
Chapter 10 lexical analyzer (lex)

Speaker: Lung-Sheng Chien

Reference book: John R. Levine, lex & yacc中譯本, 林偉豪譯

Reference ppt: Lecture 2: Lexical Analysis, CS 440/540, George Mason university

Reference URL: http://dinosaur.compilertools.net/

Online manual: http://dinosaur.compilertools.net/flex/index.html

OutLine

• What is lex
• Regular expression
• Finite state machine
• Content of flex
• Application

Recall Exercise 7 in the midterm

Question: can we write more
compact code to obtain integers?

Exercise 7: remove comments in a file

in C-language, comment is delimited by a pair of /* and */ whereas
in C++, comment starts from //. write a program to remove all
comments of a given file. You can show result in screen or to
another file.

Pseudo-code
for each line in a file

if line contains “//” not in a string, then

remove remaining characters after “//”.

if line contains “/*” not in a string, then

find conjugate pair “*/” and remove all characters in between

endfor

Question: can we have other tool to identify C-comment ?

What is lex

From http://dinosaur.compilertools.net/lex/

• Lex is a program generator designed for lexical (語彙的) processing
of character input streams. It accepts a high-level, problem oriented
specification for character string matching, and produces a program
in a general purpose language which recognizes regular
expressions (正規表示法).

• The regular expressions are specified by the user in the source
specifications given to Lex.

• Lex generates a deterministic finite automaton (DFA, 有限自動機)
from the regular expressions in the source.

• The Lex written code recognizes these expressions in an input
stream and partitions the input stream into strings matching the
expressions.

definition

• Token: set of strings defining an atomic element with a defined
meaning

• Pattern: a rule describing a set of string
• Lexeme: a sequence of characters that match some pattern

Token Pattern Lexeme(詞彙)

integer (0-9)+ 234

identifier [a-zA-Z]?[a-zA-Z0-9]* x1

string Characters between “ “ “hello world”

Phases of a Compiler

Lexical analyzer

Syntax analyzer (文法分析)

Semantic analyzer (語意分析)

Intermediate code generator

Code optimizer

Code generator

Source code

machine code

Lex is a crucial tool
to extract token

token

Role of scanner: find token

Input file Scanner
yylex()

parser
yyparse()

ask next character ask next token

character

symbol table

token

Input file Scanner
yylex()

ask next character

character

File processor of
Linear programming

ask next token

token

flex : lexical analyzer generator

flexLex
specification

lex.yy.c lex.yy.o + source file
gcc -c

g++

a.outinput token

• C-code lex.yy.c is kernel to extract token, one just need to call
function yylex(). To use lex.yy.c in different platforms, we need to
solve several technical problems
- don’t use library
- don’t include specific header file
- mix C with C++ code

flex in RedHat 9

Link with library libfl.a

Example in the manual of Flex
Count number of lines and number of characters

count_line.txt

按 enter

按 Ctrl+D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T h i s i s a b o o k \n

b y e b y e \n

Library libfl.a

Generate source C-code lex.yy.c

Grammar of input file of Flex [1]

Lex copy data enclosed by %{ and %} into C
source file

pattern action

\n { ++num_lines ; ++ num_chars ; }

. { ++ num_chars ; }

wild card character, represent any
character expect line feed \n User code

grammar of input file

definition section

%%

rule section

%%

user code

pattern action

When pattern is matched, then execute action

Grammar of input file of Flex [2]

lex.yy.c

default main

Q1: can we compile lex.yy.c without –lfl ? [1]

We want to use lex.yy.c on different platforms (Linux and windows), to
avoid specific library is lesson one.

Library libfl.a contains function yywrap()

-lfl means “include library libfl.a”, this library locates in /usr/lib

contains function yywrap()

Q1: can we compile lex.yy.c without –lfl ? [2]

count_line.txt

Implement function yywrap
explicitly

Q2: how to process a file?

count_line.txt lex.yy.c

yyin is a file pointer in lex, function yylex() read characters from yyin

Q3: can we move function main to another file?
count_line.txt main.cpp

code block

Exercise: mix C-code with C++ code

• In this work, lex.yy.c is C-code and main.cpp is C++-code, what
happens if we issue command “g++ main.cpp lex.yy.c”? That’s why
we use two steps,
step 1: gcc –c lex.yy.c
step 2: g++ main.cpp lex.yy.o

• If we replace
extern "C" {

int yylex(void) ;
}

with
int yylex(void) ;

Does “g++ main.cpp lex.yy.c” work?

Q4: can we compile lex.yy.c in VC6.0? [1]

Download lex.yy.c and main.cpp in Q3 into local machine

Error occurs when compiling lex.yy.c

VC does not have this header file

Q4: can we compile lex.yy.c in VC6.0? [2]

/usr/include/unistd.h

Q4: can we compile lex.yy.c in VC6.0? [3]

disable “unistd.h” in
VC6.0

/usr/include/unistd.h

Error occurs since prototype of function isatty is declared in unistd.h

Q4: can we compile lex.yy.c in VC6.0? [4]

main.cpplex.yy.c

OutLine

• What is lex
• Regular expression
• Finite state machine
• Content of flex
• Application

Regular expression
From http://en.wikipedia.org/wiki/Regular_expression

• A regular expression, often called a pattern, is an expression that
describes a set of strings.

• The origins of regular expressions lie in automata theory and formal
language theory, both of which are part of theoretical computer
science . In the 1950s, mathematician Stephen Cole Kleene
described these models using his mathematical notation called
regular sets.

• Most formalisms provide the following operations to construct
regular expressions
- alternation: A vertical bar separates alternatives. For example,
gray|grey can match “gray” or “grey”.
- grouping: use parentheses to define the scope and precedence of
the operators. For example, gray|grey and gr(a|e)y are equivalent.
- quantification (量化): a quantifier after a token (such as a character)
or group specifies how often that preceding element is allowed to
occur.

Syntax of regular expression [1]

metasequence description

. matches any single character except newline

[] matches a single character that is contained within the brackets.
[abc] = { a, b, c }
[0-9] = {0,1,2,3,4,5,6,7,8,9}

[^] matches a single character that is not contained within the brackets.
[^abc] = { x is a character : x is not a or b or c }

^ matches the starting position within the string

$ matches the ending position of the string or the position just before a
string-ending newline

{m,n} matches the preceding element at least m and not more than n times.
a{3,5} matches only “aaa”, “aaaa” and “aaaaa”, NOT “aa”

< > 在方括號中如果放的是名稱, 且放在樣式開頭的話, 代表這個樣式只用在
某個開始狀態

Syntax of regular expression [2]
metasequence description

* matches the preceding element zero or more times
ab*c matches “ac”, “abc”, “abbc”

+ matches the preceding element one or more times
[0-9]+ matches “1”, “14”, “983”

? matches the preceding element zero or one time
[0-9]? matches “ ”, “9”

| the choice (aka alternation or set union) operator matches either the
expression before or the expression after the operator.
abc|def matches “abc” or “def”

() group to be a new expression
(01) denotes string “01”

\ escape character
* means wild card, * means ASCII code of *

“…” 代表引號中的全部字元, 所有引號中的後設字元都失去它們特別的意義,
除 \之外
“/*”代表兩個字元 / 和 *

Example: based-10 integer

one digit of regular expression [0-9]

positive integer is composed of
many digits

[0-9]+

[0-9]* is not adequate, since
[0-9]* can accept empty string

we need a sign to represent all
integers

-?[0-9]+

Accepted string: “-5”, “1234”, “0000”, “-000”, “9276000”

Question: How to represent based-16 integer under regular expression?

OutLine

• What is lex
• Regular expression
• Finite state machine
• Content of flex
• Application

Finite state machine (FSM)

S0

minus

digit

-

[0-9]

[0-9]

[0-9]

-?[0-9]+integer

trap

^[0-9]
^-

^[0-9]

state transition diagram

Current
state

Input token
(transition function)

Next state description

S0 -

[0-9]

[0-9]
digit [0-9] digit digit state recognize string “-[0-9]+” or

“[0-9]+”

minus

digit

S0 is initial state

digitminus minus state recognize string “-”

trap terminate

- 1 2 3 4

S0 minus-

State sequence

- 1 2 3 4
1

S0 minus- digit

- 1 2 3 4
1

digitS0 minus- digit
2

- 1 2 3 4
1

digitS0 minus- digit
2

digit
3

- 1 2 3 4
1

digitS0 minus- digit
2

digit
3

digit
4

Transform FSM to C-code

S0

minus

digit

-

[0-9]

[0-9]

[0-9]

trap

^[0-9]
^-

^[0-9]

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Driver to yylex_integer

main.cpp

test.txt

Exercise: extract real number

real number -?[0-9]*\.[0-9]+(([Ee][-+]?[0-9]+)?)

• why do we need a escape character for dot, “\.” ?

• Can this regular expression identify all real numbers?

• depict state transition diagram of finite state machine for this regular
expression.

• Implement this state transition diagram and write a driver to test it

• Use flex to identify (1) integer (2) real number, note that you need to
neglect space character [\t\n]

OutLine

• What is lex
• Regular expression
• Finite state machine
• Content of flex
• Application

How flex works
• flex works by processing the file one character at a time, trying to

match a string starting from that character
1. flex always attempts to match the longest possible string
2. if two rules are matched (and match strings are same length), the
first rule in the specification is used.

• Once it matches a string, it starts from the character after the string.

• Once a rule is matched, flex execute corresponding action, if no
“return” is executed, then flex automatically matches next token.

• flex always creates a file named “lex.yy.c” with a function yylex().

• The flex library supplies a default “main”:
main(int argc, char* argv[]) { return yylex() ; }

However we prefer to write our “main”.

Lex states

• Regular expressions are compiled to finite state machine

• flex allows the user to explicitly declare multiple states
%x CMNT //exclusive starting condition

%s STRING //inclusive starting condition

• Default initial state is INITIAL (0)

• Actions for matched strings may be different for different
state

yylex()
• 當 token 配對到樣式後, 會執行一段 C 語言程式碼, 然後藉由 return 會讓

yylex()傳回一個傳回值給呼叫程式. 等到下次再呼叫 yylex()時, 字彙分析器
就從上次停下來的地方繼續做下去

• yylex() return 0 when encounters EOF.

count_line.txt main.cpp

call yylex() till End-Of-Filereturn to caller when
matching a token

yytext
• 當字彙分析器辨識出一個 token 之後, token 的文字會存在 yytext字串中,
且以空字元 (null, \0) 結尾. 且 token 的長度記錄在 yyleng, 即 yyleng =
strlen(yytext)

• yytext是字元陣列, 宣告為
extern char yytext[] ; 或
extern char *yytext ;

• yytext的內容在每辨識出一個新的 token 之後, 就會被更新. 假如之後想用
到 yytext的內容, 請自行複製

• 因為 yytext是陣列型態, 比 yytext還長的 token 將導致 overflow. 在 flex
中, 預設的 I/O 暫存區是 16KB, 所以可以處理 8KB 的 token. 即便 token
是一段注解是不會產生 overflow 的問題

lex.yy.c

yywrap()
• 當字彙分析器讀到檔案結尾時, 它會呼叫 yywrap() 函式來看看接下來要做

什麼. 假如 yywrap() 函式傳回 0, 則字彙分析器繼續作分析 ;假如 yywrap()
函式傳回 1,則字彙分析器傳回一個 token 0 來代表遇到檔案結尾

• 在 lex函式庫中的標準 yywrap() 函式永遠會傳回 1, 但是你可以用自己寫
的來代替它.假如 yywrap() 函式傳回 0, 表示還有其它的輸入資料, 這個時
候需要先重新設定 yyin指向新的檔案 (用 fopen 來設定)

• 在我們的 lex輸入檔中, 我們定義 yywrap() 永遠回傳 1, 表示只有一個檔
案需要處理

count_line.txt

yyinput(), yyunput()

• flex提供 yyinput() 以及 yyunput() 來包裝 input(), unput().

• unput(c) 函式會將字元 c 放回輸入資料中. 和一般 stdio中 unputc()
函式不同的是: 你可以連續呼叫 unput() 來將一堆字元放回去.

lex.yy.c

yyless(), yymore()
• 在動作程式碼中呼叫 yyless(n), 會將該規則配對到的 token 保留前 n個字元, 其
它的則 “放”回去. 在判斷 token 的邊界時, 而且又不容易表示成常規表示法時很有
用. yyless和 yymore可搭配使用, 利用 yymore 來告訴 lex將下一個 token 附加
到目前的 token 上

extract string literal

傳回最後一個引號

加入下一個字串

\"[^"]*\"
“abc\”“abc\”mac”

?

Analyzing process [1]

input buffer regular expression yytext

“ a b c \ ” m a c ”

“\"[^"]*\"

“ a b c \ ” m a c ”

“ a\"[^"]*\"

“ a b c \ ” m a c ”

“ a b\"[^"]*\"

“ a b c \ ” m a c ”

“ a b c\"[^"]*\"

“ a b c \ ” m a c ”

“ a b c \\"[^"]*\"

Analyzing process [2]
input buffer regular expression yytext

“ a b c \ ” m a c ”

“ a b c \ “\"[^"]*\"

yyleng = 6

“ a b c \ ” m a c ”
“ a b c \

unput character ”

“ a b c \ ” m a c ”
“ a b c \ “\"[^"]*\"

“ a b c \ ” m a c ”
“ a b c \ “ m\"[^"]*\"

“ a b c \ ” m a c ”
“ a b c \ “ m a\"[^"]*\"

Analyzing process [3]

input buffer regular expression yytext

“ a b c \ ” m a c ”
“ a b c \ “ m a c\"[^"]*\"

“ a b c \ ” m a c ”
\"[^"]*\" “ a b c \ “ m a c “

fails

“ a b c \ “ m a c “ \0yytext

yyleng = 10

Starting condition (開始狀態)

• flex provides a mechanism for conditionally activating rules. Any rule whose
pattern is prefixed with "<sc>" will only be active when the scanner is in the
start condition named "sc".

• Start conditions are declared in the definitions (first) section of the input
using unindented lines beginning with either `%s' (inclusive start conditions)
or `%x' (exclusive start conditions)

• Initial starting condition of flex is 0 (INITIAL)

• A start condition is activated using the BEGIN action. Until the next BEGIN
action is executed, rules with the given start condition will be active and
rules with other start conditions will be inactive.

• If the start condition is inclusive, then rules with no start conditions at all will
also be active.

• If it is exclusive, then only rules qualified with the start condition will be
active.

Inclusive v.s. exclusive
The following three lex input are equivalent

%s example

%%

<example>foo do_something();

bar something_else();

%s example

%%

<example>foo do_something();

<INITIAL,example>bar something_else();

%x example

%%

<example>foo do_something();
<INITIAL,example>bar something_else();

pattern foo is activated in starting condition, example

pattern bar does not specify starting conditions, then all starting conditions
declared as inclusive (s) will execute pattern bar

How to recognize comment in C, /* … */

main.cpp comment.txt

CMNT is an exclusive starting condition

If read /*, change to CMNT

If read */, back to INTIAL

test.txt

Can you explain output?

Exercise
• C++ support another kind of comment, starting by //, write a regular

expression to recognize this kind of comment and build it into flex input
file. Write a C program with C-comment and C++-comment to test
scanner generated by flex.

• Depict state transition diagram for C-comment and C++ comment, write
code to implement this state transition diagram and measure program
size. Do you think flex helps you identify C-comment very well?

• Can you have other method to identify C-comment by using flex?
Hint: use flex to identify /*, then write code to find */ by yyinput() or input()

comment.txt

OutLine

• What is lex
• Regular expression
• Finite state machine
• Content of flex
• Application

- scan configuration file of linear programming
- C-program analyzer

Application 1: configuration file of Linear Programming

Objective: read configuration file, extract coefficient of vector c, b and
matrix A, then output c, b, A

configure.txt min
subject to , 0

Tz c x
Ax b x

=
≤ ≥

token

<objective> <constraint>
</objective> </constraint>

x1 x2 x4 x5

integer real number

- *+ >= <= =
C++-comment

LP.txt
You need to add rule for C++-comment

substitution rule

how many lines are processed
definition of code of token

y.tab.h driver: show all tokens [1]

main.cpp

configure.txt

driver: show all tokens [2]

1. Space character is removed automatically

2. It is not necessary to keep space character between
two tokens since flex would identify them very well

Exercise

• Complete input file for flex (add rule to deal with C++-comment) and test
the scanner for different cases.

• Depict state transition diagram to collect information from configuration
file and construct vector c, b and matrix A

S0

S1

S2

configure.txt

<objective>

<constraint>

Applicatoin2: C program analyzer
token Lexeme

identifier x1

integer 1234

real 3.14, 1.0E-5

Arithmetic operator +, -, *, /, %

Increment operator ++, --

Arithmetic assignment operator +=, -=, *=, /=, %=, =

Relational operator ==, !=, >, <, >=, <=

Boolean logical operator &, |, ^

Logical operator &&, ||

marker () , [] , { } , , , ; , . , “ “ , ‘ ‘

Conditional operator ? :

Escape sequence \n, \t, \r, \\, \”

comment //, /* … */

Exercise

• Write a scanner for C-program, we have shown how to write regular
expression for identifier, integer, real and comment, you need to add
regular expression for
- arithmetic operator
- logical operator
- relational operator
- marker
- string and character
- distinguish keyword (reserved word) from identifier
note that you need to define integer-value token for above operator
in y.tab.h

