

MASTER THEOREM

THE PROOF OF EXACT POWERS

- $T(n) = aT(n/b) + f(n)$

LEMMA I

- Let $a \geq 1$ and $b > 1$ be constants, and let $f(n)$ be nonnegative function defined on power of b . Define $T(n)$ on exact power of b by the recurrence

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ aT(n/b) + f(n) & \text{if } n = b^j \end{cases}$$

Where j is a positive integer .

$$\text{Then } T(n) = O(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} a^i f(n/b^i)$$

LEMMA II

- Let $a \geq 1$ and $b > 1$ be constant, and let $f(n)$ be a nonnegative function defined on exact power of b . A function $g(n)$ defined over exact power of b by

$$g(n) = \sum_{i=0}^{\log_b n-1} a^i f(n/b^i)$$

can then be bounded asymptotically as follows.

1. If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $g(n) = O(n^{\log_b a})$
2. If $f(n) = O(n^{\log_b a})$, then $g(n) = O(n^{\log_b a} \lg n)$
3. If $af(n/b) \leq cf(n)$ for some constant $c < 1$ and for all $n \geq b$,
then $g(n) = O(f(n))$

LEMMA III

- Let $a \geq 1$ and $b > 1$ be constants, and let $f(n)$ be nonnegative function defined on power of b . Define $T(n)$ on exact power of b by the recurrence

$$\begin{aligned} T(n) = & \quad O(1) & \text{if } n = 1 \\ & aT(n/b) + f(n) & \text{if } n = b^j \end{aligned}$$

Then $g(n)$ can be bounded asymptotically as follows.

1. If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $g(n) = O(n^{\log_b a})$
2. If $f(n) = O(n^{\log_b a})$, then $g(n) = O(n^{\log_b a} \lg n)$
3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = O(f(n))$

QUESTION

We prove exact power before. How about arbitrary integer ?

