
Review Chapter 10
parse configuration file of Linear programming

Speaker: Lung-Sheng Chien

Application 1: configuration file of Linear Programming

Objective: read configuration file, extract coefficient of vector c, b and
matrix A, then output c, b, A

min
subject to , 0

Tz c x
Ax b x

=
≤ ≥

configure.txt

token

<objective> <constraint> C++-comment
</objective> </constraint>

x1 x2 x4 x5

integer real number
- *+ >= <= =

Assumption 1: separate sign from integer and real

Assumption 2: format is coeff * var

Assumption 3: coeff is a number, not an expression

Exercise

• Complete input file for flex (add rule to deal with C++-comment) and test
the scanner for different cases.

• Depict state transition diagram to collect information from configuration
file and construct vector c, b and matrix A

S0

S1

S2

configure.txt

<objective>

<constraint>

Two-steps solver

• Step 1: create symbol table and find number of equation >= (numOfGE),
number of equation <= (numOfLE) and number of equation = (numOfEQ).
m = (# of equation >=) + (# of equation <=) + (# of equation =)
n = (# of variables) + (# of equation >=) + (# of equation <=)

• Step 2: find cost vector c and
find coefficient of equation >=, <= and =

Symbol table

0 useless
1 x1
2 x2
3 x4
4 x5

1 0.5 1.0 0 0 0

1x 2x 4x 5x 1s 1sp
c

1 :s slack
1 :sp surplus

numOfGE = 1
numOfLE = 1
numOfEQ = 1
m = 3, n = 6

symbol.h

we use string array “table” to
record symbol (variable), you
can use linked-list to implement.
Moreover in this example, we
hardcode maximum size of
table, you can relax it

symbol.cpp

Linear search, O(n), bad

Methods for symbol table

Question: How to improve lookup

• Function symTable_lookup uses linear search (O(n)) to check repeated
element. This means that to construct cost vector and constraint matrix,
we need , can you reach search limit by using binary
search?
Hint: we may use a binary tree

()2O n ()logO n

First step: extract symbol and number of equations

buildLP.cpp

main.cpp

configure.txt

Extract cost vector

1 1 2 2objective:extract n nc x c x c x+ + +
configure.txt

Flow chart (finite state machine)

S0 +

- -coeff

+coeff

*

IDEND

+ real / int

−

real / int
∗

∗

ID
+

−

\n

real / int\n
<objective>

</objective>

pack into a function

State sequence [1]

1 * x1 0.5 * x2 * x4 configure.txt+ + 1.0

S0 +coeff
int

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

1 * x1 0.5 * x2 * x4+ + 1.0

Symbol table
S0 +coeff

int
*

∗
ID

ID
0 useless

1 x1

2 x2

3 x4

4 x5

1x 2x 4x 5x 1s 1sp

c 1

State sequence [2]

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
real

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

State sequence [3]

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

ID

ID
1x 2x 4x 5x 1s 1sp

c 1 0.5

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

ID

ID

+
+

State sequence [4]

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

ID

ID

+
+

+coeff
real

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

ID

ID

+
+

+coeff
int* ∗

State sequence [5]

1 * x1 0.5 * x2 * x4+ + 1.0

S0 +coeff
int

*
∗

ID
ID

+
+

+coeff
int

*
∗

ID

ID

+
+

+coeff
int* ∗ID

ID

1x 2x 4x 5x 1s 1sp

c 1 0.5 1.0

Extract cost vector: implementation [1]buildLP.cpp

Extract cost vector: implementation [2]

buildLP.cpp

Extract cost vector: implementation [3]
buildLP.cpp

Extract cost vector: implementation [4]

buildLP.cpp

1

2

3

1

3
2

Allocate vector c and constraint matrix [1]

1 0.5 1.0 0 0 0

1x 2x 4x 5x 1

c
s 1sp

useless

0 3 0 -1 0 0

1x 2x 4x 5x 1

GEList[0]

s 1sp

7

b

• Index of array in C-language starts from zero, however index of vector starts
from 1, hence c[0] is useless.

• We record Ax =b, Ax<=b and Ax >=b respectively.
Ax = b : use double** EQlist to represent A
Ax >=b : use double** GElist to represent A
Ax <=b : use double** LElist to represent A
we record right hand side vector b in EQlist[i][0], GElist[i][0] and LElist[i][0]
respectively.

-2 2 0 0 0 05

3.14 6 0 0 0 0

LEList[0]

6EQList[0]

Allocate vector c and constraint matrix [2]

Two level allocation

Extract constraint matrix [1]

objective:extract , ,Ax b Ax b Ax b≥ ≤ = configure.txt

Flow chart (finite state machine)

S0 +

- -coeff

+coeff

*

ID=

+ real / int

−

real / int
∗

∗

ID
+

−

, ,≥ ≤ =

real / int\n
<constraint>

rhs real / int

</constraint>

\n

pack into a function

Implementation note

• We don’t know which equation the coefficient belongs until token >=,
<= or = is extracted. Hence we need a temperary array, called temp
to store coeffient read in +coeff or –coeff state and right hand side
value read in rhs state, also a flag (旗標) to distinguish what kind of
equation we encounter.

• In +coeff or –coeff state, we record coefficient we read

• In ID state, we lookup index of variable in symbol table and set
coefficent to array temp in proper location.

• In rhs state, we set right hand side value to temp[0] and copy whole
array temp to GElist, LElist or EQList

Add slack and surplus variable

-2 2 0 0 0 0

1x 2x 4x 5x 1s 1sp
-2 2 0 0 1 0

1x 2x 4x 5x 1s 1spslack
variable

5 5=≤

surplus
variable

0 3 0 -1 0 0 0 3 0 -1 0 -17 7=≥

3.14 6 0 0 0 0 6=

1
2

Extract cost vector and constraint matrix
buildLP.cpp

1
2

main.cpp

Exercise 1: lack coefficient

• If we regard x1 as 1*x1, can you modify finite state machine to

accept this new rule?

Exercise 2: expression evaluation

• In this work, we assume coefficient is a number, NOT an expression.
If we remove this assumption, say that coefficient can be an
expression. How to deal with?
Hint: think about three-step solver
step 1: use RPN (Reverse Polish Notation) technique to compute
expression to a number
step 2: construct symbol table
step 3: setup cost vector and constraint matrix

expression

Exercise 3: macro substitution

• Usually, we like to use macro instead of number explicitly, for
example, we may define pi=3.1415926 and then use macro pi in
coeffient computation. Two reasons for macro substitution
1. save space: since pi is 2 characters but 3.1415926 is 9
characters
2. save time: we may use pi several times, if we use 3.1415926
every time when we use pi, then it is clumsy.

Macro definition

