional index

Example 2: multicore vector addition (driver) [5]

vecadd.cu

Maximum number of threads per block is 512

Maximum size of each dimension of a grid of
thread blocks is 65535

Example 2: multicore vector addition (result) [6]

()# N of block threads= × () size N sizeof float Byte= ×512threads =

Experimental platform: Geforce 9600 GT

of block size GPU (ms) Device Host (ms) CPU (ms)
16 32 KB 0.03 0.059 0

32 64 KB 0.032 0.109 0

64 128 KB 0.041 0.235 0

128 256 KB 0.042 0.426 0

256 512 KB 0.044 0.814 0

512 1.024 MB 0.038 1.325 0

1024 2.048 MB 0.04 2.471 0

2048 4.096 MB 0.044 4.818 0

4096 8.192 MB 0.054 9.656 20

8192 16.384 MB 0.054 19.156 30

16384 32.768 MB 0.045 37.75 60

32768 65.536 MB 0.047 75.303 120

65535 131 MB 0.045 149.914 230

C A B= +
Copy C from device to host

Table 1

vecadd_GPU.cu Example 2: multicore vector addition
[7]

All threads work asynchronous

Example 2: multicore vector addition (result, correct timing) [8]

()# N of block threads= × () size N sizeof float Byte= ×512threads =

Experimental platform: Geforce 9600 GT

of block size GPU (ms) Device Host (ms) CPU (ms)
16 32 KB 0.04 0.059 0

32 64 KB 0.056 0.122 0

64 128 KB 0.057 0.242 0

128 256 KB 0.063 0.381 0

256 512 KB 0.086 0.67 0

512 1.024 MB 0.144 1.513 0

1024 2.048 MB 0.237 2.812 10

2048 4.096 MB 0.404 5.426 10

4096 8.192 MB 0.755 9.079 20

8192 16.384 MB 1.466 17.873 30

16384 32.768 MB 2.86 34.76 60

32768 65.536 MB 5.662 70.286 130

65535 131 MB 11.285 138.793 240

C A B= +
Copy C from device to host

Table 2

Example 2: multicore vector addition (throughput) [8]

Total data transfer in byte or bit (size)
define throughput = 3×

Total time (GPU)

Load A[i]1

maximum throughput 34 / secGByte≈

Load B[i]2

store C[i]3

vectors A, B, C are stored in global
memory and 3 memory fetch only use
a “add” operation, not floating point
operation dominanted.

Geforce 9600GT

Exercise

1. So far, one thread is responsible for one data element, can you change this, say
one thread takes care of several data entries ?

vecadd_kernel.cu

vecadd_kernel.cu

2. Maximum number of threads per block is 512, when data set is more than 512, we
use multi-thread-block to do parallel computing, however Maximum size of each
dimension of a grid of thread blocks is 65535, when data set is more than 131MB,
how can we proceed?

3. From table 2, data transfer from device to host is about half of CPU computation, it
means that if we can accelerate CPU computation, then GPU has no advantage, right?

4. measure your video card and fill-in table 2, also try double-precision if your hardware
supports.

OutLine

• CUDA introduction
• Example 1: vector addition, single core
• Example 2: vector addition, multi-core

• Example 3: matrix-matrix product
- grid versus thread block

• Embed nvcc to vc2005

Example 3: matrix-matrix product (CPU-version) [1]

Consider matrix-matrix product C AB= , all matrices are indexed in row-major
and starting from zero (C-like)

6 4A R ×∈ 4 6B R ×∈ 6 6C R ×∈

0 1

54

2 3

76

8 9

1312

10 11

1514

16 17

2120

18 19

2322

0 1

76

12 13

1918

2 3

98

14 15

2120

4 5

1110

16 17

2322

0 1

76

2 3

98

4 5

1110

12 13

1918

14 15

2120

16 17

2322

24 25

3130

26 27

3332

28 29

3534

× =
hB

wB

hC

wC

hA

, , wA hB hC hA wC wB= = =

wA matrixMul_gold.cpp

(),A i k i wA k= × +

(),B k j k wB j= × +

(),C i j i wC j= × +

Example 3: matrix-matrix product (GPU-version) [2]

We use 2x2 block as a unit and divide matrix C into 6 block. Then we plan to deal with

each sub-matrix of C with one thread-block.
x

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

6 4A R ×∈

4 6B R ×∈

Inner-product based

× =y

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

6 6C R ×∈

BLOCK_SIZE = 2

Example 3: matrix-matrix product (GPU-version) [3]

x

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

6 4A R ×∈

4 6B R ×∈

× =y

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

6 6C R ×∈

Question 9: how to transform (grid index, thread index) to physical index ?

Example 3: matrix-matrix product (index) [4]

0 1

54

2 3

76

8 9

1312

10 11

1514

16 17

2120

18 19

2322

6 4A R ×∈

hA

wA

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

6 4A R ×∈

bx

by

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

tx

ty

0

0

2

1

1
0 1

0

1
blocksize by×

blocksize bx× tx

ty

The physical index of first entry in block () (),bx by blocksize by wA blocksize bx= × × + ×

e.g. The physical index of first entry in block () ()1, 2 2 2 4 2 1 16 2 18= × × + × = + =

The physical index of (block index, thread index) is () ()() () (), , , ,bx by tx ty bx by wA ty tx= + × +

() ()() () ()() (), , , 1, 2 , 1,1 18 4 1 1 23bx by tx ty = = + × + =e.g.

global index
() ()(), , ,bx by tx ty (), blocksize bx tx blocksize by ty× + × + row-major

Example 3: matrix-matrix product [5]

() () ()
1

, ,
wA

k
C i j A i k B k j

=

= ∑ () (, 1i j block∈),1, for all computed simultaneouslyConsider

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

× =
4 6B R ×∈

6 6C R ×∈6 4A R ×∈

A (0,1) B (1,0) (1,1)A B (1,1) = (1,1)Cor equivalently +

A (0,1) B (1,0) (1,1)A B (1,1)+ = C

A (0,1) B (1,0) (1,1)A B (1,1)+ = C
Executed in a thread block,
say computed simultaneously.

Clearly we need 4 threads to
run at the same time

A (0,1) B (1,0) (1,1)A B (1,1)+ = C

A (0,1) B (1,0) (1,1)A B (1,1)+ = C

Example 3: matrix-matrix product [6]
since all 4 threads share the same submatrix of A and B, we use share memory (on-chip)

to store submatrix of A and B to decrease memory latency.

Step 1: add first product term to submatrix of C

C A (0,1) B (1,0) (1,1)A B (1,1)+=

A (0,1) B (1,0) (1,1)A B (1,1)+=C

A (0,1) B (1,0) (1,1)A B (1,1)+=C

A (0,1) B (1,0) (1,1)A B (1,1)+=C

share memory

As A= (0,1)

Bs B= (1,0)

The __shared__ quantifier declares a variable

Example 3: matrix-matrix product [7]

aBegin = physical index of first entry in block A (0,1)(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)×
bBegin = physical index of first entry in block B (1,0)4 6B R ×∈

6 4A R ×∈
The physical index of first entry in block () (),bx by blocksize by wA blocksize bx= × × + ×

(),0bBegin bx blocksize bx= = ×() ()0,aBegin by blocksize by wA= = × ×

A (0,1) B (1,0) BsAsStep 1: copy to and to

all threads in this thread block do copy action

before submatrix C is computed

The physical index of (block index, thread index) is () ()() () (), , , ,bx by tx ty bx by wA ty tx= + × +

Example 3: matrix-matrix product [8]

Step 2: add first product term to submatrix of C

C A (0,1) B (1,0)=

A (0,1) B (1,0)=C

A (0,1) B (1,0)=C

A (0,1) B (1,0)=C

Note that each thread in thread block has its private variable Csub

Step 3: move aBegin and bBegin to next block

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

() ()1,aBegin by blocksize by wA blocksize= = × × +

(),1bBegin bx blocksize wA blocksize bx= = × + ××
() aBegin aStep blocksize+ = =4 6B R ×∈
() bBegin bStep blocksize wA+ = = ×6 4A R ×∈

Example 3: matrix-matrix product [9]

A (1,1) (1,1) BsAs BStep 4: copy to and to

Step 5: add second product term to submatrix of C

C (1,1)A B (1,1)+ =

C (1,1)A B (1,1)+ =

C (1,1)A B (1,1)

(1,1)A B (1,1)

+ =

+ =C

Example 3: matrix-matrix product (source code) [10]

see /usr/local/NVIDIA_CUDA_SDK\projects\matrixMul

matrixMul.h

The amount of shared memory
available per multiprocessor is
16KB (since multiprocessor has 8
SP, each SP has only 2KB)

CA B
(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(2,2)

hA
hB

hC× =

wB

wCwA

Example 3: matrix-matrix product (source code) [11]

matrixMul_kernel.cu

Each thread has its own index (bx, by) and (tx, ty)

Each thread has its private variable Csub

Example 3: matrix-matrix product (source code) [12]

3

1

2

copy submatrix of A and B to shared
memory, this is done by all threads
in this thread block

1

2 Add partial result of matrix-matrix
product into Csub

3 Each thread stores back their
computed result into global matrix C

() ()() () (), , , ,bx by tx ty bx by wA ty tx= + × +

() (),bx by blocksize by wA blocksize bx= × × + ×

Example 3: matrix-matrix product (driver) [13]

matrixMul.cu vecadd.cu

The same structure

Example 3: matrix-matrix product (driver) [14]

matrixMul.cu

Allocate host memory for matrix A, B

Allocate device memory for matrix A, B

matrixMul.h

Example 3: matrix-matrix product (driver) [15]

matrixMul.cu
matrixMul.h

threads = (16, 16, 1)

grid = (3, 3, 1)

Example 3: matrix-matrix product (driver) [16]

Example 3: matrix-matrix product (compile on Linux) [17]

Step 1: upload all source files to workstation, assume you put them in directory matrixMul

Step 2: edit Makefile by “vi Makefile”

Step 3: type “make nvcc_run”

Exercise

• modify code in matrixMul, measure time for computing golden
vector , time for C = A*B under GPU and time for data transfer,
compare them.

• We have shown you vector addition and matrix-matrix product,
which one is better in GPU computation, why?
(you can compute ratio between floating point operation and
memory fetch operation)

• modify source code in matrixMul, use column-major index, be
careful indexing rule.

• We have discussed that matrix-vector product has two versions, one
is inner-product-based, one is outer-product-based, implement these
two methods under GPU

OutLine

• CUDA introduction
• Example 1: vector addition, single core
• Example 2: vector addition, multi-core

• Example 3: matrix-matrix product

• Embed nvcc to vc2005

Resource: register NVIDIA forum

http://www.nvidia.com/object/cuda_get.html

How to embed “nvcc” into VC 2005 [1]

Education: list in NVIDIA website

鄭振牟教授

Education: course website

http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html

University of Illinois at Urbana-Champaign, taught by Prof. Wen-Mei Hwu

How to embed “nvcc” into VC 2005 [2]

On desktop, right click the mouse and choose NVIDIA control panel1

Choose system information2

1

2

How to embed “nvcc” into VC 2005 [3]

chipset1
system information, including

driver2

1 2

How to embed “nvcc” into VC 2005 [4]

Check environment variables

How to embed “nvcc” into VC 2005 [5]

Create a new project: CUDA64 project, this is different from what we do before

How to embed “nvcc” into VC 2005 [6]

Press “Next” to create empty project

How to embed “nvcc” into VC 2005 [7]

Copy source files, vecadd.cu, vecadd_GPU.cu, vecadd_gold.cpp and vecadd_kernel.cu

to directory vecadd_vc2005/vecadd_vc2005

How to embed “nvcc” into VC 2005 [8]

Add source files, vecadd.cu and vecadd_gold.cpp to project

How to embed “nvcc” into VC 2005 [9]

Check solution’s property : platform must be x64 (64-bit platform)

How to embed “nvcc” into VC 2005 [10]

Check solution’s property : CUDA General Target Machine MachineX64 (64-
bit platform)

How to embed “nvcc” into VC 2005 [11]

Check solution’s property : CUDA Output Intern Mode Real (important)

How to embed “nvcc” into VC 2005 (compile) [12]

How to embed “nvcc” into VC 2005 (execute) [13]

How to embed “nvcc” into VC 2005 (double precision) [14]

man nvcc

How to embed “nvcc” into VC 2005 (double precision) [15]

virtual: compute_10,
compute_11,
compute_12,
compute_13

real: sm_10,
sm_11,
sm_12,
sm_13

sm_13: compute capability 1.3

