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Abstract: in this work, we improve SGEMM of Volkov's code [1]. C AB=
 

is tested on square matrices A, B and C 

with dimension N. On TeslaC1060 with CUDA 2.3, compared with Volkov's code for large N (N > 1500), we have  

(1) N = multiple of 64: ~ 20% improvement,  

(2) N = multiple of 16: > 15% improvement and 

(3) N = multiple of 8: > 10% improvement. 

Averagely speaking, we have 10% improvement for large N. As far as peak performance is concerned, our method 

reaches 440Gflop/s on TeslaC1060, which is 70% of peak performance of single precision without dual issue. Volkov's 

code reaches 346 Gflop/s, which is 55.45% of peak performance. 

 Moreover out-of-array bound checker is added into our method and the same performance improvement is 

achieved on TeslaC1060, but about 5% performance will be lost when adding out-of-array bound checker on game 

card, GTX285. However we can guarantee 10% improvement on game card for large dimension even out-of-array 

bound checker is added. 

 Basic idea: we replace MAD with shared memory operand, "MAD dest, [smem], src2, src3", by two operations. 

First one is movement from shared memory to register, "MOV reg, [smem]", and the other is MAD without shared 

memory operand, "MAD dest, src1, src2, src3".  

However compiler nvcc cannot accomplish such simple idea, we use package decuda/cudasm to modify binary code. 

Thanks to Wladimir J. van der Laan and Sylvain Collange, we can manipulate cudasm to act on some parts of our 

source code to do the correct translation.  

 In this work, we also try to build a cost model as guide of optimization, however we have better result than 

expectation of the model. So far no good model to explain high performance of our method. Moreover we release 

binary code which can be loaded into application by driver API. However such binary code is not compatible with 

future architecture, Fermi. We must re-do whole work for Fermi again, hope that official decuda/cudasm is ready at 

that time. 
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Introduction 

Matrix-multiplication C AB=  is a basic operation in linear algebra and NVIDIA provides an example in SDK to 

explain how to utilize shared memory to avoid overhead of memory latency. However matrix-multiplication example 

in SDK with shared memory to store sub-matrix of A and B
 

is not the fastest method, Vasily Volkov and James W. 

Demmel provide another faster algorithm in 2008 [1]. Volkov's method stores sub-matrix of B
 

to shared memory but 

uses registers to hold sub-matrix of A . This modification saves one movement from shared memory to register per 

MAD ( c a b c= × + ) operation, that is why Volkov's code has better performance than SDK example. Volkov's code 

can apply to both single precision (SGEMM) and double precision (DGEMM). Under GT200 architecture, 

performance of double precision is 1/8 of single precision, so DGEMM reaches 70Gflop/s which is 94% of peak 

performance. It is impossible to improve DGEMM anymore. However SGEMM only reaches 55.45% of peak 

performance, we still have a chance to accelerate it.  

 In this work, we focus on C AB Cα β= +
 

where size of A is m k× , size of B is k n× , and size of C is m n× . 

Three matrices are stored by column-major and have leading dimension ,  ,  lda ldb ldc . Moreover matrices are 

allocated in linear memory, no texture memory is used. In other words, we focus on how to decrease overhead of 

MAD, not overhead of memory latency.  

 Basic operation in SGEMM is c a b c= × + where c can be reside in register and a, b must come from matrix A 

and B. Volkov's method keeps a in register and fetches b from shared memory but use only one MAD operation to 

execute c a b c= × + . Such MAD operation in Volkov's code has one shared memory operand b, say "MAD c, b, a, c". 

We decompose MAD in Volkov's code into two operations.  

(1) move shared memory to register: MOV src1, b 

(2) MAD without shared memory operand: MOV c, src1, a, c 

Our basic idea is to reduce number of data transfer from shared memory to register such that cost of c a b c= × +  

approaches to cost of " MOV dest, src1, src2, src3" where dest, src1, src2 and src3 are registers. Note that the best 

performance of c a b c= × +  occurs when a, b and c are all registers, so it is reasonable to reduce operation " MOV 

src1, b " such that " MOV dest, src1, src2, src3" dominates computation, which is the best way we can expect.  

 The remaining sections are organized as follows: some preliminaries are introduced in section 1, including 

hardware category and algorithm category. Hardware category lists SPEC of GT200 (TeslaC1060, GTX285 and 

GTX295). Also we calibrate pipeline latency and throughput of MAD operation, latency and throughput of global 

DRAM. Algorithm category describes block version of matrix-multiplication and two representations of 

matrix-multiplication, one is inner-product based, the other is outer-product based. Then we review structure of 

Volkov's code and compare it with SGEMM in CUBLAS (CUDA 2.3) in section 2. Our idea is introduced in section 3, 

after discussion of theoretical profile of Volkov's code, we give a intuition why we replace "MAD dest, [smem], src2, 

src3" by "MAD dest, src1, src2, src3". Also difficulty arises because compiler nvcc cannot implement our idea. In 

section 4, we mention method 1 (first proposed method), and its variant, method1_variant. We need package 

decuda/cudasm to modify binary code of method1_variant. In this section, we spend much effort to explain how to 

use decuda/cudasm to modify binary code. Structure and performance of method 2 and method 4 are shown in 

section 5 and 6. In section 7, we provide a workaround to avoid the obstacle, " Volkov's code does not work for 

general dimension " if one want to use method 1 on arbitrary dimension. In section 8, out-of-array bound check is 
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added into method 1and the experimental result is good. Moreover we propose method 8 in section 9, which achieves 

uniform performance on TeslaC1060 but sacrifices performance a little bit on game card. Finally we have some 

conclusions in section 10. 

Remark 1: in this work, we use Volkov's code as baseline and call it as algorithm volkov, however we abbreviate it as 

volkov, or volkov method.  
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1  preliminary  

1.1 Hardware issue (GT200 architecture) 

1.1.1 SPEC of GT200 

In this work we use three GPUs listed in Table 1 to measure performance of SGEMM. All three GPUs belong to 

GT200 series but GTX brand does overclocking core frequency and memory speed. Under dual issue [5], one SP can 

deliver one MAD ( c a b c= × + ) operation and one MUL ( c a b= × ) operation every clock (in fact, SM can issue one 

MAD and one MUL in 4 cycles per warp). So peak performance is three flops per clock since MAD is combination of 

multiplication and addition (its flop count is two) and flop count of MUL is one. 

Single precision peak performance = ( ) ( ) ( )240 1.3  . 3  core core freq flop count× ×  

However 8 SPs share one 64-bit FMAD module and have no dual issue, so performance of double precision is 
1

12
 of 

single precision with dual issue or 
1

8
 of single precision without dual issue. 

Double precision performance = ( ) ( ) ( )
1

240 1.3  . 2  
8

core core freq flop count× × ×  

 Main cost in SGEMM is MAD and dual issue can be neglected since it is unlikely to merge MAD and MUL in 

flight due to few MUL operations in SGEMM. Hence we also report Single precision performance without dual issue 

which is actual limit of SGEMM that we can pursue. 

Single precision performance without dual issue = ( ) ( ) ( )240 1.3  . 2  core core freq flop count× ×  

 Second, GPUs typically address this granularity issue by dividing their memory interfaces into multiple channels. 

Each channel can serve one read or write request at a time, so an interface with multiple channels can serve multiple 

requests simultaneously [3]. GT200 series has 64-bit per channel, so 448-bit has 7 channels and 512-bit has 8 channels. 

Access pattern of channels in global memory can play an important role in matrix transpose [6], however it is not 

significant in SGEMM. 

 GTX2951 GTX285 TeslaC1060 

# of Streaming Processor 240 240 240 

Core Frequency 1242MHz 1476 MHz 1.3 GHz 

Memory Speed 999MHz 1242 MHz 800 MHz 

Memory Interface 448-bit (7 channel) 512-bit (8 channel) 512-bit (8 channel) 

Memory Bandwidth (GB/s) 112 159 102 

SP, peak (Gflop/s) 894   1063   933  

SP without dual issue  596.2   708.5  624  

DP, peak (Gflop/s)  74.5   88.6   78  

DRAM (MByte) 896 1024 4096 

Table 1: The list of the GPUs in this paper. SP is single precision performance and DP is double precision 

                                                 
1 Although GTX925 has two GPU units (assembly of two GTX275), proposed SGEMM is executed in single GPU 
such that we only repost SPEC of one GPU.  
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performance. 

 

1.1.2 latency and throughput of MAD 

There are two kinds of MAD when operands are "float", 

(1) "MAD dest, src1, src2, src3" corresponds to 1 2 3dest src src src= × +  where dest, src1, src2 and src3 are all 

registers. 

(2) "MAD dest, [smem], src2, src3" corresponds to [ ] 2 3dest smem src src= × +
 

where [smem] denotes shared 

memory.  

These two MAD operations have different pipeline latency and throughput. In our method, we change the later in 

Volkov's code to the former to improve performance. 

 

1.1.2.1 "MAD dest, [smem], src2, src3" 

To evaluate pipeline latency of MAD operation, we execute [ ]a a b i c= × +  256 times where [ ]a a b i c= × +  has 

read-after-write hazard, then do timing profile for each thread. Source code is listed in Figure 1 and corresponding 

result of decuda shows that nvcc translates all [ ]a a b i c= × +
 

into "MAD dest, [smem], src2, src3". 

To calibrate "MAD dest, [smem], src2, src3", we use one thread block in one SM (stream multiprocessor). So 

execution configuration is dim3 grid(1,1,1) and dim3 block(NUM_THREADS,1,1). We control parameter 

NUM_THREADS to setup how many threads in a block.  

 

Each thread executes 256 MAD operations, we measure average time per MAD by 

( )
_ _

/
256

end time start time
cycle MAD

−
 

and report two numbers in Table 2, one is minimum time among all threads, 

Figure 1: code to calibrate "MAD dest, [smem], src2, src3" 
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the other is maximum time among all threads. Clearly, result of one thread reveals pipeline latency of "MAD dest, 

[smem], src2, src3", which is 34.6 cycle. Throughput can be calculated via result of 512 threads, say 

( )
( )

( )
( )

( )
96.1 96.9

6 /
32 32

cycle cycle
cycle warp

warp warp
∼ ∼ . The value of throughput matches result of Volkov's paper [1]. 

  

NUM_THREADS 1 64 128 192 224 256 288 320 384 512 

Minimum time 34.6 34.6 34.7 38.6 42.4 46.6 54.0 60.2 72.1 96.1 

Maximum time 34.6 34.6 34.8 39.3 43.2 49.5 54.7 60.6 72.7 96.9 

Total time for one 

a = a*b_smem +c 

34.6 34.6 34.6 36 42 48 54 60 72 96 

Table 2: average number of cycles per "MAD dest, [smem], src2, src3" on TeslaC1060. Pipeline latency is 34.6 cycle 

and throughput is 6 cycle /warp. 

 

Six active warps per SM are required to hide pipeline latency of "MAD dest, [smem], src2, src3" under throughput is 6 

cycle/warp. This is understandable if warp scheduling is round-robin. For example, Figure 2 shows Gatt chart of 

"MAD dest, [smem], src2, src3" under 6 active warps per SM. Moreover if we invoke more than 6 warps in a SM, 

then total time of one "a = a * b_smem + c" is (6 cycle) x (number of warps). Otherwise, total time is determined by 

pipeline latency, see fourth row of Table 2.  

 

 

1.1.2.2 "MAD dest, src1, src2, src3" 

Similarly we execute a a b c= × +  256 times, then do timing profile for each thread. Source code is listed in Figure 3 

and corresponding result of decuda shows that nvcc translates all a a b c= × +
 

into "MAD dest, src1, src2, src3". 

Figure 2: Gatt chart of "MAD dest, [smem], src2, src3" when 6 active warps in a SM. 
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From Table 3, pipeline latency of "MAD dest, src1, src2, src3" is 31.5 cycle but we have a little confused how to 

obtain throughput since minimum time is much different from maximum time, this is impossible under round-robin 

assumption. We estimate throughput by 
number of warps

time
 and report this in second number of Table 3 when 

NUM_THREADS is greater than 256. Pessimistically we accept estimated throughput from maximum time and then 

throughput of "MAD dest, src1, src2, src3" is about 4 cycle per warp. 

 

NUM_THREADS 1 64 128 192 224 256 320 384 512 

Minimum time 31.5 31.5 31.4 31.5 34.9 33.9 

4.2 

38.8 

3.9 

24.4 

2.03 

29.7 

1.86 

Maximum time 31.5 31.5 31.5 31.7 35.5 37.0 

4.6 

42.6 

4.3 

50.5 

4.21 

66.6 

4.16 

Table 3: first number is average number of cycles per "MAD dest, src1, src2, src3" on TeslaC1060. Second number is 

estimate of Pipeline latency is 31.5 cycle and throughput is about 4 cycle /warp. 

 

1.1.3 latency and throughput of global memory 

1.1.3.1 Latency of global memory 

Latency of global DRAM is not determined by a single factor, on NVIDIA forum [7], Sylvain Collange lists possible 

reasons , including 

(1) Virtual address calculation 

(2) On-chip crossbar interconnect traversal, 

(3) Virtual to physical address translation, 

(4) Physical to raw address translation (includes a division/modulo to accommodate non-power-of-two numbers of 

Figure 3: driver to calibrate "MAD dest, src1, src2, src3" 
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partitions), 

(5) Reordering from a deep buffer. Memory controllers aggressively reorder accesses to minimize DRAM page 

switching and read/write turnaround overheads, trading latency for throughput, 

(6) The DRAM read cycle itself, 

(7) Going back through the interconnect, 

(8) Going through texture filtering units, if there is no shortcut datapath, 

So far, we have two official results about latency of global memory 

( I ) from programming guide 5.1.1.3, it says “Throughput of memory operations is 8 operations per clock cycle. 

When accessing local or global memory, there are, in addition, 400 to 600 clock cycles of memory latency. 

( II ) Misel-Myrto reports ~441 cycle latency in [8]. 

However in our experiment, memory latency is about 550 cycle on TeslaC1060. 

Next we want to build a latency model used in this work on TeslaC1060. 

Data rate of memory bus in TeslaC1060 is 800MHz but core frequency is 1.3GHz, so 1 memory cycle = 1.625 core 

cycle. Second TeslaC1060 has 512-bit memory interface, which is divided into 8 channel s (64-bit per channel) and 

each channel occupies 256 byte width (64-float) [6]. If one 16-float read transaction falls into one channel, then it 

requires 16*4*8/64 = 8 memory cycle or say 8 * 1.625 = 13 core cycle. 

In Figure 4, one read transaction of 16-float is considered, half-warp needs two cycles to issue a read command, then 

we assume fixed cost is 500 core cycle after read command. Such fixed cost is due to all reasons except data transfer 

through data bus. Data transfer of 16-float needs 13 core cycle. Hence total cost of one transaction is 2 + 500 + 13 = 

515 core cycle. 

 

However it is better to consider cost of read transaction per warp since throughput of arithmetic operations is 

calibrated in terms of warp, not half-warp. We combine read transaction of two consecutive half-warp in Figure 5. It 

needs 4 cycle to issue a read command and 26 cycle to transfer 32-float through data bus, hence memory latency of a 

warp is 4 + 500 + 26 = 530 core cycle. 

Figure 4: cost of one memory transaction of 16 floats. 
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1.1.3.2 Throughput of global memory 

It is intuitive that throughput of memory depends on number of active threads per SM. The more active threads are, 

the more latency can be hidden. We take operation "b[inx][iny+i]  = B[i*ldb]" as an example to show memory 

throughput. This operation loads data in global memory B to shared memory b, and would be seen in Volkov's code 

later. GPU does not support direct transfer from global DRAM to on-chip shared memory, we use register as a relay to 

connect these two different memory types. Suppose that occupancy is 50% (512 active threads per SM) and 

decompose "b[inx][iny+i]  = B[i*ldb]" as  

 Reg ← B[i*ldb] 

 b[inx][iny+i] ← Reg. 

Furthermore, latency of global memory is 530 cycle and latency of shared memory is 36 cycle [1] (our experiment 

shows 34 cycle on TeslaC1060 [9]). From Gatt chart in Figure 6, under round-robin assumption of warp scheduling, it 

is clear that 512 threads (16 warps) cannot hide 530 cycle memory latency, after 64 cycle, all 16 warps are in waiting 

queue, no one obtains data from DRAM till 530-th cycle. Hence warp scheduler issues second command " 

b[inx][iny+i] ← Reg " of warp 0 at 503-th cycle. That is to say, when we talk about memory cost of one thread, we 

must do averaging, Throughput of global memory is 
( )

( )
( )

530
1.16 /

512

cycle
cycle thread

thread
=  , however if one SM has 

only 
T

N  active threads, then Throughput of global memory is 
( )

( )
530

T

cycle

N thread
. 

Figure 5: cost of one transaction of 32-float in a warp. 
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1.2 algorithm issue 

1.2.1 notation of matrices and partition of grid, block 

Under notations in Volkov's paper [1], in Figure 7, we assume that A, B and C are m k× , k n×  and m n×  matrices 

respectively. Partition these matrices into M K× , K N×  and M N×  grids of bm bk× , bk bn×  and bm bn×  

blocks. Formally 
1M

M

m b
M

b

 + −
=  
 

, 
1K

K

k b
K

b

 + −
=  
 

 and 
1

N

N

n b
N

b

 + −
=  
 

. We use register file or on-chip 

shared memory to store 
,bm bkA  (sub-block of matrix A) and 

,bk bnB  (sub-block of matrix B), also always use registers 

to store 
,bm bnC  (sub-block of matrix C, should keep 

,bm bnC  in registers since it is destination operand of MAD 

operation ), then all four kinds of SGEMM, including C AB Cα β= + , TC A B Cα β= + , TC AB Cα β= + , 

T TC A B Cα β= +  require two-steps computation: 

Step 1: fetch K blocks of matrices A and B into 
,bm bkA  and 

,bk bnB  respectively, then compute 
, , ,bm bn bm bk bk bn

k

C A B=∑ , 

, , ,

T

bm bn bm bk bk bn

k

C A B=∑ , 
, , ,

T

bm bn bm bk bk bn

k

C A B=∑  or 
, , ,

T T

bm bn bm bk bk bn

k

C A B=∑  

Step 2: update 
( ),
|

bm bn
C  which is global matrix C at block index ( ),bm bk  by  

( ) ( ),, ,
| |bm bnbm bn bm bn

C C Cα β= + . 

We can summarize complexity of data transfer and float-point computation in SGEMM as 

(1) read/write C: 
M N

MN b b mn× =  

Figure 6: Gatt chart of global memory access followed by shared memory access. Latency of global 

memory is 530 cycle and latency of shared memory is 36 cycle. 
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(2) read A to register/shared memory: 
1

M K

N

MN K b b mnk
b

× × = , independent of dimension k. 

(3) read B to register/shared memory: 
1

K N

M

MN K b b mnk
b

× × = , independent of dimension k. 

(4) number of MAD ( c a b c= ⋅ + ): 
K M N

MNK b b b mnk× =  independent of grid dimension. 

Moreover in this work, we focus discussion on C AB=  but deliver source code to deal with C AB Cα β= + . One 

can make little modification to do remaining three forms of SGEMM.  

 

1.2.2 inner-product based algorithm 

In NVIDIA SDK example, inner-product based matrix-multiplication is demonstrated. 
,bm bkA  and 

,bk bnB  have 

dimension 16 16×  and are stored in shared memory whereas register 
,bm bnC  also has dimension 16 16×  per 256 

threads. This is fine-grain parallelism since each thread deals with one element of matrix C.  

for each sub-block 
,bm bnC , we sweep K  blocks of A and B to do matrix-multiplication by following code 

 
and how to update 

,bm bnC  is depicted in Figure 8.  

However such shared-memory based algorithm is not the fast version. Volkov provides another view, called 

outer-product based algorithm, and this formulation beats shared-memory based algorithm. 

 

for each k  

 load global matrix A to shared memory 
,bm bkA  

 load global matrix B to shared memory 
,bk bnB  

 synchronization 

 
, , ,bm bn bm bk bk bnC A B+ = , each thread computes one element of 

,bm bnC  

endfor  

Figure 7: dimension of matrices A, B, C and execution configuration. 
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1.2.3 outer-product based algorithm 

The relationship between inner-product formulation and outer-product formulation is shown in Figure 9, we change 

loop-order ( ), ,i j s  of inner-product based algorithm to ( ), ,s j i  and expand index i  to obtain vector form such 

that ( ) ( )1: ,C j C m j=
�

 
is a column vector. In this formulation, only 

,bk bnB
 

is stored in shared memory, we can use 

registers to store 
,bm bkA  column-by-column. 

 
 

We take 3 3×  matrix-multiplication as an example to show that 
,bk bnB

 
must be stored into shared memory. Suppose 

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

c c c a a a b b b

c c c a a a b b b

c c c a a a b b b

    
    

=    
    
    

 and we do loop-unrolling for index j  such that outer-product 

based algorithm can be described as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

 for  

1:3, 1:3, ,

1:3, 1:

   

   

   

3, ,

1:3,

1 1

2 2

3

1:3

1:3, ,

 end

3

for

s

C A

C A

C

s B s

s B s

s BA s




+ =


+ =


+ =



=




.  

Figure 10 shows results of executing 1s = , which does rank-1 update ( )
11 12 13 11

21 22 23 21 11 12 13

31 32 33 31

c c c a

c c c a b b b

c c c a

   
   

=   
   
   

 by 

 

Figure 8: algorithm of inner-product based matrix-multiplication, the graph is copied from figure 

3.2 in NVIDIA_CUDA_Programming_Guide_2.3.pdf [4] 
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using first column of A and first row of B.  

 

 

Whole spirit of Volkov's code on rank-1 update is 

(1) use three threads to update 3 3×  matrix
 ,bm bnC , each thread computes one row of 

,bm bnC . In other words, thread 

j  has register array ( )1:3regC  satisfying ( ) ( ),1:3 ,1:3reg bm bnC C j= . This is not fine-grain since one thread deals 

with 3 elements of matrix C. However only one column of registers is enough to store 
,bm bkA . The consequence is one 

reg smem←  is saved when do MAD operation, 
ij ik kj ijC A B C= + . This is why Volkov's code can be much faster 

than shared-memory based algorithm in CUBLAS 1.1
 

(2) 
,bk bnB

 
must be stored into shared memory since all threads would access the same element of 

,bk bnB
 

during 

rank-1 update. Fortunately such access pattern of 
,bk bnB  can activate broadcasting mechanism since all threads access 

the same element of 
,bk bnB , and broadcasting achieves highest performance in access of shared memory. 

Remaining 2s =  and 3s =  are shown in Figure 11. They have the same pattern as 1s = except different column of 

,bm bkA  and row of 
,bk bnB . 

Remark 2: outer-product formulation ( ) ( ) ( )

 for 1:

    for 1:

        ,

    endfor

 endfor

s k

j n

C j A s B s j

=
 =

+ =




 
fetches one column of matrix A into registers. If 

matrix A is stored as column-major, then such access pattern is coalesced. Hence the algorithm is good for 

C AB Cα β= +  
and TC AB Cα β= +  where A, B and C are column-major. We have another outer-product 

representation which is good for row-major. In Figure 12. we change loop-order ( ), ,i j s  of inner-product based 

 

Figure 9: relationship between inner-product based formulation and outer-product based 

formulation. This kind of outer-product formulation is good when matrix A is column-major.  
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formulation to ( ), ,s i j
 

and expand index j . This formulation requires storing 
,bm bkA

 
in shared memory and storing 

,bk bnB
 

in registers (just change role of 
,bm bkA

 
and 

,bk bnB
 

of former outer-product formulation). This is good when 

matrix B is stored as row-major. Of course it is also good for T TC A B Cα β= +  when A, B and C are column-major. 

 

 

 

Figure 11: rank-1 update of remaining columns of A and rows of B. 

 

Figure 10: rank-1 update of first column of A and first row of B 
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To sum up, we can write down pseudo-code of these two outer-product formulations in Figure 13. In this work we 

adopt algorithm ( )I  and parameters of grid and block are depicted in Figure 14. 

 

 

Figure 13: pseudo-code of two outer-product formulations. left panel comes from figure 4 in [1] 

 

Figure 12: relationship between inner-product based algorithm and outer-product based  

algorithm, which is good when matrix B is row-major. 
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Remark 3: algorithm ( )I
 

is copied from Volkov's paper, in our method, value of ,  ,  
M K N

b b b  may be different but 

whole structure would be the same. 

 

2 CUBLAS versus Volkov's code 

2.1 review Volkov's code 

In this work, we use Volkov's code downloaded from http://forums.nvidia.com/index.php?showtopic=89084 as 

blueprint to build our method. It is necessary to review program structure of Volkovs' code. We have known that 

Volkov's code uses outer-product formulation, algorithm ( )I  in Figure 13, and term by term correspondence in 

Figure 15 can be described as following: 

(1) load 16x16 block of matrix B into shared memory b[16][16]. One thread block has 64 threads (vector length = 64), 

each thread loads four elements (526/64 = 4). 

(2) each thread loads one element of A (64 threads load one column of 
,bm bkA ) and then does rank-1 update, 

[ ] [ ] [ ][ ] [ ]0c j A b i j c j= ⋅ +  for 0 :15j = , where [ ] ( ),0:15 ,0 :15bm bnc C threadID=  is one row of 
,bm bnC . 

(3) store 
,bm bnC

 
into matrix C.  

 

Remark 4: in Figure 15 one can also notice device function "rankk_update" in Volkov's code, which does rank-1 

update k times. Consider a simple example in Figure 16, matrix A has two sub-block A0 and A1, matrix B has two 

sub-block B0 and B1 and 
0 0 1 1C A B A B= + . First matrix-multiplication 

0 0A B
 

requires rank-1 update 16 times (one 

column of 
0A

 
multiplies one row of 

0B ), and these 16 rank-1 update code blocks are expanded into a large code 

block by compiler directive "#pragma unroll". However second matrix-multiplication 
1 1A B

 
requires rank-1 update 7 

times, we cannot unroll these 7 code blocks, that's why device function "rankk_update" exists. 

 

Figure 14: parameters of grid and block in ( I ) of Figure 13 
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Furthermore in order to simplify discussion, we use carton picture to describe grid information of Volkov's code as you 

see in Figure 17 (we alias 
,bm bkA ,

,bk bnB ,
,bm bnC  as A, B and C respectively, just simplify notation, nothing special). 

Under such picture, one can know 64,  16,  16
M K N

b b b= = =  and then  

(1) read A to register: 
1

16N

mnk
mnk

b
= ,  

 

Figure 16: rank-1 update and rank-k update in Volkov's code 

 

Figure 15: program structure of Volkov's code 
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(2) read B to shared memory: 
1

64M

mnk
mnk

b
=  , and  

(3) number of MAD ( c a b c= ⋅ + ): mnk . 

 

One point should be kept in mind: there are two MAD operations in "single precision", one is "MAD dest, src1, src2, 

src3" and the other is "MAD dest, [smem], src2, src3" where dest, src1, src2 and src3 are registers but [smem] is 

shared memory. In Volkov's code, rank-1 update  "rank1_update( A[0], &b[i][0], c );" can be expanded as  

   for( int j = 0 ; j < 16 ; j++){ 

    c[j] += A[0] * b[i][j] ; 

   } 

and compiler nvcc translates " c[j] += A[0] * b[i][j] ;" into "MAD dest, [smem], src2, src3". This can be verified by 

decuda [2] and Volkov uses this MAD operation to analyze performance in [1]. 

 

2.2 comparison between CUBLAS and Volkov's code 

In this work, we take Volkov's code as baseline and compare our method with it because our method is based on 

Volkov's code. First we compare performance of Volkov's code with CUBLAS in CUDA 2.3. To show comparison, we 

report two numbers, one is Gflop/s and the other is performance improvement.  

Definition 1: in Volkov’s code, only MADs contribute to the flop count, so we define flop count as 

( ) ( )
( )

#  2
/

mnk of MAD add mul
Gflop s

time s

× +
=  

Definition 2: let R be ratio of Gflop/s, defined by 
time of Volkov's code   of cublas

time of cublas  of Volkov's code

Gflop
R

Gflop
= = , then 1 R−  

is performance improvement. 

 

 Figure 18 shows Gflop/s over 5: 4096N = and Table 4 shows Gflop/s on specific dimension N . Generally 

speaking, Volkov's code has better performance than CUBLAS, Gflop/s of Volkov's code concentrates on 270 ~ 350  

where Gflop/s of CUBLAS locates at 160 ~ 350 . In fact, CUBLAS is faster a little bit than Volkov's code when 

64N k= . 

 

Figure 17: carton picture of grid information of Volkov's code. 
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N CUBLAS (Gflop/s) Volkov (Gflop/s) R 

256 198.92 207.67 0.9563 

512 222.59 226.90 0.9810 

1024 281.39 274.60 1.0248 

2048 331.03 324.94 1.0187 

4096 344.15 342.65 1.0044 

Table 4: comparison between CUBLAS and Volkov's code for N = 256, 512, 1024, 2048, 4096 on TeslaC1060. 

 Hence it is reasonable to take Volkov's code as baseline since only 2% performance deviation between CUBLAS 

and Volkov's code even when N is multiple of 64. Moreover Gflop/s of Volkov's code is less than 350 Gflop/s whereas 

single precision performance without dual issue is 624 Gflop/s in TeslaC1060. This means that Volkov's code only 

reaches 56% of peak performance on TeslaC1060. 

 

3 basic idea 

3.1 theoretical profile of Volkov's code  

From discussion in section 1 and result of micro-benchmarking in [8], we can summarize latency and throughput of 

some instructions in Table 5. 

Instruction Type Latency (cycles) Throughput (cycles/warp) 

 MOV reg, [gmem]  530  4 

 MOV [smem], reg  36 4 

 ADD, SUB Float 24 4 

 MAD dest, src1, src2, src3  Float 31.5 4 

 MAD dest, [smem], src2, src3 Float 34.6 6 

Table 5: latency and throughput of arithmetic instructions on TeslaC1060. 

 

Figure 18: left panel is Gflop/s of CUBLAS and Volkov's code. Right panel is performance improvement. 

Platform is TeslaC1060. 
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Remark 5: authors in [8] use (ops/clock) as unit of throughput whereas we use (cycles/warp) as unit.  

 

To estimate performance of Volkov's code without experiments, we need to check critical path in source code and 

decompose high level C code to basic instructions (one can use decuda to achieve this goal), then use throughput data 

in Table 5 to setup cost of instructions. Figure 19 samples critical path in Volkov's code and only leading order terms 

are considered. 
L

g  is latency of global memory, in this work, we set 530 
L

g cycle= . 
T

N  is number of active 

threads per SM, for example, 512
T

N = in Volkov's code. Furthermore we need several assumptions: 

 

Assumption 1: number of active threads ≧192 such that pipeline latency of MOV, ADD, SUB, MUL can be hidden, 

then throughput of above instructions is 4 cycle/warp. Since source code is executed by threads, it is better to express 

throughput in terms of a thread, not a warp, so throughput of { MOV, ADD, SUB, MUL } is ( )
4 1

/
32 8

cycle thread= . 

Assumption 2: number of threads > 256 such that latency of shared memory can be hidden. In Figure 6, number of 

active threads is set to be 512, then latency of shared memory is hidden by issuing time of consecutive command 

"b[inx][iny+i] = Reg". In such circumstance, we can ignore latency of shared memory and take throughput of 

"b[inx][iny+i] = Reg" into account. Under this assumption, total time of loading matrix B into shared memory 

b[16][17] is demonstrated in Figure 20. 

Assumption 3: only leading order of critical path is considered. 

Assumption 4: 30 SMs access independent 30 channels (in fact, only 8 physical channels exist, this assumption avoid 

 

Figure 19: timing estimate of Volkov's code 
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contending for channels). This means we over-estimate bandwidth of global memory. 

From profile in Figure 19, we can define four average quantities,  

(1) ( )
1

/
8

L
load

T

g
A cycle thread

N
= +  is cost of loading one element of matrix A into register, and total number of 

elements of A be accessed is 

N

mnk

b
. Hence total time of loading A is 

1
load

SM N

mnk
A

N b
⋅ . 

 

(2) ( )
2

/
8

L
load

T

g
B cycle thread

N
= +  is cost of loading one element of matrix B into register, and total number of 

elements of B be accessed is 

M

mnk

b
. Hence total time of loading B is 

1
load

SM M

mnk
B

N b
⋅ . 

(3) ( )
1.5

/
8

C A B
T cycle thread= × =  is cost of "MAD dest, [smem], src2, src3" and total number of MADs is mnk , so 

total time of C = A *B is 
1

C A B

SM

mnk T
N

= ×⋅  

(4) ( )
2

/
8

L
store

T

g
C cycle thread

N
= +  is cost of storing one element of matrix C , and total number of elements of C be 

accessed is mn . Hence total time of loading C is 
1

store

SM

mn C
N

⋅ . 

In this work, we focus on matrix-multiplication on square matrices, so 
1

store

SM

mn C
N

⋅  is not a leading order term. We 

can neglect it without affecting performance estimation. To sum up, performance of Volkov's code is calibrated by 

Total time of Volkov's code = ( )
1 1

 sec
 .

load load C A B

SM N M

mnk mnk
A B mnk T

N b b core freq
= ×

 
⋅ + ⋅ + ⋅ ⋅ 

 
 

Example 1: consider Volkov's code on TeslaC1060. 30
SM

N = , 512
T

N = , 64
M

b = , 16
N

b = , then 

 

Figure 20:total time to load matrix B to shared memory b[16][17] 
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( )1.16 /loadA cycle thread= , 0.02loadB = , and ( )0.1875 /C A BT cycle thread= × = . Performance expressed in term of 

(Gflop/s) is 
( )

( )
2 1.3

2 278.57  /
total time of Volkov's code

16 64

SM

load load
C A B

N GHzmnk
Gflop s

A B
T = ×

⋅ ⋅
= =

+ +

. 

Remark 6: under profiling model, the more number of active threads per SM is, the smaller 
1

8
L

load

T

g
A

N
= + , 

2

8
L

load

T

g
B

N
= + , and 

1.5

8
C A B

T = × =  are. However this property does not hold in Volkov's code. We change size of 

shared memory b in volkov's code to decrease number of active threads artificially and report Gflop/s in Table 6.  

N Volkov 

512 threads 

Volkov 

384 threads 

Volkov 

320 threads 

Volkov 

256 threads 

Volkov 

192 threads 

256 207.668 207.959 207.446 207.325 208.214 

512 226.895 257.561 265.977 240.991 263.005 

1024 274.597 295.442 304.576 307.883 301.340 

2048 324.941 336.311 338.103 336.047 321.100 

4096 342.651 343.713 343.595 341.188 325.226 

Table 6: performance of Volkov's code under different active threads per SM on TeslaC1060. unit: Gflop/s. 

 

Observation 1: it seems that 256 active threads are enough to hide memory latency and our profiling model cannot 

interpret this phenomenon. (data of 192 threads seems good for N = 256, 512, 1024, 2048, 4096, however it is 10% 

worse than data of 512 threads if one looks at graph of Gflop/s over N). This gives us a hint to speedup Volkov's code, 

we can focus 
C A BT = ×

 first and skip effect of 
loadA  and 

loadB . In other words, if we have a good idea to accelerate 

C A BT = ×
, then we have a chance to improve Volkov's code. 

 

 

Figure 21: (A) rank-1 update in Volkov's code, use "MAD dest, [smem], src2, src3"  

         (B) change "MAD dest, [smem], src2, src3" to "MAD dest, src1, src2, src3" 
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3.2 "MAD dest [smem] src2 src3" to "MAD dest src1 src2 src3" 

In Figure 21 we re-write rank-1 update of volkov's code as explicit for-loop in (A), compiler nvcc translates  

"c[j] += A_reg * b[i][j]" to "MAD dest, [smem], src2, src3" whose throughput is 6 cycle per warp. However intuitive 

translation of "c[j] += A_reg * b[i][j]" is two-step form in (B): 

 moving b[i][j] to register b_reg followed by "MAD dest, src1, src2, src3" 

This representation has no benefit since throughput of MOV is 4 cycle per warp, the same as throughput of "MAD 

dest, src1, src2, src3", and then total throughput is 4+4 = 8 cycle per warp. Therefore nvcc does a good job in Volkov's 

code since it saves 2 cycle per warp with respect to intuitive translation.  

Unfortunately, "MAD dest, [smem], src2, src3" is not good because it runs at 66% of the peak on all GPUs. This 

means that the best performance we may expect is 66 % of peak rate. On TeslaC1060, peak rate without dual issue is 

624 Gflop/s. Even Volkov's code reaches 342.651 Gflop/s in Table 6, it is still far from optimal value, 624 * 0.66 = 

411.8 Gflop/s. 

 

The key point is to decrease number of access of shared memory b[i][j], in other words, keep b[i][j into register 

longer and longer. This could be achieved if we move b[i][j] into register and serve more vectors in matrix A. Figure 

22 shows whole idea: vector length is still 64, but we load four consecutive vectors of matrix A into registers, then one 

b[i][j in register b_reg can serve four elements of A in registers, called A0_reg, A1_reg, A2_reg and A3_reg, then four 

"MAD dest, src1, src2, src3" operations are executed. Averagely speaking, one "MAD dest, src1, src2, src3" consumes 

1

4
 "MOV reg, [smem]", so throughput of "c[j] += A_reg * b[i][j]" becomes  

( ) ( ) ( )
1

4  dest,src1,src2,src3 4  reg, [smem] 5 /
4

MAD MOV cycle warp+ × =  which saves 
1

6
 flop counts. If only 

 

Figure 22: throughput decreases to 5 cycle per warp per C = A*B, 16% improvement. 
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C A BT = ×  
is considered, then we expect 16% improvement when using algorithm in Figure 22. 

 

3.3 difficulty: how to achieve "MAD dest, src1, src2, src3" 

The road to happiness is strewn with setbacks. In Figure 23 compiler nvcc always replaces b_reg by b_ptr[j] and uses 

"MAD dest, [smem], src2, src3" to do translation. We have tried setting variable b_reg as "volatile" but it does not 

work. Thanks to Wladimir J. van der Laan and Sylvain Collange, we can use decuda/cudasm to achieve this goal and  

we will discuss this workaround later. 

 

 

3.4 algorithm volkov versus algorithm volkov_variant 

To check consistency, we would like to change "MAD dest, [smem], src2, src3" in Volkov's code to "MAD dest, src1, 

src2, src3" and check the performance. Such variant of volkov's code is called algorithm volkov_variant, and 

Volkovs' code is called algorithm volkov. We keep silent on how to achieve this modification and focus on difference 

between algorithm volkov and algorithm volkov_variant. 

Algorithm volkov_variant uses 32 registers per thread and has 512 active threads per SM, the same as algorithm 

volkov. We also modify size of shared memory to decrease number of active threads per SM and calibrate Gflop/s 

value in Table 7. 

N volkov 

512 threads 

volkov_variant 

512 threads 

volkov_variant 

384 threads 

volkov_variant 

320 threads 

volkov_variant 

256 threads 

volkov_variant 

192 threads 

256 207.668 157.290 157.469 157.246 158.149 157.359 

512 226.895 206.597 235.508 250.517 206.906 214.208 

1024 274.597 273.237 290.352 288.885 272.905 226.370 

2048 324.941 326.253 333.650 325.749 302.861 238.335 

4096 342.651 353.234 350.770 340.168 308.491 240.456 

Table 7: performance of algorithm volkov_variant under different active threads per SM on TeslaC1060. unit: Gflop/s 

 

 

Figure 23: nvcc replaces b_reg by b_ptr[j] and use "MAD dest, [smem], src2, src3". One can check this 

by decuda.  
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Question 1: previous discussion reveals that algorithm volkov_variant is 33% slower than algorithm volkov because 

"c[j] += A_reg * b[i][j]" needs 6 cycle/warp in algorithm volkov whereas "c[j] += A_reg * b[i][j]" needs 4+4=8 

cycle per warp in algorithm volkov_variant. However experimental result does not support this argument, in Figure 24, 

volkov_variant is 4% slower than volkov in worse case. How to interpret this phenomenon?  

 

Observation 2: the fact, volkov_variant is not worse than volkov, gives us a hope that our idea may reach more 

performance improvement than expectation. Second if we want to keep algorithm volkov_variant comparable with 

algorithm volkov, then number of active threads should be not less than 320. This is very important since our method 

use more registers than volkov's code and then number of active threads would be less than 512.  

 

4 method 1 

Our first proposed algorithm, method 1, has same block information as that of algorithm volkov (Volkov's code) except 

two vectors (length = 64 per vector) share one movement of shared memory b[i][j]. Method 1 is an elementary 

version of algorithm in Figure 22 but uses fewer resources such that number of active threads can be kept higher (from 

Observation 2, we suggest number of active number per SM should be not less than 320 ). 

In order to connect source code and this document, parameters of block information are introduced in Figure 25. 

Resource usage in method 1 is  

(1) two registers A0_reg and A1_reg hold elements of two vectors in 
,bm bkA

 
respectively.  

(2) shared memory b[16][17] is 
,bk bnB  

(3) two register's arrays, c0[16] and c1[16], correspond to two consecutive sub-block 
,bm bnC . 

One more register's array c1[16] lead to high register count, 47, such that number of active threads is 320, less than 

512 in algorithm volkov. However 320 active threads still satisfy threshold suggested by Observation 2. 

 

 

 

Figure 24: comparison between algorithm volkov and algorithm volkov_variant, Generally speaking, 

volkov_variant is not bad, this is different from expectation. 
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4.1 performance of method 1 

Source code of "method 1" is method1.cu and code segment of rank-1 update is shown in Figure 26. As we have 

demonstrated, compiler nvcc always uses "MAD dest, [smem], src2, src3" in such circumstance. As far as 
C A BT = ×

 is 

concerned, method 1 has no advantage than algorithm volkov. However experimental result in Figure 27 shows good 

performance of method 1, the best performance improvement can be more than 10%. 

 

 

4.2 implementation of method1_variant 

To achieve compilation "MAD dest, src1, src2, src3", we propose a workaround, which requires decuda/cudasm. In 

this section we will demonstrate this workaround in detail. We call this workaround as algorithm method1_variant, 

and its source code locates in /method1/method1_variant.cu. Figure 28 shows rank-1 update of method1_variant, 

roughly speaking, we have three steps  

Step 1: modify "b_reg = b_ptr[j] ;" in algorithm volkov to "b_reg = b_ptr[j] * 4.0f ;", then nvcc has no choice but 

translates "b_reg = b_ptr[j] * 4.0f ;" to multiplication operation, "MUL b_reg, b_ptr[j], 4.0f ;", which can be verified 

by decuda.  

 

Figure 26: nvcc uses two "MAD dest, [smem], src2, src3" in method 1. Basically method1 is the same as 

algorithm volkov. 

 

Figure 25: block information of method 1 and its variant. 
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Step 2: in assembly file method1_variant.asm generated by decuda, we modify "MUL b_reg, b_ptr[j], 4.0f ;" to 

"MOV b_reg, b_ptr[j] ;" via any text editor.  

Step 3: assembly modified method1_variant.asm again by cudasm. Then the final binary .cubin file achieves our goal. 

 

 

Before describing three steps above precisely, we can sum up cost of data transfer and float-point cost among four 

algorithms, volkov, volkov_variant, method1, and method1_variant in Table 8. Please note that  

(1) current GPU does not support direct data transfer between global memory and shared memory, hence "load B to 

shared memory b" must be decomposed as two steps, load B to register first and then store value of register to shared 

 

Figure 28: rank-1 update of algorithm mathod1_variant. nvcc translates "b_reg = b_ptr[j] * 4.0f " to 

"MUL reg, [smem], 4.0f ", then we can modify this MUL operation to "MOV reg, [smem]". Then two 

"MAD dest, src1, src2, src3" share one "MOV reg, [smem]". 

 

Figure 27: performance of method 1. R ranges from 0.9 to 1.0, so method 1 is good. 
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memory. 

(2) nvcc translates MAD operation to "MAD dest, [smem], src2, src3" in volkov and method 1, hence number of 

"MAD dest, [smem], src2, src3" is mnk . But 

(3) we use such a trick "b_reg = b_ptr[j] * 4.0f " that "MAD dest, [smem], src2, src3" no long exists in volkov_variant 

and method1_variant. Instead we have "MAD dest, src1, src2, src3" and additional penalty, "MOV reg, [smem]". The 

main difference between volkov_variant and method1_variant is number of "MOV reg, [smem]". In method1_variant, 

two MAD operations share one load of shared memory, hence number of "MOV reg, [smem]" is 
1

2
mnk . 

operation volkov volkov_variant method1 method1_variant 

Load A to register 

"MOV reg, [gmem]" 

1

16
mnk  

1

16
mnk  

1

16
mnk  

1

16
mnk  

Load B to shared memory b 

1."MOV reg, [gmem]" 

2."MOV [smem], reg" 

1

64
mnk  

1

64
mnk  

1

64 2
mnk

×
 

1

64 2
mnk

×
 

Load shared memory b to register 

"MOV reg, [smem]" 

0 mnk  0
 

1

2
mnk  

MAD dest, [smem], src2, src3 mnk  0 mnk  0 

MAD dest, src1, src2, src3 0 mnk  0
 

mnk  

Table 8: cost among four algorithms, volkov, volkov_variant, method1, method1_variant. 

 

Observation 3: theoretically speaking, method1_variant has no benefit than volkov if only 
C A BT = ×  

is considered 

because average cost of one "c += a * b" is 4+4/2 = 6 cycle per warp, which is the same as "MAD dest, [smem], src2, 

src3" in volkov. However we have showed performance of method 1 is better than volkov in Figure 27. We may expect 

good result of in Figure 27. 

 

Next we elaborate how to accomplish the workaround step-by-step. The package decuda/cudasm is kept going and 

does not guarantee correctness for any combination of instructions, we must extract minimum region of binary code 

needed to be modified and keep remaining binary code unchanged. Generic procedure is depicted in Figure 29. binary 

file of method1_variant, method1_varinat.cubin, is divided into three parts, , ,Y X Z  where X contains code "b_reg 

= b_ptr[j] * 4.0f " which must be corrected as "MOV reg, [smem]" in assembly file. Then we edit part X
 

in .asm 

file generated by decuda, modify "MUL reg, [smem], 4.0f " to "MOV reg, [smem]", say assembly code segment X
 

is modified as W . Then we use cudasm to assembly modified .asm file into binary file but replace binary code 

segments ,Y Z� �
 

to original binary code segments ,Y Z
 

respectively. 
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Question 2: why do we use the trick "b_reg = b_ptr[j] * 4.0f "? Why not edit assembly directly? 

Answer: I would like to write assembly directly in matrix-multiplication because it's structure is regular, programmers 

can control register usage themselves very well. However implementation of cudasm is not entirely complete, it is not 

a good idea to write whole assembly manually and rely on cudasm. Moreover all what we need is to compile b_reg = 

b_ptr[j] " to "MOV reg, [smem]", just only 256 lines in Volkov's code. So we can isolate minimum region containing 

these 256 lines and check validity of cudasm on this region. Another point must be mentioned, if we isolate a small 

code segment as our target and modify it such that code size is changed, then we have a serious problem on branch 

instructions after this code segment. We must update offset in these branch instructions. However if we use current 

trick, then we just need to modify "b_reg = b_ptr[j] * 4.0f " to "MOV reg, [smem]" in assembly code (256 lines) and 

code size does not change, that's why we use this trick. 

 

To accomplish above generic procedures, we do the following steps: 

Step 1: if ψ  is binary code, then ( )( )   cudasm decuda ψ ψ≠ . We use cudasm to assembly .asm file generated by 

decuda, then four errors occur, see Figure 30, 

(1) Error on line 937: Invalid argument types 

(2) Error on line 938: Invalid argument types 

(3) Error on line 998: Type conflict -- expected half register 

(4) Error on line 1199: Type conflict -- expected half register 

Fortunately line 937, 938, 998, 1199 are not in code segment X  in Figure 29, we can change these four instructions 

to any valid instructions (for example, line 937 "mov.u16 $r1.hi, $p0" is substituted by " mov.b32 $r5, $r124"). We 

save these changes into new assembly file, called method1_variant_correct.asm.  

 

Figure 29: generic procedure of the workaround in method1_variant. 
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Remark 7: line 998 and line 1199 relate to instruction "if (beta == 0)" in method1_variant.cu because shared memory 

s[0x004c] is input parameter beta. However we have no idea about error message " Invalid argument types " at line 

937 and line 938. 

 

Step 2: in order to decompose binary files into three part , ,Y X Z , we need to count line number 
1 2,  L L . For 

simplicity header of .cubin is removed and keep binary code only, and save binary code into file from_nvcc.cubin, as 

you see in Figure 31. Same procedure is done for .asm file, see Figure 32. 

 

Remark 8: there are two instructions, one is 32-bit (operator has field "half" in assembly code, see Figure 33) and the 

other is 64-bit. However 32-bit instruction must appear in couple, in other words, length of binary code of one 32-bit 

instruction pair is the same as length of one 64-bit instruction. We can easily check number of instructions in assembly 

file and number of line is binary file. In assembly file, from_decuda.asm, there are four 32-bit instruction pairs (line 61 

and 62, line 821 and 822, line 873 and 874, line 975 and 976), and number of assembly code is 1391. Hence number 

of 64-bit instruction is 1391 - 4 = 1387. Total line in from_nvcc.bin is 
# of 64-bit instruction 1387

694
2 2

   
= =      

 

because one line in from_nvcc.cubin contains two 64-bit instruction. 

 

Step 3: In order to decompose from_nvcc.cubin and from_decuda.asm into three parts , ,Y X Z , we use 

synchronization command as a landmark. In Figure 34 two synchronization commands, __synchthreads(), correspond 

to assembly code "bar.synch.u32 0x00000000" in line 78 and line 923 in file from_decuda.asm respectively (binary 

 

Figure 30: consistent check between decuda and cudasm. 
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code of __syncthread() is "0x861ffe03 0x00000000"). First assembly code of "breg = b_ptr[j] * 4.0f" is "mul.rn.f32 

$r47, s[0x050], c1[0x0040]" in line 83 of from_decuda.asm (one can check that shared memory b[16][17] starts at 

location 0x50 and c1[0x0040] = 0x40800000 which is 4.0f). Hence code segment X  
must contain line 84 of 

from_decuda.asm. Under consideration of 32-bit instruction pairs, line 83 of from_decuda.asm corresponds to 82-th 

64-bit instruction, line 41 in from_nvcc.cubin, so we can choose binary code segment Y  to be line 1 ~ 41 and store it 

into from_nvcc_1_41.cubin. Similarly the last assembly code of "breg = b_ptr[j] * 4.0f" is "mul.rn.f32 $r41, 

s[4ofs3+0x0008], 0x40800000" in line 916 of from_decuda.asm. So we can put assembly codes after line 916 into 

code segment Z . Here line 917 of from_decuda.asm corresponds to second 64-bit binary code in line 457 of 

from_nvcc.cubin, we choose binary code segment Z  to be line 458~694 and store it into from_nvcc_458_694.cubin. 

To sum up, the result of decomposition is listed in Table 9. 

 

Code segment  from_nvcc.cubin  from_decuda.asm 

Y   from_nvcc_1_41.cubin: line 1 ~ 41  from_decuda_1_83.asm: line 1 ~ 83 

X   from_nvcc_42_457.cubin: line 42 ~ 457  from_decuda_84_917.asm: line 84 ~ 917 

Z   from_nvcc_458_694.cubin: line 458~694  from_decuda_918_1391.asm: line 918~1391 

Table 9: decompose binary file from_nvcc.cubin and assembly file from_decuda.asm into three parts, , ,Y X Z  

according to landmarks in Figure 34 . 

 

 

Figure 31: green box is header of .cubin file, remove it and store remaining part into from_nvcc.cubin 
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Step 4: replace "MUL reg, [smem], 4,0f" by "MOV reg, [smem]" in code segment X  
 

 

In assembly file from_decuda_84_917.asm, we must modify code of "MUL reg, [smem], 4,0f" to "MOV reg, [smem]". 

There are four kinds of "MUL reg, [smem], 4,0f" listed in Table 10, we can do two steps to obtain "MOV reg, [smem]" 

and store corrected assembly code into new file from_decuda_84_917_ldsb32.asm. 

(1) replace operator " mul.rn.f32" by "lds.b32" and 

(2) remove four patterns ", c1[0x0040]", ", 0x40800000", ", c1[$ofs2+0x0040]" and ", c1[$ofs3+0x0040]" 

 

 

Figure 33: there are four 32-bit instruction pairs. Then number of assembly code is 1391 but number of 

lines in binary file is 694. 

 

Figure 32: green box is header of .asm file, remove it and store remaining part into from_decuda.asm 
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 from_decuda_84_917.asm  from_decuda_84_917_ldsb32.asm 

mul.rn.f32 $r47, s[0x0050], c1[0x0040] lds.b32 $r47, s[0x0050] 

mul.rn.f32 $r7, s[$ofs2+0x0000], 0x40800000 lds.b32 $r7, s[$ofs2+0x0000] 

mul.rn.f32 $r40, s[$ofs2+0x0040], c1[$ofs2+0x0040] lds.b32 $r40, s[$ofs2+0x0040] 

mul.rn.f32 $r37, s[$ofs3+0x0044], c1[$ofs3+0x0040] lds.b32 $r37, s[$ofs3+0x0044] 

Table 10: modify form of "MUL reg, [smem], 4.0f" in first column into "MOV reg, [smem]" in second column. 

 

Remark 9: There are two binary codes to do "MOV reg, [smem]", one corresponds to "mov.b32 reg, [smem]", the 

other corresponds to "lds.b32 reg, [smem]". Performance of both binary codes are the same in our experiment. In this 

work, we use "lds.b32 reg, [smem]" because cudasm translates it to same binary code as we obtain from nvcc. 

However in order to translate "lds.b32 reg, [smem]", thanks to Sylvain Collange, you only need to add one rule  

 # from shared to a register 

 ("lds", 2, wide_op(0x12) + [(BF_SUBSUBOP, SRC1, SHTYPE)] + pred_out +pred_in + psize_width(DST1), [ 

     (DST1, i_oreg(_s.X), dest_oreg), 

     (SRC1, i_s(_s.X), [(BF_OPER5, SRC1, VALUE_ALIGN)] + offset_bits(SRC1)), 

 ]), 

in AsmRules.py of decuda package. The modification is shown in Figure 35. 

 

Figure 34: decompose from_nvcc.cubin and from_decuda.asm into three parts. 
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Step 5: Combine header of method1_variant.asm, fomr_decuda_1_83.asm, from_decuda_84_917_ldsb32.asm and 

from_decuda_918_1391.asm into one new file, called from_decuda_ldsb32.asm. Note that one must keep these files in 

order, see Figure 36. from_decuda_ldsb32.asm is a correct assembly file that can do matrix-multiplication because it 

replaces "MUL reg, [smem], 4,0f" by "MOV reg, [smem]". 

 

Step 6: translate from_decuda_ldsb32.asm into machine code, from_decuda_ldsb32_cudasm.cubin, via 

 cudasm -o  from_decuda_ldsb32_cudasm.cubin  from_decuda_ldsb32.asm 

 

However machine code may not work because cudasm cannot guarantee consistency. Fortunately translation of code 

segment X  (from_decuda_84_917_ldsb32.asm) is correct. so we can extract line 42 ~ 457 of 

from_decuda_ldsb32_cudasm.cubin to file from_decuda_ldsb32_cudasm_42_457.cubin. Finally we combine header 

of method1_variant.cubin with three code segments, from_nvcc_1_41.cubin, from_decuda_ldsb32_cudasm_42_457, 

and from_nvcc_458_694.cubin into final binary file, decuda_ldsb32_cudasm.cubin, which can be loaded into 

application by driver API. Order of combination of these files are shown in Figure 37. 

 

Figure 36: combine header and code segments Y, W, Z into a new assembly file, which replaces "MUL 

reg, [smem], 4,0f" by "MOV reg, [smem]". 

Figure 35: add one rule in AsmRules.py, this rule can translate "lds.b32 reg, [smem]". 
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4.3 performance of method1_variant 

Compared with performance of method 1 in Figure 27, the ratio R
 

of method1_variant in Figure 38 is just R
 

of 

method1 but shifts 0.1 downward. The table shows more than 20% performance improvement when dimension N = 

512, 1024, 2048 and 4096 on TeslaC1060. However some peaks of R
 

are not good though they occupy small region. 

 

The same speedup is proved on GTX285 but is more good, almost 10 % improvement at least when N > 1500. One 

may ask why GTX285 has better performance. I think that the reason is bandwidth. In Table 1, bandwidth of GTX285 

is 159GB/s, 50% more than that of TeslaC1060 due to overclocking of DRAM. If we focus on graph of Gflop/s on 

GTX825 (right panel of Figure 39), TeslaC1060 (left panel of Figure 40) and GTX295 (right panel of Figure 40), then 

it is easy to find that graph of Gflop/s has large variation over N on TeslaC1060.  

Question 3: why does graph of Gflop/s have large variation over N on TeslaC1060? 

Answer: from programming guide 5.1.2.1, we know that segment size is 128 bytes (32 float) for 32-, 64-, and 128-bit 

data for compute capability 1.3 and if a half-warp addresses words in n different segments, n memory transactions are 

issued, one for each segment (for example, right two transactions are issued in panel in Figure 41). In our experiment, 

size of A is m k× , size of B is k n× , and size of C is m n× , all matrices are column-major and leading dimension is 

 

Figure 38: performance of method1_variant on TeslaC1060. Averagely speaking, we have 10% 

improvement. One should compare this result with method1 in Figure 27. 

 

Figure 37: combine corrected binary code W with header, Y and Z to final binary file 

decuda_lds32_cudasm.cubin which can be loaded via driver API.  
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set by ,  ,  lda m ldb k ldc m= = = . When dimension is not multiple of 32, then we cannot merge requests of half-warp 

into one transaction only. In other words, when dimension N is not multiple of 32, then effective bandwidth decreases. 

the consequence is performance degradation and that's why large variation of Gflop/s on TeslaC1060. However such 

phenomenon is not found on GTX285 and GTX295 because high bandwidth of them compensates extra transactions. 

In section 1.1.3.2 we model throughput of global memory under 512 active threads per SM as 1.16 cycle/thread. 

Actually this estimation is wrong because the cycle here is core frequency, 1.3GHz, but memory frequency is 800MHz 

which leads to 100GB/s bandwidth. Suppose throughput is 1.16 cycle/thread and one thread transfers one float 

element (4 byte), then bandwidth per thread is 
( )

( )
4

5.2 /
1/1.3

byte
GB s

GHz
= . TeslaC1060 has 240 cores, each core runs 

one thread, then total bandwidth is ( )240 5.2 / 1248 /GB s GB s× = , this is impossible. So what we are agree with is: 

under same algorithm, throughput of global memory from high to low is GTX285 GTX925 TeslaC1060> < . High 

throughput in GTX285 can tolerate extra transactions when lda  is not multiple of 32. 

 

Remark 10: number of data transfer in matrix A in all algorithms in this work is main overhead, such extra 

transactions mainly come from contribution of matrix A. If number of data transfer of A can be reduced, then we 

expect that large variation in Gflop/s is relaxed. For example, we configure different active threads per SM from 320 

to 192 artificially in method1_variant and list results in Table 11. Performance of 256 threads in method1_variant is 

worse than performance of 320 threads but it is still better than algorithm volkov. Hence we can use less active threads 

but more resource (registers per thread) to decrease number of data transfer of matrix A, that is why we introduce 

method 2 in section 5. 

 

 

Figure 39: performance of method1_variant on GTX285, 10% improvement at least. 
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N volkov 

512 threads 

method1 

320 threads 

method1_variant 

320 threads 

method1_variant 

256 threads 

method1_variant 

192 threads 

256 207.668 145.308 118.354 118.392 118.477 

512 226.895 290.171 346.754 225.800 224.832 

1024 274.597 325.223 361.492 333.976 287.793 

2048 324.941 348.155 420.841 379.480 305.243 

4096 342.651 352.914 430.517 382.770 307.271 

Table 11: performance of algorithm method1_variant under different active threads per SM on TeslaC1060. unit: 

Gflop/s. 

 

4.4 padding to improve performance of method1_variant 

Although performance of method1_variant on TeslaC1060 has lager variation than performance on GTX285 and 

GTX295, it can still have 10% improvement for specific dimension. In Figure 42 we show two specific choices of N 

on ratio R, one is 32 4N k= + (left panel), the other is 8N k=  (right panel). This means that if we choose leading 

dimension lda
 

as multiple of 8, then we should have 10% improvement for N > 1500. However if lda
 

as multiple 

 

Figure 41: left panel: linear memory segments in figure 3.3 of best programming guide [10]. Right panel: 

misaligned sequential addresses result in two transaction in figure 3.6 of best programming guide. 

 

Figure 40: Gflop/s of method1 on TeslaC1060 and GTX295. 
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of 4, then performance is not good. Next we want to explain why 8lda k=  is better than 4lda k= . 

 

The trick, lda N≠ , is called padding. If 8lda k= , then we say padding unit is 8. If 4lda k= , then we say padding 

unit is 4. 

 

4.4.1 penalty of padding unit = 8 

Suppose that matrix A is of size m k× , and 32 2 8m = × + . Compute capability of TeslaC1060 is 1.3 and then one 

segment is 128 bytes for 64-bit data access (i.e. 16 float). The distribution of segments is shown in Figure 43, here it 

suffices to show 8 segments and value of dimension k  is immaterial. Next we calculate effective bandwidth of each 

column access. 

In Figure 44, we consider coalesced pattern on column-0 of matrix A, data of 16 threads (half-warp) fall into the same 

segment, one 64-byte transaction is issued and then effective bandwidth is 100 %. 

In Figure 45, coalesced pattern on column-1 of matrix A is considered. 

(1) Threads of half-warp 0 access data in the same segment, one 128-byte transaction is issued and then effective 

bandwidth is 50 %. 

(2) Threads of half-warp 1 access data in two segments, two 32-byte transactions are issued, and effective bandwidth 

is 100 %. 

Total effective bandwidth of column-1 = 
data transfer in kernel 64 64 2

transfer through bus 128 32 2 3

+
= =

+ ×
 

In Figure 46, coalesced pattern on column-2 of matrix A is considered. 

(1) Threads of half-warp 0 access data in the same segment, one 64-byte transaction is issued and then effective 

bandwidth is 100 %. 

(2) So does half-warp 1 

 

Figure 42: sample special dimension N for performance of method1_variant. 
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Total effective bandwidth of column-2= 
data transfer in kernel 64 64

1
transfer through bus 64 64

+
= =

+
 

In Figure 47, coalesced pattern on column-3 of matrix A is considered. 

(1) Threads of half-warp 0 access data in two segments, two 32-byte transactions are issued and then effective 

bandwidth is 100 %. 

(2) Threads of half-warp 1 access data in one segment, one 128-byte transaction is issued, effective bandwidth = 50 %. 

Total effective bandwidth of column-3= 
data transfer in kernel 64 64 2

transfer through bus 32 2 128 3

+
= =

× +  

To sum up, total effective bandwidth on loading of matrix A is 

average of all column-access = 
1 2 / 3 1 2 / 3 5

0.833
1 1 1 1 6

+ + +
= =

+ + +
. 

 

 

 

 

Figure 44: effective bandwidth of column-0 access is 100%.  

 

Figure 43: distribution of segments (128 byte per segment) in matrix A with mxk, and m = 32 x 2 + 8.   
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Observation 4: 32 8N k= +  is worse than 16N k=  since effective bandwidth is 5/6. However 5/6 is not so bad,  

hence we can pad matrix such that lda is multiple of 8. 

 

 

 

 

4.4.2 penalty of padding unit = 4 

Suppose that matrix A is of size m k× , and 32 2 4m = × + . We summarize effective bandwidth of each column in 

Figure 48, and then total effective bandwidth on loading of matrix A is 

 

Figure 46: effective bandwidth of column-2 is 100%   

 
Figure 45: effective bandwidth of column-1 is 66%   
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1 4 2 4 4 2 4
average of all column-access 1 1 0.7024

8 7 3 7 7 3 7

 
= + + + + + + + = 

 
, which is worse than padding unit = 8.  

Finally we show performance improvement of padding unit = 8, 16 in Figure 49. For N > 150, Padding unit = 8 has 

10% ~ 25% improvement whereas padding unit = 16 has 14% ~ 25% improvement. 

 

 

 

Figure 48: distribution of segments (128 byte per segment) in matrix A with mxk, and m = 32 x 2 + 4 . 

effective bandwidth is 0.7024   

 

Figure 47: effective bandwidth of column-3 is 66%   
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5 method 2 and method 3 

method 2 is the same as method 1 except parameter BLOCK_SIZE_Y is 24, not 16. The larger BLOCK_SIZE_Y is, 

the smaller number of data transfer of matrix A is. Number of data transfer of matrix A in method 2 is 
24

mnk
 which is 

66% of that in method 1. Such reduction of memory load can compensate insufficiency of bandwidth of TeslaC1060 

as we discussed in Question 3. However we must pay extra registers (number of reregister per thread = 64) in order to 

achieve memory reduction. The number of active threads per SM in method 2 becomes 256, smaller than 320 in 

method 1. 

 

We show experimental result of method2_variant on TeslaC1060 in Figure 51. Red curve in right panel of Figure 51 is 

Gflop/s of method2_variant, more uniform than Gflop/s of method1_variant in left panel of Figure 40. This uniformity 

of Gflop/s reveals additional improvement. In left panel of Figure 51, R ranges from 0.7 to 0.9 and has no peaks for 

large N.  

 

Figure 50: block information of method 2 and its variant. The difference between method 1 and method 2 

is value of parameter BLOCK_SIZE_Y. In Figure 25, BLOCK_SIZE_Y is 16 in method 1, however we 

set BLOCK_SIZE_Y = 24 in method 2. 

 

Figure 49: performance of padding unit = 8 is 10% ~25% improvement whereas performance of padding 

unit = 16 is 14%~25% improvement. 
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Observation 5: Although method2_variant is better than method1_variant on TeslaC1060, same performance 

improvement does not hold on GTX285 and GTX295. In Figure 52, graph of Gflop/s of volkov is more uniform than 

that of method2_variant and then ratio R of method2_variant (left panel of Figure 52) is worse than R of 

method1_variant (left panel of Figure 39). Hence if we insist that performance of SGEMM is consistent in all GPUs of 

GT200, say high bandwidth leads to high improvement, then we should use method1_variant. 

 

Question 4: even method2_variant has good performance on TeslaC1060 but there is something so strange that we 

cannot find any explanation. If we change vector length of method 2 from 128 to 64 but keep all other parameters 

(number of active threads are 256 in both methods), then method 3 arises. The difference between method 2 (Figure 50) 

 

Figure 52: left panel: performance of methd2_variant on GTX285. Not good as method1_variant in Figure 39 

since Gflop/s of volkov is more uniform than that of method2_variant in right panel.  

 

Figure 51: left panel: performance of methd2_variant on TeslaC1060. We have uniform 10% 

improvement more uniform than that of method1_variant in Figure 38. Such uniformity comes from 

uniformity of graph of Gflop/s (right panel).  
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and method 3 (Figure 53) is number of data transfer of matrix B. However data transfer of matrix B is relative smaller 

than data transfer of matrix A, it should not be a bottleneck and there should be no difference of performance between 

method 2 and method 3. Unfortunately method 3 is pretty bad. 

 

 

In Figure 54 performance of method3_variant is bad then method2_variant both on TeslaC1060 and GTX285, so far 

we cannot find any reason for this phenomenon.  

 

6 method 4 

From section 3, Figure 22, we introduce basic idea to improve 16% if only is 
C A BT = ×  

considered. However we don't 

obtain any speedup experimentally. Figure 55 shows block information of method 4 and its variant. There are four 

vectors with a gap between consecutive vectors in method 4 but no gap in Figure 22. Such gap can prevent partition 

camping on load of matrix A.  

 

Figure 54: left panel: performance of methd3_variant on TeslaC1060. 

         right panel: performance of methd3_variant on GTX285 

 

Figure 53: block information of method 3 and its variant. Only difference from method 2 is vector length, 

vector length of method 3 is 64 whereas vector length of method 2 is 128. 
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Experiment in Figure 56 reveals dramatically bad results on both TeslaC1060 and GTX285. I think the key is number 

of active threads per SM. Algorithm volkov has 512 active threads per SM because it uses only 30 registers per 

thread ,however method 4 has only 192 active threads per SM due to 80 registers per thread. 192 threads (6 warps) 

cannot hide latency of shared memory and cannot hide pipeline latency of "MAD dest, src1, src2, src3". In Table 3 

pipeline latency of "MAD dest, src1, src2, src3" is 31.5 cycle and throughput is 4 cycle/warp. This means that we need 

8 warps at least to hide pipeline latency of "MAD dest, src1, src2, src3".  

 

 

 

 

Figure 56: left panel: performance of methd4_variant on TeslaC1060. 

         right panel: performance of methd4_variant on GTX285 

 

Figure 55: block information of method 4 and its variant 
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7  Volkov's code does not work for arbitrary dimension 

Volkov’s code fetches sub-matrix of B of size 16x16 into shared memory and sub-matrix of A of size 64x1 into 

registers. If dimension of the matrix is not multiple of 16 or 64, then we have out of array bound problem.  

Example 2: matrix A is m k× , matrix B is k n×  and matrix C is m n× , assume 

(1) Column-major and leading dimension ,  ,  lda m ldb k ldc n= = =  and 

(2) m is not multiple of 64, k is not multiple of 16 and n is not multiple of 16. see Figure 57 

 

We take blockIdx = (1, 3) of matrix C as an example. blockIdx = (1, 3) is labeled as green box and corresponding rows 

of A and columns of B are also labeled as green boxes.  

First, source code of algorithm volkov only allows valid entry of matrix C by two mechanisms. 

(1) each thread updates one row of C, so if the row is not valid, then statement "if( row >= m ) return;" can prevent 

writing. 

(2) when a thread is allowed to update a row, then we need to check if all columns of the row are valid or not. This 

could be done for parameter "n - iby" passing into device function "store_block".  

To sum up, there is no out-of-bound problem when writing to matrix C. 

 

 

Figure 58: only valid entry of matrix C can be written into global memory, there is no out-of-array bound 

when writing data to matrix C. 

 

Figure 57: grid information of algorithm volkov, m, n are not multiple of 64 and k is not multiple of 16. 
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Second algorithm volkov load 16x16 sub-matrix of B before doing C = A * B, when k is not multiple of 16, then 

out-of-array bound occurs when compute rightmost grid of C, purple grids in Figure 59. Left panel of Figure 60 shows 

illegal memory-access logically by orange boxes. But their physical locations are different from logical locations, right 

panel of Figure 60 shows physical locations of such illegal memory-access. 

 

 

 

If we define three quantities 
63

64
64

m
m

+ 
=     

(smallest integer greater than m and be multiple of 64), 

15
16

16

k
k

+ 
=     

and 
15

16
16

n
n

+ 
=   

. Then red boxes in Figure 61 represent logical elements of matrix B which 

result in out-of-array bound (segmentation fault). If the last element ( ),k n  
is still valid, then we can avoid 

segmentation fault. In other words, the condition to avoid segmentation fault is 

( ) ( ) ( )k ldb n sizeof float alloc B+ × × <  

 

Figure 60: orange boxes in left panel are illegal logically, but their physical locations locate in right panel. 

 

Figure 59: load 16x16 sub-matrix of B when k is not multiple of 16, then out-of-array bound occurs. 
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Third, algorithm volkov load 64x1 sub-matrix of A when doing rank-1 update. In Figure 62, the device function 

"rankk_update" avoids loading invalid columns of A, so we only focus on invalid rows of A. Although there are two 

rows of A are out-of-array bound logically, only two elements among these two rows are out-of-array bound physically. 

These two elements are labeled as red boxes in Figure 63. The condition to avoid segmentation fault is 

( ) ( ) ( )m lda k sizeof float alloc A+ × × < . 

 

 

 

Figure 62: load 64x1 sub-matrix of A into register. It suffices to take care of invalid rows. 

 

Figure 61: red boxes denote logical locations which result in out-of-array bound. 



 50

 

8  How to extend our methods to arbitrary dimension 

We summarize Figure 61 and Figure 63 into Figure 64. Clearly out-of-array bound occurs in last column of sub-blocks 

of B and last row of sub-blocks of A. Besides if dimension k is not multiple of 16, then we have rank-1 update and 

additional rank-k update when computing 
, , ,bm bn bm bk bk bnC A B=  . Out-of-array bound occurs in rank-k update when 

loading matrix B into 
,bk bnB . 

 

8.1 extend Volkov's code to arbitrary dimension 

 Formally speaking, we can classify grids of matrix C into four categories, and use six cases among these four 

categories to check out-of-array bound of matrix A or B. In Figure 65, we take Volkov'' code as an example and use 

CPU code to determine which category current tripe ( m, n, k ) is. Inside the kernel, intrinsic variables, gridDim and 

blockDim, are used to determine which case is proper for this thread block. The six cases include  

I: original Volkov's code, no out-of-array bound occurs. 

II: check B (ignore illegal memory access of matrix B) 

III: check A (ignore illegal memory access of matrix A) 

 

Figure 64: out-of-array bound occurs in last column of sub-blocks of B and last row of sub-blocks of A. 

 

Figure 63: left panel shows illegal logical locations of A and right panel shows illegal logical elements whose 

physical location are out-of-array bound indeed. 
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IV: check A and check B 

V: check B only for rank-k update, keep load of B in rank-1 update unchanged. (in case II, "check B" means check 

load of B both in rank-1 update and rank-k update ) 

VI: check A and check B for rank-k update. 

 

Unfortunately, such intuitive modification is not good. We compare method5_v1 (version 1 of method 5) with 

Volkov's code in Figure 66. Method5_v1 only has better result when n is multiple of 64 since case I is applied. 

Otherwise method5_v1 is dramatically bad. 

 

Question 5: why so bad is method5_v1? 

Answer: though method5_v1 uses 39 registers per thread, which is so many that number of active threads is 384, not 

512, mortal wound is "check A". There are two reasons, one is failure of loop-unrolling in Figure 67, and the other is 

 

Figure 66: Left panel: performance improvement of method5_v1. Right panel: Gflop/s of method5_v1. 

Clearly method5_v1 is pretty bad. 

 
Figure 65: classify grids of matrix C into four categories, we use six cases (I, II, III, IV, V, VI) to check 

out-of-array bound of A or B. 
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extreme high cost of "check A". Intuitive thinking of cost of "check A" in right panel of Figure 67 includes two factors  

(1) comparison between pointer A (pointer A in Volkov's code is movable, it points to 
ik

A  of 
ij ik kj

k

C A B=∑ . Don't 

confuse it with address of matrix A) and pointer A_bound ( A_bound is summation address of matrix A and lda k× , 

so any address behind A_bound is illegal). cost is 4 cycle per warp 

(2) jump if "A < A_bound" is not true. cost is 4 cycle per warp. 

So only 8 cycle per warp is paid for each access of matrix A. Number of data transfer of A in Volkov's code is 
16

mnk
 

but "check A" only occurs in last row of sub-block of A (only M  thread blocks). Hence  

cost of "check A" = ( ) ( )
1

8 /
16

mnk
threads cycle wrap

M
× × . 

On the other hand, cost of MAD is ( )4 /mnk cycle wrap× . This means 
"check A" 1

8MAD M
= , "check A" should not 

degrade performance so much.  

 

However from result of decuda, extra overhead of "check A" is 67 lines assembly code, i.e. ( )67 4 /cycle wrap×  at 

least, not 8 /cycle wrap . Therefore 
"check A" 4.1875

MAD M
= , that is the reason of poor performance. 

Observation 6: if number of rows of A is greater than 64, then we can ignore case III since memory access in case III 

is out-of-bound logically but is still valid physically. We develop method5_v2 (version 2 of method 5), which is 

method5_v1 without case III. In Figure 68, method5_v2 is indeed better than method5_v1. However we can do more 

aggressively.  

 

Observation 7: In Volkov's code, 
, , ,bm bn bm bk bk bnC A B=  is computed but only legal address of 

,bm bnC
 

can be written 

into matrix C. In other words, if some row of 
,bm bnC

 
is illegal, then corresponding value of A is immaterial. Hence in 

 

Figure 67: nvcc cannot do loop-unrolling for each column of sub-block of A because we check validity of 

address A inside the loop. 
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Figure 69 we can re-direct illegal pointer A to last row of matrix A. This trick avoids operation "check A", then case III, 

IV and VI are useless, which can be replaced by case II. So we only use case I, II and V to implement method5_v3 

(version 3 of method 5) in Figure 70. As we expect, Figure 71 shows that performance of method5_v3 is almost the 

same as Volkov's code without considering out-of-array bound.  

Remark 11: although performance of method5_v3 is almost the same as Volkov's code, we still take Volkov's code as 

our reference model. So we compare our methods with Volkov's code in remaining sections. 

 

 

 

 

Figure 69: when pointer A is illegal logically, then we re-direct it to last row of matrix A. Though value of 

pointer A is wrong, it does not affect C = A*B. 

 

Figure 68: Left panel: performance improvement of method5_v2. Right panel: Gflop/s of method5_v2. 

method5_v2 is much better than method5_v1. 
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8.2 method 6 (extension of method 1) 

method 6 is method 1 with out-of-array bound checker. However we cannot use four categories of method5_v3 

because of register count. There are 320 active threads per SM in method 1, then threshold of register count is 48 (it 

register count > 48, then we have only 256 active threads). Since method 6 is an extension of method 1, we expect that 

there are also 320 active threads per SM in method 6. To achieve this goal, we must abandon case V in method5_v3 

and merge common part of case I and case II. The code of case II is the same as code of case I except that case II 

needs to check validity of address B, hence in Figure 72 we use one flag "sel" to distinguish case I and case II. Then 

register count of method 6 is 54 but register count of method6_variant is 47 if we use compiler option, "-maxrregcount 

 

Figure 71: Left panel: performance improvement of method5_v3. Right panel: Gflop/s of method5_v3. 

method5_v3 is almost the same as Volkov's code for n > 1000.  

 

Figure 70: we don't need to "check A" in method_v3 and then case II, IV, VI can be replaced by case II. 
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49". Hence method6_variant has 320 active threads per SM, the same as active threads of method1_variant. 

 We compare performance between method1_variant and method6_variant in Figure 73. Generally speaking, 

method6_variant has the same performance profile as method1_variant. Of course if one looks at result of GTX285, 

then method1_variant has more test cases beneath R = 0.8, however R of method6_variant also ranges from 0.8 to 0.9 

for n > 1500 on GTX285. 

 To sum up, we have equipped method1_variant with out-of-array bound checker and do not sacrifice 

performance on TeslaC1060. As far as we are concerned about library, method6_variant is no doubt a better choice 

than method1_variant because users don't need to care about size of allocation. However if one uses method1_variant, 

then he can obtain better performance, up to 5% in base cases. However he must remind himself to allocate large 

memory block for matrix A and B, the library cannot check size of array for him. 

 

 

9  could we achieve uniform speedup on GT200?  

Although we have completed method1_variant in section 8 and propose method6_variant, there are several peaks 

above R = 0.9 on TeslaC1060. We have discussed this phenomenon and we conclude that this is because of lower 

bandwidth of TeslaC1060. In other words, if one can overclock memory frequency of TeslaC1060 from 800 MHz to 

1GHz, method6_variant should have uniformly speedup for large n. The truth is "we cannot overclock TeslaC1060" 

and then two methods can be used to compensate low bandwidth, one is to avoid partition camping, the other is to 

decrease number of data transfer of matrix A.  

 

9.1 avoid partition camping 

Global memory is divided into either 7 partitions on GTX295 or 8 partitions (on 200- and 10-series GPUs) of 256-byte 

width (64 floats) [6]. Order of thread blocks of Volkov's code is column-major. For example, first 8 thread blocks 

 

Figure 72: merge common part of case I and II and use flag "sel" to distinguish different part.  
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compute 
, , ,bm bn bm bk bk bnC A B=

 
on first column sub-blocks of C, this means that these 8 thread blocks load first column 

sub-blocks of B and each thread block loads different row sub-block of A. Since data transfer of matrix B is relative 

small, we can neglect effect of competence on data transfer of matrix B. Let us focus on data transfer of matrix A and  

assume m = multiple of 64. "vector length = 64" means that each sub-block of matrix A occupies only one partition. 

First 8 thread blocks use 8 partitions mutual exclusively. 

 However this property does not hold in method 6. Each thread block loads 
,bm bkA

 
of size 128 x16, which 

occupies two partitions. We develop method 7 to keep the property, one thread block occupies one partition of matrix 

A. Grid information of method 7 is shown in Figure 74, and two vectors of matrix A are not adjacent. Unfortunately 

performance of method 7 on TeslaC1060 is worse than method 1, and has more peaks above R = 0.9. On the other 

hand, method 7 and method 1 have the same performance on GTX285 due to high bandwidth of GTX285, this is what 

we expected. 

 

9.2 decrease number of data transfer of matrix A 

We have use this idea in developing method 2 and method 3, but method 3 does not have expected speedup. In this 

section we modify parameter BLOCK_SIZE_Y in method 3, decrease it from 24 to 20, but keep other parameters 

unchanged. Also we add out-of-array bound check and then call this method as method 8. Figure 75 shows uniform 

performance of method8_variant on TeslaC1060, but sacrifice 5% performance averagely on GTX285. In other words, 

method 8 has larger speedup on TeslaC1060 than speedup on GTX285, this extra speedup on TeslaC1060 comes from 

 

Figure 73: performance comparison between method1_variant and method6_variant. upper panel is 

TeslaC1060 and bottom panel is GTX285. Generally speaking, ethod6_variant is as good as method1_variant. 
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large variation of Gflop curve in Volkov's code. 

 

 

 

 

Figure 75: grid information of method 8 and performance on TeslaC1060 and GTX285. method8_variant has 

uniform performance for n > 2000. 

 

Figure 74: grid information of method 7 and performance on TeslaC1060 and GTX285. In fact 

method7_variaint has more peaks than method6_variant on TeslaC1060. 
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10 conclusions 

In this work, we implement eight methods (method 5,6,7 and 8 consider out-of-array bound) and compare them with 

Volkov's code. The package decuda/cudasm is used to modify binary code of variant version of each method. What 

we care about is performance of variant version, in order to simplify notation, we ignore "variant" in this section. For 

example, method 1 means method1_variant. 

 If programmers want a black-box SGEMM solver and don't want to care about size of allocation, then method 8 

is the only choice though it sacrifices about 5% performance on game card. On the contrary if programmers can 

control allocation size of matrix A, B and C themselves in their application, then method 1 is a good choice, especially 

on game card. However size of allocation must be dealt carefully or out-of-array bound may occur. 

 Resource usage and computational cost of these five methods are listed in Table 12. According to resource usage, 

including threads per block, registers per thread and shared memory per block, one can determine number of active 

threads per SM via CUDA occupancy calculator. Then method 4 has only 192 active threads, smallest among five 

methods, and such six warps cannot hide pipeline latency of MAD operation and latency of shared memory. Hence it 

is not surprised that method 4 is even worse than Volkov's code. Next we can use computational cost to determine 

which one is better, method 1 or method 2 ? Note that we cannot explain why method 3 is not good as method 2. 

Computation cost has three factors, one is load of matrix A and B (dominated by data transfer of A), one is number of 

data transfer from shared memory to register, another is number of MADs. Method 1 and method 2 only differ on first 

factor. Moreover method 1 has more active threads than method 2, this means that memory throughput of method 1 is 

higher a little bit than that of method 2. If we take both number of data transfer and memory throughput into account, 

then ratio of cost of data transfer between method 1 and method 2 is 

1 1 1 1 1 1
method 1: method 2 : 1: 0.81

320 16 64 2 256 24 128 2
mnk mnk

   
= + + =   

× ×   
  

Hence method 2 should be slightly faster than method 1.  

However situation is more complex, method 2 is not better than method 1 on overclocking cards, GTX285 and 

GTX295. Since we want to build SGEMM on GT200, including TeslaC160, GTX285 and GTX295, method 1 is better 

when three GPUs are considered together. So ranking of method 1 in Table 12 is one, the best choice. 

 

algorithm volkov method 1 

(variant) 

method 2 

(variant) 

method 3 

(variant) 

method 4 

(variant) 

Resource usage  

Threads per block 64 64 128 64 64 

Registers per thread 30 48 63 64 80 

Shared memory per block 1168 1168 1680 1680 1176 

Active threads per SM 512 320 256 256 192 

Computational cost 

Load A to register 

"MOV reg, [gmem]" 

1

16
mnk  

1

16
mnk  

1

24
mnk  

1

24
mnk  

1

16
mnk
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Load B to shared memory b 1

64
mnk  

1

64 2
mnk

×
 

1

128 2
mnk

×
 

1

64 2
mnk

×
 

1

64 4
mnk

×  

Load shared b to register 

"MOV reg, [smem]" 

0 1

2
mnk  

1

2
mnk  

1

2
mnk  

1

4
mnk

 

MAD dest, [smem], src2, src3 mnk  0 0 0 0 

MAD dest, src1, src2, src3 0 mnk  mnk  mnk  mnk  

ranking 3 1 2 4 5 

Table 12: resource usage and computational cost among five algorithms, volkov, method1_variant, method2_variant, 

method3_variant and method4_variant.  

 

Figure 76 shows performance (Gflop/s) of method1on TeslaC1060, GTX285 and GTX295. The baseline is Volkov's 

code on TeslaC1060 (black dash line). Core frequency of GTX285 is 1.135x than that of TeslaC1060, and it is 

reasonable that performance of GTX285 is 1.165x than that of TeslaC1060. From Table 1 we know peak performance 

of single precision without dual issue on TeslaC1060 is 624 Gflop/s, and maximum performance of method 1 on 

TeslaC1060 in Figure 76 is 439.467Gflop/s. Hence method 1 achieves 70% of peak performance without dual issue. 

 

 As a result, method 1 has 10% ~ 20% improvement for large N indeed. However we cannot have a theoretical 

model to combine all factors, including latency of global memory and its throughput under different number of active 

threads per SM. It may be a coincidence that method 1 has better performance than Volkov's code . 

 In this work, we spend much effort on how to use decuda/cudasm to modify binary code as we explain in 

section 4. This is tedious and the modified binary code cannot be compatible with incoming Fermi architecture, so we 

must re-do the work again for Fermi architecture, TeslaC2050 and TeslaC2070. Hope that NVIDIA is going to release 

official decuda/cudasm at that time. 

 

 

Figure 76: performance of method 1 over N = multiple of 64 on TeslaC1060, GTX285 and GTX295. The 

baseline is performance of Volkov's code on TeslaC1060. 
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