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Abstract

Object detection is a fundamental and important problem in computer vision and can be
applied to various applications like video surveillance, navigation, content-based image
retrieval and so on. Its goal is to find the exact location of an object no matter how the
environmental conditions change.

This thesis presents a novel framework for detecting objects in color images. First of all, a
novel eigen color representation derived from a statistical analysis of object instances is
presented. In this new eigen-color space, different object pixels can be easily identified from
background, even though they are lighted under varying illuminations. At the hypothesis
verification stage, each detected pixel corresponds to an object hypothesis. Several important
appearance features including corners, edge maps and coefficients of wavelet transforms were
used for constructing a cascade multi-channel classifier. With the cascade structure, an
effective scanning process can be performed to verify all possible candidates. Because the
color feature eliminates most background pixels in advance, the scanning process can be
performed extremely quickly to locate each desired object.

Compared with the traditional appearance-based methods, our proposed eigen-color space
can filter out most of impossible candidates in advance and thus each desired object can be
very efficiently located from the background. Even thought still images are handled, each
object still can be efficiently detected from a non-stationary camera. Two important
applications are demonstrated in this thesis; that is, vehicle detection and road sign detection.
Experimental results demonstrate that the integration of eigen color feature and local

appearance features can form a powerful and superior tool in object detection.

VI
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Chapter 1. Introduction

Automatic object detection in unstructured environments where illumination varies
dynamically has been a great challenge in pattern recognition and computer vision research. It
is also the first step in all monitoring systems that the objects is detected and examined. It
determines most important quality of accuracy in the system. After detecting and examining
the moving objects accurately, tracking and analysis of the object’s behavior are relatively

simpler.

1.1 Motivation

To detect objects from their background, the most commonly used feature is motion. When
the camera is static, this feature can be easily extracted using the techniques like image
differencing or background subtraction [4], [5]. The former technique usually will extract a
moving object with many holes and the latter one will fail in object detection when
illuminations change large. More importantly, the two techniques will fail to deal with static
objects since motion features no longer exist. When static objects are handled, the
appearance-based method [23]-[27], [29] will be better adopted. For example, Sung and
Poggio [24] proposed an example-based method to train a detector from lots of training
samples for face detection.  Papageorgiou and Poggio [25] adopted the similar
example-based learning technique to detect people in complex scenes without using any
motion information. In [27] Agarwal and Roth proposed a part-based representation for

body part extraction. Their framework selected distinguishable parts of objects and learned



the discriminative classifier over the parts and then detected each desired object from images.
The above method can detect objects only from a fixed view. To tackle the multiple-view
problem, Schneiderman and Kanade [29] proposed a wavelet-based method for training a
detector to detect faces or cars no matter what their viewpoints are. For the above
example-based method, a lot of positive and negative training examples should be collected at
the training stage. Then, at the detection stage, a window with a fixed size is used to scan all
pixels in the input image to locate all possible candidates. To tackle the size variation of an
object, the input image will be scaled to different resolutions and then a very time-consuming
scanning is performed from left to right and from up to down to locate each desired object. To
improve the detection efficiency, Viola and Jones [22] presented a cascade structure to train a
classifier for detecting object in real time. This scheme takes advantages of integral image
and Adaboost algorithm to filter out all impossible candidates extremely efficiently. Their
major contribution is the idea of cascade structure which can avoid lots of feature verification
for detecting objects in real time. This technique also lacks capabilities for detecting objects
from multiple viewpoints. Li et al. [23] extended this boosting idea called “Float Boost” for
real-time multi-view face detection. Furthermore, Zhu et al. [28] used corners and edge
densities of a vehicle to define two special templates called EAT and CAT for vehicle
detection. However, it may fail when highly textured images are handled.

As mentioned before, objects will include larger appearance variations like their colors,
sizes, and shapes changing according to their different viewing positions, lighting conditions,
and cluttered background. All the variations will increase many difficulties and challenges
in selecting a general feature for describing an object. The general feature can be global or
local for well describing an object under different conditions. For the global feature like
skin color, it can be used for filtering out impossible candidates in advance. For example,

we can use neural networks to learn a skin color classifier for skin color detection and then



detect each face candidate from still images at the coarse stage. At the fine stage, the local
feature can be then used for verifying candidates more accurately. For example, features like
edge fragments, corners, or wavelet features can be used for object description and verifying
an object more accurately. When an object (like face) owns its specially color, its global
feature can be easily defined and extracted for object detection.  However, for objects like
vehicles or road signs, since their colors are not fixed, it is very difficult to define a global
feature for object representation and thus narrowing down the search areas of possible
candidates. If a general color transform can be found for object representation (even objects
lighted under different conditions), the color will become a very useful cue to filter out
impossible candidates more efficiently.

This thesis presents a novel color-based algorithm for detecting static objects directly from
images by first locating possible candidates using their colors and then combining different
appearance features together to form a cascade classifier for candidate verification. The
contribution of this thesis is to present a statistic method for deriving an eigen-color space that
makes object colors more sufficiently concentrated on a compact area. The model is leaned
by observing how the object colors change in static images under different lighting conditions
and cluttered backgrounds. In this space, a classifier can be then designed for searching
possible candidates from images. Since this classifier can filter out most of background
candidates, only few candidates should be further checked. Due to the filtering effect and
discriminative abilities of the proposed method, desired objects can be very effectively
detected from static images. We focus on the problem of detecting specific objects which
commonly appear in applications like surveillance systems, driver assistance systems, and
image retrieval. In these applications, two common targets repeatedly appear in the analyzed
scenes; that is, vehicles and traffic signs. In Section 1.2, a brief review of these two targets

will be given.



1.2 Review of Related Works

1.2.1 Previous Methods for Vehicle Detection

One of the major issues in object diction is vehicle detection [1]-[11]. It has many related
applications such as self-guided vehicles, driver assistance system, intelligent parking system,
or measurement of traffic parameters like vehicle count, speed, and flow. One of most
common approaches to vehicle detection is using vision-based techniques to analyze vehicles
from images or videos.  However, due to the variations of vehicle colors, sizes, orientations,
shapes, and poses, developing a robust and effective system of vision-based vehicle detection
is very challenging. To address the above problems, different approaches using different
features and learning algorithms for locating vehicles have been investigated. For example,
many techniques [2]-[6] used background subtraction to extract motion features for detecting
moving vehicles from video sequences. However, this kind of motion feature is no longer
usable and found in still images. For dealing with static images, Wu et al. [7] used wavelet
transform to extract texture features for locating possible vehicle candidates from roads.
Then, each vehicle candidate is verified using a PCA (principal component analysis) classifier.
In addition, Z. Sun et al. [8] used Gabor filters to extract different textures and then verified
each candidate of vehicles using a SVM (support vector machines) classifier. In addition to
textures, “symmetry” is another important feature used for vehicle detection. In [9], Broggi
et al. described a detection system to search for areas with a high vertical symmetry for
locating vehicles. However, this cue is prone to false detections such as symmetrical doors
or other objects. Furthermore, in [10], Bertozzi et al. used corner features to build four
templates of vehicles for vehicle detection and verification. In [11], Tzomakas and Seelen
found that the area shadow underneath a vehicle is a good cue to detect vehicles. In [12],

Ratan et al. developed a scheme to detect vehicles’ wheel features as cues to find possible



vehicle positions and then used a method called Diverse Density to verify each vehicle
candidate. In addition, Bensrhari [13] and Aizawa [14] used stereo-vision methods and 3D
vehicle models to detect vehicles and obstacles. The major drawback of the above methods
to search vehicle using local features is the need of a fully time-consuming search to scan all
pixels of the whole image. For the color feature, although color is an important perceptual
descriptor to describe objects, there were seldom color-based works addressed for vehicle
detection since vehicles have very large variations in their colors. In [15], Rojas and
Crisman used a color transform to project all road pixels on a color plane such that vehicles
can be identified from road backgrounds. Similarly, in [16], Guo et al. used several color
balls to model road colors in L*a*b* color space and then vehicle pixels can be identified if
they are classified no-road regions. However, since these color models are not compact and
general in modeling vehicle colors, many false detections were produced and leaded to the

degradation of accuracy of vehicle detection.

1.2.2 Previous Methods for Road Sign Detection

Road sign detection is an important and essential task in an intelligent driver support system.
The texts embedded in a road sign usually carry much useful information like limited speed,
guided direction, and current traffic situations for helping the drivers drive safely and
comfortably. However, it is difficult to detect road signs directly from videos due to
different environmental condition changes. For example, a road sign will have different
appearance changes including its lightings, colors, or shadows under different days, seasons,
and weathers. In addition, for the camera mounted in front of a moving car, the perspective
effects will make a road sign have different sizes, shapes, contrasts, and motion blurs. In
some cases, it would be occluded with other objects like trees. To tackle the above problems,

there have been many works [32]-[39] proposed for automatic road sign detection and



recognition via a vision-based technique. Since a road sign usually has a high-contrast color
to its background and a regular shape, we can divide these approaches into two categories, i.e.,
color-based and shape-based. For the color-based approach [32], Bénallal and Meunier
found that the difference between R and G, and the difference between R and B channels can
form two stable features for road sign detection in day time. In [33], Escalera ef al. used a
color threshoding technique to separate road sign regions in the (R, G, B) channels from the
background.  In addition to the RGB space, other color spaces like Y1Q and HSV are also
good for road sign detection. For example, in [36], Kehtarnavaz and Ahmad used a
discriminant analysis on the YIQ color space for detecting desired road signs from the
background. As to the HSV color space, in [37], [53], Vitabile er al. presented a sub-space
dynamic thresholding technique to find a road sign color like red so that all possible road sign
candidates can be detected. They further improved their system using FPGA language for
hardware implementation. Moreover, Fleyeh [52] used an improved HLS (Hue, Lightness,
Saturation) color space for detecting color road signs from road scenes. Since a road sign
has different colors (like red, blue, or green) for demonstrating its functionalities like warning
or direction messages, different detectors should be designed for tackling its color variations.
In addition to color, shape is another important feature for detecting road signs. In [44],
Barnes and Zelinsky adopted the radial symmetry feature to detect possible road signs and
then to verify them using a correlation technique. In [45], Piccioli et al. proposed a template
matching scheme to search all possible road signs from images. In addition, Wu et al. [43]
used the corner feature and a vertical plane criterion to cluster image data to different
categories so that each road sign candidate can be found. Moreover, Blancard [48] used an
edge linking technique and the contour feature to locate road sign candidates and then verified
them according to their perimeters and curvature features. The shape feature also can be

learned from a set of training samples. In [46], Haritaoglu and Haritaoglu used texture



features and support vector machines to detect road signs in a scene. Garcia-Garrido et al.
[55] extended the Hough transform to find any curves in an image for detecting circular and
stop signs. Usually, different shapes of a road sign represent different warning or directional
messages. If only the shape feature is used, different shape detectors should be designed for
detecting different road signs and will make the detection process become very
time-consumed. Therefore, there are some hybrid methods proposed for road sign detection.
For example, Bahlmann er al. [47] used a color representation, integral features, and the
AdaBoost algorithm for training a stronger classifier to detect road signs from videos in real
time. Furthermore, Fang et al. [34]used fuzzy neural networks and a gradient feature to
locate and track road signs and then incorporated a geometry model of road signs for road
sign verificaiton. In [45], Piccioli et al. used a clustering technique to extract “red” regions
as road sign candidates and then verified them using a set of shape features. In [38],
Kastinaki et al. used local color, texture features, and a conditional maximum entropy model
to detect road signs. Then, all candidates are verified by matching them against a set of
predefined road sign templates. Moreover, Escalera et al. [54] integrated three features, i.e.,
chromatic image, gradient and distance energy, to more accurately detect road signs from road
scenes and then recognize them using the genetic algorithm and simulated annealing. For a
good shape-based approach, it should have good abilities to overcome the shape variations

and occlusions of a road sign when it is captured using a moving camera.

1.3 Overview of Approach

1.3.1 Vehicle Detection system
The flowchart of the vehicle detection system is shown in Fig. 1. At the beginning, we

propose a color transformation to project all the colors of input pixels on a color space such
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that vehicle pixels can be easily identified from backgrounds. Here, Bayesian classifier and
radial basis function (RBF) network are used for this identification. Then, each detected
vehicle pixel will correspond to a possible vehicle. Since vehicles have different sizes and
orientations, different vehicle hypotheses are generated from each detected vehicle. For
verifying each hypothesis, we use three kinds of vehicle features to filter out impossible
vehicle candidates. The features include edges, coefficients of wavelet transform, and
corners. Using proper weights obtained from a set of training samples, these features can be
then combined together to form an optimal vehicle classifier. Then, desired vehicles can be

very robustly and accurately verified and detected from static images.

Test . . . .
- Eigen Color Vehicle Color | Vehicle Hypothesis
Images " Transform | ~|  Detection v
Verificaiton —» Vehicles
Training
; Edge Maps
Image - '
ges Vehicle Feature | Coefficients of WT, 4f

SRS and Corners

Fig. 1: Flowchart of the proposed vehicle detector.

Road
Signs

Candidate

Verification Rectification > Thresholding |—»-

Road Sign |
Color Detection

Rejected

Fig. 2: Flowchart of the proposed road sign detection system.



1.3.2 Road Sign Detection system

Fig. 2 illustrates the flowchart of the proposed system to detect road signs. The system

assumes that the camera is mounted in the front of the car for capturing different video

sequences. The camera optical axis direction is not required being perpendicular to the
image plate of road signs. Four major modules are included in the proposed system; that is,
road sign candidate extraction, verification, rectification, and thresholding, respectively.

Details of each component are described below:

(@) Road sign candidate extraction: In order to quickly locate the road signs, a novel eigen
color model is proposed to detect road sign candidates from their backgrounds. The
model is learned from thousands of road sign images. Then, using this model and RBF
(radial basis function) networks, only one detector is needed for extracting different road
sign candidates even though their colors are different.

(b) \erification: Once all potential road signs have been selected, a verification procedure is
then proposed for candidate verification. The process will build a set of road sign
templates for reducing the perspective effects. Then, each candidate is converted into a
distance map so that impossible road sign candidates can be filtered out.

(c) Rectification : After verification, a rectification process is then applied for more
accurately recognizing a skewed road sign.

(d) Thresholding: Once a road sign is extracted, a thresholding scheme is then adopted for

binarizing it so that different texts embedded in it can be extracted.



1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In chapter 2, we describe the proposed
eigen color method and its corresponding eigen color model to vehicle and road sign. The
design of the color detector using different learning engines is also given. In chapter 3, we
will introduce several appearance features used in our object recognition module. We also
present the object verification module with cascade structure in this section. In chapter 4, we
provide experimental results in object detection under different environments and the
accuracy of the color pixels classification. Comparison results with other sophisticated
methods are also discussed. Finally, we give the conclusions and list the future works in

chapter 5.
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Chapter 2. Eigen Color Detector

Color information is a useful feature as pre-processing in object detection. For example, face
and fire detection use the skin and fire color as detection cues. In general, skin and fire
candidate regions are easy to extract and model in image by its color distribution at RGB
color space. However, for the specific objects class (like vehicles), it is difficult and complex
to model the color distribution due to the large variation. This section will introduce a new
color transformation for mapping all pixels in images from (R, G, B) color space to a new
domain. By extracting the useful information to form a new feature space, feature energy of
the object pixels are compacted and easy to separate from the background pixels. Then, a

specific “object color” can be found and located for effective object detection.

2.1 Karhunen-Loe ve Transform

Dimensionality reduction is a useful skill in pattern recognition. Too many features lead to
more computation load and create confusion such as to decreasing the classifier performance.

By selecting a subset of features from the original data, the high dimensional data still have its
main distinguishing characteristic. That is to reduce the dimensionality of a high dimensional
data without significant loss in accuracy. In practice, high-dimensional data are often loose
without tight clusters. Human beings can not realize the shape, density of the data in high
dimension. Projecting data into lower-dimension space makes data clusters easy to observe
by human eyes. By projecting data onto an appropriate lower-dimensional space (feature

space), data clusters would have a local structure that makes the close neighborhood
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meaningful.

Karhunen-Loe ve transform (K-L transform) is a well-know and widely used technique for
statistical analysis. It has various names, such as principal component analysis, the
eigenvector transform or the Hotelling transform. This method usually was adopted in
feature extraction, data compression, image processing...etc. K-L transform tries to describe
the data as good as possible in a lower dimensional space. Assume the data set contains N

samples and x, be an n-dimensional vector. The algorithm maps the n-dimensional

patterns onto an m-dimensional space, where m<n. We have to compute a transformation
matrix H which is constructed by the eigenvector of the covariance matrix. The

computation of the transformation matrix is as the following algorithm:

Step 1:Let m" denote the meanand C denote the covariance matrix respectively.
* 1 N
m=—>Xx,,
NZ‘ ¢

C= %2()9 —m’)(x,—m’)".

Step 2 : Compute the eigenvalues 4, 4,,..., 4, and construct the associate

eigenvector e,e,,...e, of C .Sortthemas 4 >4, >..>4, .

Step 3 : Form the matrix H = [ e,,....¢,]".

After transformation, the covariance matrix of the feature becomes a diagonal matrix. This
matrix projects the input data into a subspace whose axes are in the direction of the largest

variation as follow:

Step 4 : v, = Hx, for i=1...N
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2.2 Color Feature Extraction

In this section, we present the detail procedure about the eigen color extraction. Assume that
there are N training images collected from various natural scenes. We choose the RGB color
space and the ith pixel x in the selected image can be represented as:

X = [‘xi,r Xig xi,b]'

1

Through a statistic analysis, we first compute the covariance matrix X° of the color
distributions of R, G, and B from these N images. Using the Karhunen-Loe’ve (KL) transform,
the eigenvalues and the corresponding eigenvectors of %" can be further obtained and

represented as A and e, respectively, where A, >4, > A, for i =1, 2, and 3. Then, we
selected the eigenvectors to form three new color features C, by a linear combination of the
each RGB components, which can be defined as:

C,=eR+eG+e’B fori=1,2,and 3, 1)
where e =(e/,ef,e’). In[17], Ohta et al. used the above principal component analysis for
region segmentation and indicated the color feature C, with the largest eigenvalue is the one

used for color-to-gray transform, i.e.,

Cl:lR+1G+lB . 2
3 3 3

Other two color features C, and C, are orthogonal to C; and have the following forms:

R-B 2G-R-B

C,= — and C,= 3)

All the color features can be obtained by projecting the pixels’ gray values of red, green, and
blue components onto a color space which is expanded with the three vectors (1/3, 1/3, 1/3),
(1/2, 0, -1/2), and (-1/4, 1/2, -1/4).  In [18], Healey used the similar idea for image

segmentation and pointed out that the colors of homogeneous dielectric surfaces (like roads or
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clouds) will move close along the axis directed by Eq.(2), i.e., (1/3, 1/3, 1/3) . In [15], Rojas
and Crisman also found that the colors of roads will concentrate around a small cylinder along
the axis directed by Eq. (2). In other words, if we project all the road colors to a plane which

is perpendicular to the axis pointed by C,, all the road colors will concentrate around a small

circle [15]. The above principal component analysis (PCA) gives us an inspiration to
analyze object colors. We use an example-based learning approach to derive a color model
of an object class. From a training set of examples collected in different lighting environments,

the derived color features can cope with small illumination variances.

(a) (b)

Fig. 3: Parts of vehicle training samples. (a) Vehicle images. (b) Non-vehicle
training images.

2.3 Eigen Color Model

2.3.1 Vehicle Color Model
At the beginning, the vehicle training images are collected from different scenes including
roads, parking lots, building, and natural scenes. Fig. 3 shows parts of our training samples.

(a) is the set of vehicle images and (b) the examples of no-vehicle images.  Based on the
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training samples, using the KL transform, we found that the eigenvector with the largest
eigenvalue of this data set is (1/3, 1/3, 1/3) (the same as in Eq. (2)). In addition, the color

plane (u,v) perpendicular to the axis (1/3, 1/3, 1/3) expanded by other two eigenvectors is:

2Z -G, —B B -G R -B
=———+—=" and v, = Max{ pZ L PZ £y, 4)

p p p

u,

where (R, ,G,, B,) is the color of a pixel p and Z =(R,+G,+B,)/3 used for
normalization. In practice, the noise existing in the training samples will disturb the
accuracy of the orthogonal basis (described in Eq.(4)) to find correct vehicle colors. Thus,
many false alarms in detecting vehicle colors will be found if Eq.(4) is directly used.
Actually, in color image processing, for the R, G, and B channels, if they are used separately,
each of them will be more easily affected by noise than their composition, i.e., (R+G+B)/3.

Therefore, we can replace the components B, and R, in Eq.(4) with the gray component
Z, to reduce these false alarms. According to this idea, the following is a new color

transform created for vehicle color detection:

27,-G,—B Z -G, Z,—B
=T and v, = Ma( 2 S (5)

P P P

u,

The color transformation described in Eq.(5) will concentrate all vehicle pixels on a smaller
area than Eq.(4). There are also other color planes perpendicular to the axis (1/3, 1/3, 1/3).
For example, if the training images are collected only from road images, another color plane

(s, ?) perpendicular to the axis (1/3, 1/3, 1/3) can be found, i.e.,

(6)
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However, the color space (u,v) has better discrimination abilities to extract vehicle pixels

from the background than the color space (s, z). We can plot all the colors of vehicle pixels
of training images on the (u, v) and (s, #) planes using Eq.(5) and Eq.(6), respectively. Fig. 4
shows the results of color transformation using Eqgs.(4)-(6), where (a), (b), and (c) are the
results using Eqg.(4), (5), and Eq.(6), respectively. The variances of pixel distributions of

(a)-(c) are listed in Table 1.

(uy) color dornain using Ed.(4) (u) color dormnain using Ex.(5)
1] SEURTPUSOR ASUPPURTE NN S R Nan-vehicle pixels FE e ' Mon-vehicle pixels
: : + Wehicle pixels : : | ¢ Wehicle pixels
It ; : ; - 1 3 ; ; : : ; ; ]
D] SR SO SN S W P : : : : I
T S R g 2 15
g b R R JOSTIN 0
DEL. b T T 05
05 : 0.5
RS : . 1
15\5 1 0.5 1} 05 1 15 2 25 1515 1 05 1} EIIS 1 15 2 25
u u
(a) (b)
(s.1) color domain using Eg.(6)
GBI sl + 0 Wehicle pixels al
5t ]
at- .
3t
2k
1k
ok
KRS :
at
3t ;
-4 i
-4 3 2 1 a 1 2 3 4
5
(©

Fig. 4: Plots of the results of color transformations of vehicle pixels. (a) Result of
color transformation using Eq.(4). (b) Result of color transformation using Eq.(5). (c)
Result of color transformation using Eq.(6).
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We adopt the Fisher criterion [19] to evaluate the separation abilities of each transform in
the classification of vehicle pixels. The criterion uses the ratio of the “between-class”

variance to the “within-class” variance to measure how well a transform 7 can separate a

space into two classes C,” and C,. The “between-class” variance is the distance between
the means of two classes (denoted by m, and m,, respectively). The “within-class”
variance is the sum of their variances, i.e. s; ands,. Then, the Fisher criterion is defined

by

. 2
_ between-class distance  |m, —m,|
within-class distance 57 +s7

The larger the ratio J is, the more separation ability the transform 7 has. Table 1 lists the

values of J when Egs. (4), (5), and (6) are used. Clearly, the color space (u,v) defined in

Eq. (5) has better discrimination abilities to separate the vehicle pixels from background

Table 1: Separation ability analysis among different color transformations.

Color Clusters centers Cluster‘s variances Distance J(T)
Transform | Vehicle Non-vehicle | Vehicle Non-vehicle Between Centers

Eq. 4 (-0.05,0.13) | (0.27,0.58) 0.37 0.73 0.55 0.4516
Eq.5 (-0.05,0.05) | (0.27,0.3) 0.29 0.48 041 0.5345
Eq. 6 (-0.03,0.22) | (0.53,0) 0.65 0.99 0.6 0.2567

pixels than other spaces defined in Eq. (4) and Eq.(6), respectively. The ability of these
methods to detect vehicle pixels will be further compared in the experimental section.

Given an input image, we first use Eq. (5) to project all color pixels on the (u, v) space.
Then, the problem of vehicle detection becomes a 2-class separation problem which tries to

find a best decision boundary from the (u, v) space such that all vehicle pixels can be well
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separated from the non-vehicle class. Section 2.4 will presents two kinds of classifiers for
classifying vehicle pixels in the (u, v) space. The first is a Bayesian classifier and the other

one is trained by the radial basis function network.

(@) (b)

Fig. 5: Green color detection in the HIS color space. (a) Original image including a road
sign and various green background objects. (b) Result of green color detection in the HIS
color space.

2.3.2 Road Sign Color Model

Since a road sign has a specific color, we can design a detector to search this color for finding
different road sign candidates. For example, in Fig. 5(a), the road sign has a specific “green”
color. Then, we can create a green color detector to detect all green objects. However, in
real scenes, many irrelevant green objects like tree, mountain, or grass will also be detected.
Like Fig. 5(b), after simple green color classification, many non-road-sign objects were also
detected. Hence, precise color modeling method is necessary for road sign detection.

This thesis assumes that all the road signs are made of kinds of metal or plastic material
with smoother and flatter surfaces. Due to the smooth and flat surface of a road sign, its
reflectance property will be very different to (or higher than) other objects (like trees,
mountains, buildings) in the analyzed road scene. Then, our idea is to design a novel color
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transform model for detecting the pixels with higher reflectance from their backgrounds.
After the transformation, these pixels will form a connected region. Through a connected
component analysis, different road sign candidates can be then extracted from videos for
further verification and recognition.

In our experiments, there were 280 road sign samples collected for deriving these
eigenvectors.  After calculations, the three eigenvectors are given as follows: (0.3396,

0.3392, 0.3212), (0.4896, 0.0923, -0.4181), and (0.2898,—0.4823,0.2279). The color
feature C, with the largest eigenvalue is the one used for color-to-gray transform and is

approximated as follows:

C1:1R+EG+EB. (7)
3 3 3

In addition, the color plane (u,v) perpendicular to the axis (1/3, 1/3, 1/3) expanded by the
other two eigenvectors is defined as follows:

9%
nd V:M’ (8)
Q

y=2R=B) .

where Q is a normalized factor.

a0
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Fig. 6: Color projection using Eq.(8). Blue color means the background pixels. The
green region is obtained from guide signs. The red region is obtained from regulatory
signs.
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Fig. 7: Result of color projection. (a) Original image. (b) Result of color projection
using Eq.(8).

Fig. 6 shows the projection result of road sign pixels and non-road sign pixels using Eq.(8).
Here, the green and red regions denote the projection results of pixels in green road signs and
red ones, respectively. We also re-project the results of two green regions which are trees and
green road signs, respectively as shown in Fig. 7. Although these two regions are “green”,
they can be easily separated on the (u, v) space if a proper classifier is designed for finding the

best separation boundary.

2.4 Training Color Detector

In order to effectively locating object from background, we propose a new color model to
directly model object colors as described in the previous sections. Then, similar to skin
color detection, we can use this color model to transform all pixels on a 2-D color space. On
this color space, all pixels will concentrate on a much distinctive area. By modeling the
characteristics of this area, the learning engines we used are Bayesian classifier and radial

basis function (RBF) network.
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2.4.1 Bayesian Classifier

In statistical pattern recognition, we focus on how to developing decision or classification
strategies which form classifiers. The design of classifier attempts to integrate all available
information such as measurement of a priori probabilities of data. Then, the classifier
minimizes the total expected loss and using Bayes’ formula as the optimum measure of
performance. The class-conditional density function of probability of a pattern x, when x

belongs to class w;, , can be given as follow:

p(x/w),i=12,...M

All the class-conditional densities are completely know a prior, the decision boundary
between pattern classes can be established using the optimal Bayes decision rules. By way of
introduction, consider a vector x with Gaussian distribution, the probability density function

of x is:

P(x):—\/z_;*anp[_%(x?‘mj }

m and o are mean and standard deviation respectively. We can get the decision boundary

function is:
d(x)=In p(wi)—%ln|Ci|—%[(x—mi)T C;l(x—mi)]i:l, 2,...M
C is covariance matrices. The Bayes classifier assigns a pattern x to class w, if
p(xIw)pw)>plx/w)pw),j=12,..M,j#i
The detail derivate procedure can be found in [58].
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As mentioned in Section 2.3, after transformation, we design a Bayesian classifier for
accurately identifying object pixels from backgrounds with colors. We assume that the RGB
color components in the («, v) domain forms a multivariate Gaussian distribution.  Assume
that m, and m, are the mean colors of the vehicle and non-vehicle pixels calculated from
our collected training images in the («, v) color domain, respectively. In addition, > and
2., are their corresponding covariance matrices in the same color domain, respectively.

Then, given a pixel x, we define its probability belonging to a object pixel as a normal

distribution:

1
x|lobject) = ——— -d (x)), 9
p(xlobject) 27[\/|2»VGXIO( ,(x)) )

where dv(x)zé(x—mv)Zvl(x—mv)t. Similarly, the probability of x belonging to a
non-object pixel is defined as follows:

p(x|non - object) = _ exp(-d, (x)), (10)
27,12

where d (x) =%(x—mn)2;1(x—mn ). According to the Bayesian classifier, we can assign

a pixel x to the class “object” if
p (0bject|x) >p (non - 0bject|x) : (11)
EQ.(11) can be further rewritten as follows:

P (x | object) P(object) > p (x | non - object) P(non - object) , (12)
where P(object) and P(non-objec) are the priori class probabilities of object pixels and
non-object ones, respectively. Plugging Egs. (9) and (10) into Eq.(12) and taking its log
form, we have the following classification rule:

Assign a pixel x to class “object” if d, (x)-d (x)>4, (13)
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2,| P(non-object)
B |

where A= log[
|z P(object)

ol

2.4.2 Radial Basis Function Network

In addition to the Bayesian classifier, we also use the radial basis function (RBF) network to
classify object pixels. As shown in Fig. 8, the RBF network we used includes an input layer,
one hidden layer, and an output layer. Each hidden neuron is associated with a kernel

function by the form:

lx—m, |
i = eX -_),
¢;(x) = exp( 2 )

where x is an n-dimensional input feature vector, m, and o, represent the center and the

width of the jth hidden neuron. Each output neuron is approximated using a linear

combination of kernel functions, i.e.,

v, (x)= iwij(oj(x) ,fori=1, ..., C,
=
where w; is the connection Weight‘] between the jth hidden neuron and ith output layer
neuron, and C the number of outputs. When classifying, the output of the radial basis
function is limited to the interval (0, 1) by a sigmoid function:

1
 L+exp(-y,(x))

F(x)

The parameters w, of the RBF networks are computed by the gradient descent method such

that the cost function is minimized:

1NC

E= ﬁ;;(yi(xk) _F;'(xk)) J

where N is the number of inputs and y,(x,) denotes the ith output associated with the input
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sample x, from the training set. Then, if a pixel belongs to the object class, it will be

labeled to 1; otherwise, 0. When training, all pixels in (R, G, B) domain are transformed to
(u, v) domain using Eq.(5) or Eqg.(8) according to different object classes (i.e. vehicles and

road signs).

Fig. 8: Structure of the RBF network

Compared with other classification algorithms like Adaboositng [26] or SVM (support
vector machines)[23], the RBF network is simpler and has limited performances in data
classification. However, our focus is to prove the superiorities of our proposed color
transform to detect vehicle pixels even if only a simple classifier is used. The comparisons
between the RBF network and the Bayesian classifier for detecting object pixels will be

performed in the experimental section.
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Chapter 3. Object Verification

In the previous section, the eigen color model and two classifiers were presented for
extracting object pixels from static images. Each detected pixel will correspond to a
possible candidate. Then, this section will present a verification scheme for verifying each
candidate more accurately. In some cases, due to noise, some candidate pixels will be lost
and cannot be recovered from the color classification process. The problem can be easily
handled using a morphological dilation operation [51] for generating more candidate regions.
In this technique, if a pixel passes the classification stage, we generate not only a hypothesis
but also its neighborhoods as possible candidates. Then, even though some pixels are lost,

their corresponding real pixels still can be found using the extending technique.

3.1 Object Hypothesis

Given a vehicle pixel X, the verification process will first generate different hypothesizes with

different sizes for tackle the size variations of vehicle appearances. Here, a hypothesis
H!(X) is asub-image extracted from the input image 7 with the size w, x4, at the center X.
The minimum vehicle size used in this thesis is assumed to be 36x36. To generate the set

of hypotheses more efficiently, we can gradually reduce 7 into a series of smaller images with

the scale factor 0.9 so that a pyramid structure is constructed. Each layer in this structure is

a smoothed image /, having the size 0.9°w, x0.9°h,, where w, and £, are the width and

height of 7. In the pyramid structure, a vehicle hypothesis H!(X) having the size w, xA,
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in 7 will become a 36x36 sub-pattern in 7 . Thus, in what follows, the hypothesis

H!(X) is verified all based on the 36x36 sub-pattern in /.. More details about the
pyramid structure will be discussed in Section 3.2.5.

In order to verify the correctness of H!(X), we build a set of classes C, of vehicle
templates for estimating its maximum vehicle response at different orientations. Here C,
is a collection of different vehicle templates whose orientations are all at the same angle 6.

All the vehicle templates in C, have the same size 36x36. The maximum vehicle

response is defined as the maximum similarity between H!(X) and all vehicle templates.

In this thesis, two features including vehicle contour and wavelet coefficients are used to
measure this similarity. In addition to these two features, we also use the corner feature to
enhance the accuracy of vehicle detection. In what follows, details of each feature are

introduced.

FTIREIRTa]
o5 @i

(@)

Fig. 9: Result of distance transform. (a) Original Image. (b) Distance transform of (a).
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3.2 Vehicle Features

3.2.1 Contour Feature

Contour is a good feature to describe vehicle’s shapes and usually represented by chain

coding. However, the technique of chain coding is easily affected by noise. Therefore,

different from chain coding, we use a distance transform to convert an object contour to a

distance map. Based on this map, different vehicle hypothesis can be well discriminated.
First, a 3x3 mask is used to detect all boundary points from a vehicle V. When this mask

is used and moved at a non-zero pixel p, if one pixel in this mask is zero, then p is a boundary

pixel. Assume that B, is a set of boundary pixels extracted from V. Then, the distance
transform of a pixel p in V'is defined as

DT, (p)=mind(p.q). (14)

where d(p,q) is the Euclidian distance between p and g. In order to enhance the strength

of distance changes, Eq.(14) is further modified as follows
DTv(p)= mind(p.q) xexp(xd(p.q))., (15)

where x=0.1. Fig. 9(b) shows the result of the distance transform of Fig. 9(a). Thus,

according to Eq.(15), a set F.(V) of contour features can be extracted from V. If we scan

all pixels of V7 in a row major order, F.(}V) can be then represented as a vector, i.e.,

F.(V)=[DTv(py),-:s DTv(p,),....], (16)

where all p, belongto V' and i is the scanning index.
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3.2.2 Wavelet Coefficients

Wavelet transform is a very useful tool to represent images at different resolutions. It has
been successfully applied in many applications like compression, watermarking, texture
analysis, communications, and so on. The wavelet transform uses two kinds of filers to

decompose a signal into different resolutions, i.e., the low-pass filter 4(k) and the high-pass
one g(k). Then, given a discrete signal f{n) (assumed at the fine resolution ;=0 and
represented as S, f(n)), with the low-pass filter A(k), the approximation of f(n) at lower

resolution j-1 can be calculated as follows:
Saf(n)= Y S, f(k)h(k—2n). (17)
k=—o0

In addition, information lost between S;f(n) and S, ,f(n) can be obtained using the

high-pass filter g(k) as follows

W,/ )= Y 5,/ (B)g(k - 21). (18)

From the view of signal processing, S,,f(n) and W, f(n) are, respectively, the
components of low frequency and high frequency of S, f(n). The above procedure, which

is also known as the sub-band coding, can be repeatedly performed. Fig. 10(a) shows the
diagram of 1D wavelet transform. The 1D wavelet transform can be easily extended to two
dimensions. The simplest way to generate 2D wavelet transform is to apply two 1D
transforms to the rows and columns of a 2D signal f(m, n), respectively. Fig. 10(b) shows
the block diagram of 2D wavelet transform.  Given f(m, n), convolving its rows with #A(k)
and g(k), we get two sub-images whose horizontal resolutions are reduced by a factor 2.
Both sub-images are then filtered columnwise and downsampled to yield four quarter-size

output subimages. The filters 4(k) and g(k) we use are the D4 family of Daubeches’s
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basis [21], i.e., {h(0), h(1), h(2), h(3)}={ 2s 4z 4l a ﬁ} and {g(0), g(1), g(2),

g(3)} ={h(3), -h(2), h(1), -h(0)}.
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Fig. 10: Block diagram of discrete wavelet transform. (a) 1D Wavelet transform.

(b) 2D Wavelet transform.

A three-scale wavelet transform is used to process all vehicle images. Since all
templates have the same size, the scale factor of the wavelet transform to all the processed
vehicle patterns is the same. Then, each wavelet coefficient is quantized to three levels, i.e.,
1, 0, -1, if its value is larger than 0, equal to 0, and less than O, respectively. After that, all
the quantized coefficients are recorded for further recognition. When recording, each
wavelet coefficient is further classified into different bands, i.e., LL, LH, HL, and HH.
According to this classification, a pixel p is labeled as 1, 2, 2, and 4 if it locates in the LL, LH,

HL, and HH bands, respectively. Let /(p) denote the labeling value of p. Then, given a

vehicle ¥, from its wavelet coefficients, we can extract a set F;, (V) of WT features. If we
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scan V' in a row-major order, £, (V) is further represented as a vector, i.e.,
E, (V) =[(po)Coetl” (po),---s1(p,)Coeff) ()], (19)
where all p, belong to /' and i is the scanning index. Usually, the HH band contains

more edge information than other bands. Therefore, in Eq.(19), a larger label is used to
weight the HH band. As to the LH and HL bands, since they contain more edges than the LL

band, they have larger weights than the LL band (but less than the HH band).

3.2.3 Integration of Wavelet Feature and Edge Map
In Sections 3.2.1 and 3.2.2, two features have been illustrated to describe the visual

characteristics of a vehicle template. ~ We are now able to integrate these two features

together for computing the similairty between a hypothesis H!(X) and a vehicle template V.
Given V, based on Egs. (16) and (19), we can extract its two feature vectors F.(V) and
F,, (V) from its contour and wavelet transform, respectively. For convience, we combine
these two features together to form a new feature vector F(V),i.e., F(V)=[F.(V),F,(V)].
For a vehicle class C,, if there are N, templates in C,, we can calculate its mean x,
and variance ¥, of F()) fromall samples /'in C,. Then, given a vehicle hypothesis 4,
the similary between H and C, can be measured by this equation:

S(H,C,)) =exp(-(F,, - 14, )2, (F, - 14,)') (20)
where ¢ means the transpose of a vector and F, is the feature vector of the vehicle

hypothesis H. Therefore, given a position X; its vehicle reponse can be defined as follows

R(X)= max S(H{(X),C,). (21)
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When calculaing Eq.(21), the parameter ¢, can be further eliminated if the direction of the
hypothesis H!(X) is known in advance. In [51], a good moment-based method is
provided for estimating the orientation of the longest axis of a region. If 8/(X) is the
orientaiton of H!(X), Eq.(21) can be further rewriten by

R(X) = max S(HSI(X)'CH; (22)

(X))'

Based on Eq.(22), the vehicle response at the position X can be easily estimated.

(@) (b)

Fig. 11: Results of corner deteciton. (a) and (b): vehicles containning many corners.

3.2.4 Corner Feature

Vehicles usually contain many corners even though they have different visual changes like
orientations, sizes, colors, or types. Like Fig. 11, vehicles in (a) and (b) contain different
numbers of corners. Therefore, corners can form a good feature for vehicle verificaiton.
The Harris corner detector [20] is used to extract various corners for the task of vehicle

verification. Assume that /. and [, are the first derivatives of an image / in the x and y
directions, respectively. Then, the detector operates on the matrix:

z If(xi’yi) Ix(xi’yi)]y(xﬂyi) .

M(x,y) =
(x;,v;)eNe(x,y) Ix(xi’yi)ly(xi’yi) Iyz(xi’yi)

(23)
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where Ne(x, y) is a local neighborhood centered around (x, y). If the two eignevalues of M
are large, then a small motion in any direction will cause significant changes of intensity at
the point (x, y). This indicates that the point is a corner. Accoding to this obsevation, the
corner response function CR is given by:

CR =detM -« (trace M)?, (24)
where x is a parameter set to 0.04 (see Harris [20]). The local maxima of CR (larger than

a threshold) indicates the corner’s positions.

Fig. 12: Image pyramid structure for locating vehicles. At each step, the image is rescaled
with 0.9 ratio until a pre-defined resolution is achieved.

3.2.5 Verification Procedure
In real implementation, we borrow a well-known pyramid technique from face detection
[22]-[23] to speed up the calculation of Eq.(22). Like Fig. 12, this technique constructs a

pyramid structure of an image by gradually reducing its size. Assume that w, and &, are
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the width and height of a test image /. Each layer in this structure is a smoothed image /,
having the size 0.9°w, x0.9°%, obtained by sub-sampling /. In this structure, a vehicle
hypothesis H!(X) having the size w, xh  (or 0.9°36x0.9°36) in 7 will become a
36x36 sub-pattern in /. Then, given a vehicle pixel X in /, if the maximum value of

p ) isfoundinthe layer I, itsreal vehicle size will be w, x, .

In order to quickly find desired vehicles from the above pyramid structure, we follow the
idea of Viola and Jones [22] to construct a simple cascade (or hierarchical) classifier. The
classifier uses a set of weak classifiers to gradually filter out impossible candidates. In this
structure, each weak classifier uses a lower threshold to detect vehicles such that a higher
detection rate can be maintained but also with a high false alarm rate. However, the false
alarm rate will gradually decrease if more features are accordingly used. With the structure,
all desired vehicles can be located very efficiently and accurately. As shown in Fig. 13, the
color feature is first used for eliminating almost impossible vehicle candidates. Then, the
corner feature is used to filter out additional negatives. Finally, the subsequent classifier
finds desired vehicles using the features of edge maps and wavelet coefficients.

In this cascade structure, two thresholds are used to remove spurious negatives and to

declare whether a vehicle is detected at the position X. Let A. be the average number of

corners appearing in all the training vehicle samples. If X contains a real vehicle, the

number of corners around X should be larger than 0.54.. In addition to 4., we use
another threshold A4, to eliminate impossible vehicle candidates according to their vehicle
responses. Let A, be the average value of R(X) for all the centers X of the training
vehicle samples. For a vehicle pixel X, if its response R(X) is larger than 0.8 4,, it is a

vehicle candidate. The parameters 4, and E; (the weight used in EQ.(20)) can also be
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learned using the AdaBoost algorithm [26] for increasing the accuracy of vehicle verification.

However, experimental results prove that the above verification scheme performs well enough

in detecting all desired vehicles.

Finally, there would be many vehicle candidates which are

overlapped together due to noise or shadows. If candidates are inside other stronger

candidates, they will be eliminated.

All Sub-regions

!

Color T

Feature I

Edge Maps &
avelet Coefficents

Corner Vehicles

-
W

Rejected Sub-regions

Fig. 13: Cascade structure used for vehicle detection.

3.3 Road Sign Features

3.3.1 Geometrical Properties

Given an image, after the color classification and a connected component analysis [51],

different road sign candidates can be then extracted.  This section will use their geometrical

properties to filter out impossible candidates. Since a road sign has different shapes

according to its different functionalities, we divide the road signs into three categories, i.e.,

circle, rectangle, and triangle, respectively. Then, a coarse-to-fine scheme is proposed to

gradually remove impossible candidates. At the coarse stage, three criteria are first used to

roughly filter out impossible candidates. The first criterion requires the dimension of road
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sign being large enough, that is:
w,>10 and #,>10,
where w, and 7, are the width and length of a road sign R, respectively. The second

criterion requires the ratio between w, and £, satisfying

min(h_R'&) > 0.6,

wp+1 h,+1
since the ratio is close to 1. Let £, and Areq, denote the number of edge pixels and the

area of R, respectively. The third criterion requires the road sign R having enough edge

pixels; that is, if

E, | Area, <0.02,

R is filtered out.

(@) (b) (©)

Fig. 14: Result of distance transform. (a) Original Image. (b) Edge map. (c)
Distance transform of (b).

3.3.2 Modified Distance Transform with Weighting

At the fine stage, each candidate is verified using its shape. Assume that B, is a set of

boundary pixels extracted from R. Then, the distance transform of a pixel p in R is defined as

DT,(p) = gn;n d(p,q), (25)

where d(p,q) is the Euclidian distance between p and ¢. In order to enhance the strength
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of distance changes, Eq.(25) is further modified as follows
DT x(p)=mind(p,q) xexp(xd(p,q)) (26)
where x=0.1. Fig. 14 shows the result of the distance transform. (@) is an image R of

road sign and (b) is its edge map. Fig. 14(c) shows the result of its distance transform.

Thus, according to Eq.(26), a set F, of contour features can be extracted from R. If we
scan all pixels of R in a row major order, F, can be then represented as a vector, i.e.,

F, =[DTx(py),.... DTr(p,),....], (27)
where all p, belong to R and i is the scanning index. In addition to the outer contour, a

road sign usually contains many text patterns. To verify a road sign candidate more
accurately, its outer shape plays a more important role than its inner text patterns in road sign

classification.  Thus, a new weight w, which increases according to the distance between

(@) (b) (©)

Fig. 15: Weighting result of an image. (a) Original Image. (b) Weighting function. (c)
Result of (a) after weighting.

the pixel p, and the original O is included. Assume that O is the central of R and 7 is the
distance between p, and O, and the circumcircle of R has the radiusz. ~ Then, the weight

w, is defined by:
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_ _ -2y i .
W,- — exp( |’: Z| )' If 7/; S -Z’ (28)
0, otherwise.
With the help of w,, Eq.(27) can be rewritten as follows:
Fy =[w,DT&(pg)ses w.DTr(p,),...]. (29)

Fig. 15 shows the result of distance transform with a weighting function. (a) is the original
image R and the yellow circle shows the circumcircle of R. (b) is the weighting function
defined in Eq.(28) and (c) is the result after weighting. There are only three types of road

signs, i.e., circle, triangle, and rectangle needed for further verification. For each type R, a
set of training samples is collected for capturing its shape characteristics. If there are N,
templates in R, we can calculate its mean g and variance X, of F, from all the samples
in R. Then, given a road sign candidate #, the similarity between A and R, can be
measured by this equation:

S(H,R) =expt(F,—u) L (F,~u,)"), (30)
where ¢ means the transpose of a vector and F,, is the feature vector of the candidate .

Based on Eq.(30), we can well categorize H into different types with the equation:

Zype(H):argn}EnS(H,Ri). (31)
p s'=(-a,0) p'=(0,-a)
i
r ' =(0,a) 7o)
(a) (b)

Fig. 16: Rectification of a circle road sign. (a) Input road sign. (b) Rectification
result of (a).
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3.4 Road Sign Rectification

After verification, in order to handle skewed road signs, a rectification procedure should be

further applied to it for recognizing all its embedded texts more accurately.

3.4.1 Circular Road Sign

Assume that R is the detected road sign. First of all, the Canny edge operator [49] is utilized
for getting all its edge pixels. Then, the chain coding technique with 8 neighbors is adopted
for extracting its outer boundary. According to the boundary feature, the shape type of R can
be recognized using Eq.(31).

If R is recognized as a circular type, four control points are selected for rectification. Like
Fig. 16(a), p, ¢, r, and s are the most top, right, bottom, and left points of R, respectively.
Considering them as control points, we can get the longest axis of R. Assume that its length
is 2a. Then, a projective transformation M can be found for rectifying R into a normal shape
R’ (see Fig. 16(b)). The relationship between R and R’ can be defined as follows

o= MeX +my +m, L M X+ myY + Mg

(32)

and y ,
mgx +m,;y+1 mgx +m;y+1

where (x, y) is the coordinate of a pixel in R, (x',y") the coordinate of its corresponding
point in R’, and (m,,m,,...,m,) the parameters of the projective model M. Letp’, g, r’,

and s’ be the four corresponding points of p, g, r, and s in R’, respectively, and have the
following coordinates:
p'=(0,-a), q¢'=(a,0), r'=(0,a),and s'=(-a,0).

Given the above four pairs of correspondence, M can be solved by a linear method [50].
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Once M is obtained, all the points in R can be transformed into R " using Eq.(32).

Vo1 Vo v
[ ] '
Vn 2
V..
(1),
K
° .
V(i+1),, dl V(i)

Fig. 17: Technique for iteratively pruning a point v, whose d, is the minimum.

Iterative Minimum Distance Pruning Algorithm:
Step 1: Find a vertex v, from C, suchthat d,=mind,;

v, eCp
Step 2: Eliminate v, from C,;
Step 3: If C, includes more than m points, go to Step 1.

3.4.2 Rectangular and Triangular Road Signs

If R is recognized as a rectangular or triangular road sign, another method will be used for the
rectification task. First of all, we use a corner detection method [20] to detect all high

curvature points along the boundary of R. Let C, be the set of high curvature points in R.
If there are n points in C,, we will use a curve pruning technique to reduce the number of
points in C, to m points. If R is a rectangle, m will be four. If R is a triangle, m will be
three. The pruning technique is described as follows. Assume that C, ={v,,v,,...,v,,} and
L, represents the straight line formed by the neighbor vertices v, and vy, of v.

Here, (i), means i mod n. If L, has the form y=mx+c,, the distance d; between v,

39



and L, can be then calculated by:

d :lyvi-mixvi-cil

l J1+m, ’
where the coordinates of v, are (x,,y,). Fig. 17 shows details of the simplification

technique. This technique is to iteratively prune a point v, whose distance d, is the

minimum and summarized as follows.

P »'=(0,0)
w p'=(0,0) ¢'=(w0)
b q w h
h h $ 5'=(0,h)
S 7
q r
s'=(0,h) r'=(wh) g=( L 3 pelih 3y
(@) (b)

Fig. 18: Rectification of road signs. (a) Rectangle road sign. (b) Triangle road sign.

After pruning, R will have its corresponding number of control points. Like Fig. 18(a), if
a rectangle is detected, four control points are selected and denoted as p, ¢, r, and s,
respectively.  Let w, be the distance between p and ¢, 4, the distance between ¢ and r.
Then, the rectified rectangle R’ has four points p’, ¢’, r’, and s’ with the following
coordinates:

p'=(0,0), ¢'=w,0), r'=(w,h),and s'=(0,h).

Based on the four matching pairs: (p, p), ..., and (s, s°), like Eq.(32), we can build an affine
model M to transform R into R’.  Similarly, M can be solved by a linear method [50].

If R is a triangle, only three control points are selected. Like Fig. 18(b), the three control

points are denoted as p, ¢, and r, respectively.  In addition to them, another new control
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point s is generated and selected as the gravity point of R. Let ~ be the distance between p
and s. Then, the rectified rectangle R’ has four points p’, ¢’, ', and s’ with the following

coordinates:

J3h 3h J3h 3h

pI:(O!0)1 qI:('T’?)! r':(T’?)’and Sl:(o’h)'

Based on the four matching pairs: (p, p’), ..., and (s, s”), like Eqg.(32), we can find another
affine model M for transforming R into R’. Once M is found, even though a skewed road

sign is handled, it still can be rectified into a regular shape.

3.5 Binarization

Once a road sign R is extracted, to recognize the texts in R, we use a moment-based

thresholding approach [51] to binarize R. Let o, denote the global variance of R. In

addition, o, and o, are the variances of foreground and background objects parts. The

!
optimal threshold ¢ for binarizing an image can be found by minimizing the within-group

variance as follows:
t* = argmin(gjo}(t) + ,0, (1)), (33)

where ¢ = Z’: PG)Y g = Z”: P(i)=1-¢q' G the maximum gray value of R, and P(i) the

i=t+1

occurrence probability of intensity i in R. The global variance a§ is defined as:

o) =D i—p, [ PO), (34)

G
where ug:Zz’P(z’). Let o (t) = q,0,(t)+q0,(t) . From Eq.(34), after some

i=0

calculations, we have
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o*(t) = o* (1) + ¢,(t)g, (B)[u! —u[F,

t

where u ;

and u; are the mean values of foreground and background objects in R when the
threshold ¢ is used.  Let o*(t) = q,q}[, — ;. Then, we have

aj(t) = o’ (t)+ o*(t). (35)
Since az is constant, the problem to find a threshold 7 that minimizes o, becomes finding
a threshold ¢ for maximizing o°. To more efficiently calculate o*(t), its three terms can be
updated using the following three recursive forms:

t+1 t+1
+(@+1D)P(t+1) and u'tt= U, —q, u,
t+1 S t+1

t .t
gt =g+ P(e+1), upt =2
4 1-g,

Since the number of possible values of ¢ is small, the optimal 7 can be easily found by trying
all the possible values of # which maximizes o°. Once ¢ is obtained, the texts in R can be

easily extracted.
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Chapter 4. Experimental Results

4.1 Vehicle Detection Performance

In order to analyze the performance of our proposed method, various static images captured
under different weather conditions and lighting conditions were used. For the training
vehicles, they were collected from different sources including roads, parking lots, cluttered
backgrounds, and so on. The dimension of training vehicles is clipped to 36x36. To tackle
the variations of vehicle orientation, eight classes of vehicles with different orientations were
collected. We quantize the vehicle classes according to the angle between the line from
camera center and the vehicle center. (i.e., camera tilt angles0°, 15°and vehicle orientations
0°,30° 90°and 120° respectively. ) In addition, for measuring the accuracy of our proposed
method to detect vehicles directly from still images, a database including 354 images acquired

under different lighting and weather conditions was used.

4.1.1 Results of Vehicle Pixels Classification

To evaluate and measure the performances of our proposed method to detect vehicle colors,
the precision and false-alarm rates are defined. Precision is the ratio of the number of
correctly detected vehicle pixels to the number of exactly existing vehicle pixels. False
alarm rate is the ratio of the number of background pixels but misclassified as vehicles to the
number of all background pixels. These two measures are defined as:

Precision = Cyepicte / Nyenicie and — Rate of False-Alarm = Fepicie / Npack-pixels»
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where N,enicie 1S the total number of vehicle pixels, Cyenicie the number of correctly detected
vehicle pixels, Npucrpiveis the number of all background pixels, and Fenicie the number of
background pixels but misclassified as vehicle ones. When calculating these two measures,
the ground truth of vehicle pixels was manually obtained. In what follows, several
experiments under different conditions were demonstrated for analyzing the robustness and
effectiveness of our proposed method.

The first experiment was conducted to compare the results of vehicle color classification
when different color transforms are used.  Fig. 19 shows the comparison results of vehicle
color classification when Eq.(4), Eq.(5) and Eq.(6) are used, respectively. (a), (b), and (c)
are the results using Eq.(4), Eq.(5), and Eq.(6), respectively. The precision rates of Eq.(4),
Eq.(5), and Eq.(6) are 85.3%, 87.2%, and 86.3%, respectively. In addition, their
corresponding false-alarm rates of vehicle pixel detection are 4.1%, 2.4%, and 8.9%,
respectively. The lower false-alarm rate implied that most of background pixels were
filtered out and did not need to be further verified. Thus, many redundant searches can be
avoided in advance and the verification process can be significantly speeded up to find
desired vehicles. Although Eq.(6) has a better precision rate than Eq.(4), its false-alarm rate
is too higher than Eq.(4). Eq.(5) performs the best among the three methods. Fig. 20
shows another comparison among them, where the results of Eq.(4), Eq.(5), and Eq.(6) are
shown in (a), (b), and (c), respectively. Their precision rates are 75.3%, 81.6%, and 78.9%,
respectively. In addition, their corresponding false-alarm rates of vehicle pixel detection are
3.6%, 2.1%, and 4.5%, respectively. EQq.(5) still performs the best among these methods in

the classification of vehicle pixels.
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(@) (b) (©)

Fig. 19: Results of vehicle color classification when different color transforms are used.
(a) Result of color classification using Eq.(4). (b) Result of color classification using
Eqg.(5). (c) Result of color classification using Eg. (6).

(@) (b) (©)

Fig. 20: Results of vehicle color classification when different color transforms are used.
(a) Result of vehicle color detection using Eq.(4). (b) Result of vehicle color detection
using Eq.(5). (c) Result of vehicle color detection using Eq. (6).

(@) (b) (©)

Fig. 21: Results of vehicle color detection. (a) Original image. (b) Result of vehicle color
detection using the Bayesian classifier. (c) Result of vehicle color detection using the
RBF network.
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(@) (b) (©)

Fig. 22: Results of vehicle color detection. (a) Original image. (b) Result of vehicle
color detection using the Bayesian classifier. (c) Result of vehicle color detection using
the RBF network.

The second experiment was conducted to compare the performances of vehicle color
detection using the Bayesian classifier and the RBF network, respectively. Fig. 21 shows
the results of vehicle color detection using Egs.(13) and the RBF network, respectively. (b)
is the detection result of (a) using the Bayesian classifier and (c) the one using the RBF
network. In (b), the precision rate and false-alarm rate of vehicle pixel detection are 87.7%
and 2.8%, respectively. In (c), its corresponding precision rate and false-alarm rate are
86.1% and 5.9%, respectively. Clearly, the false-alarm rate of the RBF network is higher
than the Bayesian classifier. Therefore, the Bayesian classifier performs better than the RBF
network. Fig. 22 shows another set of performance comparisons between the two classifiers.
(b) and (c) are the results of vehicle color detection using the Bayesian classifier and the RBF
network, respectively. Their precision rates are 84.1% and 84.4%, respectively. In
addition, their false-alarm rates are 3.1% and 5.2%, respectively. The Bayesian classifier

still had a lower false-alarm rate and performed better than the RBF network.
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(@) (b) (©)

Fig. 23: Results of vehicle color detection under a cloudy day. (a) Original image. (b)
Result of vehicle color detection using the Bayesian classifier. (c) Result of vehicle
color detection using the RBF network.

(© (d)

Fig. 24: More examples of vehicle color detection. (a),(c) Original image. (b),(d)
Detection result of vehicle color.
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In addition to sunny images, a cloudy image was also used for making a fair comparison
between their performances under different weather conditions. Fig. 23 shows the detection
results of vehicle color obtained from a cloudy image. The precision rates of (b) and (c) are
83.1% and 83.5%, respectively. As to the false-alarm rates of (b) and (c), they are 1.6% and
5.7%, respectively. The Bayesian classifier still performed better than the RBF network
since the former had a lower false-alarm rate than the latter one. Although other
complicated neural networks like SVM (Support Vector Machines) can be used for reducing

the false-alarm rate, the Bayesian classifier performs well enough to detect vehicle pixels.

(@) (b) (c)

Fig. 25: Results of vehicle detection when the verification process is used. (a) Result of
color classification. (b) Result of vehicle detection without verification. (c) Result of
vehicle detection after verification.

Fig. 26: Result of vehicle detection in a parking lot.  Although these vehicles had
different colors, all of them were correctly detected.
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For more accurately analyzing the performances of our proposed vehicle color detector, two
more experiments were performed. Fig. 24 demonstrates more results of vehicle color
detection when the Bayesian classifier was used. In Fig. 24(b), the precision rate and
false-alarm rate were 86.1% and 6.3%, respectively. Although the false-alarm rate is high,
none of vehicle candidates was missed. Fig. 24(d) shows another result of vehicle color
detection. The precision rate and false-alarm rate of vehicle pixel detection are 89.9% and
2.1%, respectively. All of possible vehicle candidates were correctly extracted even though

vehicles were parked behind the trees.

4.1.2 Vehicle Detection Results

Another set of experiments was performed to examine the abilities of our vehicle detection
method to detect vehicles directly from static images. Actually, after color classifying, all
the detected vehicle pixels will form different regions. In Fig. 25, (a) is the result of color
classification. If a region has enough pixels, we can consider it as a vehicle candidate.
Then, we had the detection result shown in (b). However, there were many false alarms in
(b).  After using our proposed verification method, a more accurate result was obtained in
(c). Clearly, the proposed verification scheme makes quite improvements in the accuracy of
vehicle detection. Fig. 26 shows another result of vehicle detection obtained from a parking
lot. Although these vehicles had different colors, all of them were still correctly detected
and located. Although some vehicles occluded by a tree, they still were correctly detected.
Fig. 27 shows three cases of vehicle detection when vehicles in roads have other orientations.

Even though vehicles have various orientations, they still were well detected.
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(©)

Fig. 27: Results of vehicle detection from roads. Although these vehicles had
different orientations and colors, all of them were correctly detected.

(a) (b)

Fig. 28: Results of detecting vehicles from highways. Although these vehicles
were with different colors, all of them were correctly detected.
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(a) (b)

(©)

Fig. 29: Results of vehicle detection under a rainy day.

Fig. 30: Results of vehicle detection when occlusions happened.

In addition to parking lots and roads, the proposed method also works well to detect vehicles
from highways. Fig. 28 shows two results of vehicle detection when highway images were
used. Fig. 29 shows another case of vehicle detection when images were captured under a

rainy day. According to the results in Fig. 28 and Fig. 29, even though vehicles were
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captured under different lighting or weather conditions, the proposed method still performed
very well to detect all kinds of vehicles. Table 2 lists the quantitative performance analysis
of our proposed method to detect vehicles under different weather conditions and scenes.
Since the sunny day has better lighting conditions, our proposed method works better in such
a day than other weather conditions. The average precision rate of vehicle detection using
the proposed algorithm is 94.9%. In addition, the average false-alarm rate and missing rate
are 8.23% and 5%, respectively. The above three measures are defined as:

Precision = Cyo.venicte / Nuo.venicle

False-Alarm = Fyp.yenicie / (Chovenicle + Fro.venicte )

Missing = 1- Precision.
where N,o.venicie 1S the total number of vehicles, C.venicie the number of correctly detected

vehicles, and F,. enicie the number of background objects but misclassified as vehicles.

Table 2: Evaluation on vehicle detection when different weather conditions and scenes
were handled.

Weather and Scene No. of Correct False No. of | Precision | False Alarm Missing
Vehicles | detection | detection | miss Rate Rate: Rate
Sunny [ Highway 1 175 170 6 5 97.14% 3.42% 2.85%
High way 2 153 147 7 6| 96.07% 457% | 3.92%
Road 1 126 121 10 5 96.03% 7.93% 3.96%
Road 2 77 75 9 2 97.4% 11.68% 2.59%
Cloudy | Road 3 146 136 22 10 93.15% 15.06% 6.84%
Parking lot 1 92 88 8 4 95.65% 8.69% 4.34%
Parking lot 2 106 98 13 8 92.45% 12.26% 7.54%
High Way 3 117 107 16 10 91.45% 13.67% 9.4%
Rainy Parking lot 3 109 104 7 5 95.41% 6.42% 4.58%
Road 4 96 90 4 6 93.75% 4.16% 6.25%
Average 1197 1136 102 61 94.90% 8.23% 5%
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For making fair comparisons, three methods proposed by Agarwal and Roth[27], Zhu et
al. [28], and Schneiderman and Kanade [29] were implemented, respectively. For other
methods using motion information [4], [30] or range data [13], [14], [31] to detect vehicles,
we did not compare them in this thesis. Table 3 lists the accuracy comparisons of vehicle
detection among these three methods [27], [28], and [29]. In [27], Agarwal and Roth
proposed a part-based representation scheme to represent vehicles using a vocabulary of 400
vehicle parts. Since the combination of vehicle parts is huge, their detector will generate many
false alarms when a complicated background (including many edges and corners) is handled.
In [28], Zhu et al. used SVM to classify vehicles based on the features of Gabor moments,
edge area templates (EAT), and corner area templates (CAT). These two methods [27], [28]
failed to detect vehicles with various orientations. As to the Schneiderman and Kanade’s
detector [29], they used lots of labeled training images to build the appearance models of the
detected objects based on the wavelet feature. Eight detectors were designed for detecting
vehicles having different orientation changes. Compare with these three methods, our
proposed color classification scheme can eliminate over 80% non-vehicle pixels so that our
approach has the best efficiency in vehicle detection. In addition, since our color
classification scheme can pre-filter out many false alarms, our proposed method has higher
tolerance to complicated backgrounds. It also makes our approach have the highest
detection accuracy. All the quantitative analyses of these methods in vehicle detection are
tabulated in Table 3. Table 4 lists all the detailed functional comparisons. The two
methods proposed in [27]-[28] have limited abilities to handle vehicles having different
orientations. In [29], since they used eight detectors to find all vehicles having different
orientations, their time complexity is the highest. The speed of each method was measured
on a Pentium CPU 2.4G with 512M memory. Since our scheme can filter out most of false

candidates using the color feature, it has the best efficiency than other approaches. All the
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above results have proved that the proposed method is a robust, accurate, and powerful tool

for vehicle detection.

Table 3: Performance comparisons among different methods.

View, Scale, and Detection Accuracy

Orientation | @ Side view ® Frontand rear view | ® Multi- views

Method ® Fixed scale ® Multi-scale ® Multi- scales
® Fixed orientation ® Fix orientation ® Multi- orientations

Our method 95.7% 95.1% 94.9%
Agarwal and Roth [27] 77.9% X X
Zhu et al. [28] 81.3% X X
Schneiderman and 92.5% 92.1% 91.3%
Kanade [29]

Table 4: Functional comparisons among different methods.

Functionality Multiple views, | Efficiency and Number of

Methods and orientation Speed Features hypotheses.

Color, Corners, Pixels that pass the
Our method YES High, 0.15 ~ 0.5sec

WT, and Edges. color classification

Forstner interest All the pixels and
Agarwal and Roth [27] NO Low, 10 sec

operator sub-windows.

Based on EAT and

Zhu et al. [28] NO Low, 5 sec. Gabor moments.
CAT templates
Schneiderman and Search the whole
YES Low, 5 min WT
Kanade [29] image exhaustively.
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Table 5: Frame rate analyses of our system among different video dimensions and functions.

Functions | Road Sign Detection | Road Sign Detection | Road Sign Detection

Dimens + Text Detection +Text Detection + Rectification
320x240 20 fps 16 fps 8 fps
640x480 5 fps 4 fps 2 fps

4.2 Road Sign Detection Performance

To examine the performances of our proposed method, several video sequences collected
from different highways and roads were used. The sequences were captured under different
lighting and weather conditions (like sunny, cloudy, and rainy). The camera was mounted in
the front of the car and its optical axis is not required being perpendicular to the road sign.
A database including more than four thousand images was collected and constructed for
examining the robustness of the proposed system. Our system was implemented and tested
on a general PC with the Intel Pentium CPU 2.0G. The language for implementing our
system is Microsoft visual C++6.0. Table 5 shows the frame rate analyses of our system
when different video dimensions are handled and functions are added. When a 320x240
video frame is handled, the detection rate is 20 fps. When more functions are added or

higher frame dimension are handled, the frame rate becomes worse.

The precision and false-alarm rates are defined for evaluating and measuring the
performances of our proposed method to detect road signs. Precision is the ratio of the
number of correctly detected road sign pixels to the number of exactly existing road sign
pixels. False alarm rate is the ratio of the number of background pixels but misclassified as

road sign to the number of all background pixels. These two measures are defined as:
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Precision = Csign / Nysign and  Rate of False-Alarm = Fig, / Npack-pixels,
where Ny, is the total number of road sign pixels, Cy;,, the number of correctly detected road
sign pixels,  Npaerpives the number of all background pixels, and Fjg, the number of
background pixels but misclassified as road sign ones. When calculating these two measures,

the ground truth of road sign pixels was manually obtained.

4.2.1 Road Sign Color Segmentation

To theoretically analyze which color coordinate system provides the best traffic sign color
segmentation result, we use the “Fisher criterion” [19] to evaluate their separation abilities.
The criterion uses the ratio of the “between-class” variance to the “within-class” variance to

measure how well a transform 7" can separate a space into two classes C, and C,. The
“between-class” variance is the distance between their means (denoted by m, and m,,
respectively). The “within-class” variance is the sum of their variances, i.e. s, and s,.
Then, the Fisher criterion is defined by

. 2
between-class distance _|m, —m,|

J(T)= =
) within-class distance s +s;

For a color domain, the larger value of J is, the better separation ability it has. Table 6 lists
the values of J when different color spaces including RGB, YIQ, HSV, L*a*b, Luv, and our

method were compared. Clearly, our method has the best ./ among all the color domains.

Table 6: Separation ability analysis among different color spaces.

Separation Ability RGB YIQ HSV | L*a*b Luv Proposed method
Red 0.81 141 | 001 | 411 | 412 4.62
J(T)
Green 0.49 0.70 | 020 | 213 |1.75 3.52
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Fig. 31: ROC curve analysis among different methods.

In addition to color space, we also compared our method to other approached including the
color thresholding technique [33] and the YI1Q color module [36]. In our method, an RBF
neural network was used for altering the effect of our proposed color transformation. For
fair comparisons, the RBF neural network was also used to train a classifier on the RGB space
for road sign detection. As to our detector, two different schemes were adopted for detecting
road signs having different colors. For the first one, each road sign color has its
corresponding detector which was trained at different time. Then, an “OR” operation was
used to combine the detection results together. Since it needs multiple passes to locate a
road sign, we name it a multiple-pass color detector in this thesis. For the second one, only
one detector is trained for all types of road sign even though their colors are different. ~ Since
only one scanning pass is needed for road sign detection, it is named as one-pass detector in
this thesis. Fig. 31 shows the performance analyses among different methods using ROC
curves [56], [57] . Clearly, the one-pass detector performs the best among the above

methods.
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(@) (b) (©)

(d) (e) ()
Fig. 32: Result of color classification. (a) Original image. (b) Classification
result of the thresholding technique. (c) Result of the YIQ technique. (d) Result of

the RBF classification on the RGB color space. (e) Result of the one-pass detector.
(f) Result of the multiple-pass detector.

Fig. 32 shows the results of road sign color detection among these techniques. (a) is the
original image. (b) and (c) are the results using the thresholding and YIQ techniques,
respectively. The precision and false alarm rates of (b) and (c) are 95.1%, 94.8% and 19.7%,
18.4%, respectively. It is noticed that the mountain has a similar color to the road sign and
thus there were many false road sign region detected in both (b) and (c). (d) is the result of
the RBF classification on the RGB color space. Higher false alarm rate was obtained from
(d). (e) is the result of the one-pass detector. The precision and false alarm rates of (e) are
93.2% and 2.62%, respectively. (f) is the detection result using the multiple-pass detector.
The precision and false alarm rates of (f) are 94.4% and 2.97%, respectively. The precisions
of both our schemes are similar to the threshold technique and the Y1Q method. However,

the false alarm rates of our schemes are much lower than the above three methods. Usually,
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Fig. 33: Comparisons of color classification among different methods. (a) Original
image. (b) Classification result using the thresholding technique. (c¢) Result of the
YIQ technique. (d) Result of the RBF classification on the RGB color space. (e)
Result of the one-pass detector. (f) Result of the multiple-pass detector.

a lower false alarm rate means less computation time for candidate verification. About the
multi-pass detector, since we did not know which color a road sign had, two color detectors
were implemented for detecting green and red road signs, respectively. Then, the two results
were combined together using an “OR” operation. There is no significant performance
difference between (e) and (f). However, the one-pass detector needs less scanning pass to
detect desired road signs. Thus, it is more efficient than the multiple-pass detector.
Compared with other methods, our proposed methods still had better performances.

Fig. 33 shows the case when multiple road signs appeared together in the same frame. (b)
and (c) are the results of the thresholding and YI1Q schemes, respectively. (d) is the result of
the RBF classification on the RGB space for detecting road sign pixels. (e) and (f) are the

results using our one-pass and multiple-pass schemes, respectively. Clearly, our proposed two

59



schemes have lower false alarm rates and better accuracies than other schemes. Although
the one-pass detector had less accuracy than the multiple-pass one, its false alarm rate is much
lower than the multiple-pass one.  Since the one-pass detector has better efficiency than the
multiple-pass one, we adopt the one-pass detector for road sign color classification in all the

following experiments.

4.2.2 Road Sign Detection, Rectification and Text Extraction

After detecting road sign pixels, the verification process is then applied for verifying each
road sign candidate. Fig. 34 shows a series of detection results when circular road signs
were handled. All these circular road signs were correctly detected. Fig. 35 shows the
detection results when two triangular roads were handled. Fig. 36 shows the cases when
multiple rectangular road signs appeared together in the analyzed scene. In (b) and (c), even
though the road signs had similar colors to the sky, our method still worked very well to find
them. According to the above results, clearly no matter what type a road sign is, our

proposed method works very well to detect it.

(@) (b) (©)

Fig. 34: Detection results of circular road signs.
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(a) (b)

Fig. 35: Detection results of two triangular road signs.

AV

(@) (b) (©)

Fig. 37: Results of road sign detection when low contrast video frames were handled.

Fig. 37 is another case when a low-contrast frame was handled. Even though the frame
contrast was low, each road sign was still successfully detected using our proposed method.
Fig. 38 shows the detection results when rainy days were handled. (a) and (c) are the detect

results of road signs. (b) and (d) are the results of color classification using our proposed
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method. Our method is robust to detect road signs when different weather conditions are
handled. Fig. 39 shows the case when a skewed road sign was handled. (a), (b), and (c) are
the detection results using our proposed scheme. (d), (e), and (f) are the rectification results
of (a), (b), and (c), respectively. Clearly, no matter how skewed the road signs are and what

color they have, the proposed rectification scheme can handle all of them correctly.

(@)

(©) (d)

Fig. 38: Results of road sign detection when rainy days were handled. (a) and (c): results of
color classification using our proposed method. (b) and (d): results of road sign detection.

The next set of experiments was used to demonstrate the performances of our method to
detect road signs under different weather conditions in a sequential video. Fig. 40 shows a
series of detection results when consecutive video frames under a cloudy day were handled.

In (a) and (b), a smaller and darker road sign was detected. Then, its size gradually became
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larger. (c) shows the detection result of a larger road sign. Experiment results shows that the
proposed method is reliable and suitable for real time issue. All its variations were still

successfully detected.

(d) (€) (f)

Fig. 39: Detection result when a skewed road sign was handled. (a), (b), and (c): results of
road sign detection. (d), (e), and (f): Results of rectification.

After road sign detection, the embedded texts on a road sign can be then extracted though a
bi-leveling technique (see Section 3.5) and a connected component analysis. Fig. 41 shows
the results of text line extraction from road signs under different lighting conditions. (a) is
the result of a normal road sign. (b) and (c) are the text extraction results obtained from
blurred images. (d) is the text result extracted from a dark road sign. Each desired text line

was correctly detected using our proposed method.
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(©) (d)

Fig. 40: Road sign detection in a video sequence under a cloudy day.

The database we used included 502 roads signs which come from 20 individual videos.
The number of correctly detected road signs is 480. In addition, the number of
falsely-detected road signs is 27 and the number of missed road signs is 22. After
calculation, the accuracy of our proposed method is 95.6%. The false alarm rate and missed
rate are 5.32% and 4.38%, respectively.  All the above results have proved that the

proposed method is a robust, accurate, and powerful tool in road sign detection.
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Fig. 41: Results of text line detection. (a) Normal road signs. (b) and (c): Blurred road signs.
(d) Dark road signs.
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Chapter 5. Conclusions and Future Works

5.1 Conclusions

This thesis has presented a novel color-based object detection method for detecting objects
directly from static images. First of all, an eigen color transform is proposed for making
object colors more sufficiently concentrated on a compact area. Then, different object pixels
will form different clusters if they are projected on this eigen color space. Two classifiers
were trained in this thesis for detecting vehicles and road signs, respectively. With these
classifiers, lots of redundant no-object pixels can be filtered out in advance and only few
candidates should be further verified. At the verification stage, three visual features
including edge maps, coefficients of wavelet transform, and corners were integrated to form a
multi-channel classifier. Then, each desired object can be very accurately detected from
static image. W.ith a coarse-to-fine verification scheme plus an image pyramid, desired
objects can be accurately and effectively detected and verified even though they are with
various scale and orientation changes. Due to the filtering effect of the proposed color
transformation, the searching domain of object candidates can be significantly narrowed down.
Thus, the proposed framework can detect each object efficiently even without using any
motion feature. Two targets, i.e., vehicles and road signs were demonstrated for proving the
flexibilities of our proposed transform in object detection. Different weather conditions and
road scenes were testing in this thesis for proving that our method is robust and effective.
Several quantitative comparisons among our method and some well-known approaches were
also performed. All the experiment results show that the proposed method is superior to

other approaches for detecting objects in terms of accuracy, robustness, and stability.
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5.2 Future Works

Recently, detecting the important objects in traffic images is the active research of
Intelligence Transportation System (ITS). Forward-looking image processing for driver
assistance has attracted more studies to date. Generally, the problem focuses on two main
topics: the detection of roads and the detection of obstacles, vehicles or traffic signs. In this
thesis, we have present reliable vehicle and traffic sign detection results. Our work can be
extended to combine the lane extraction module yielding the promising vision-based driver
systems. Moreover, we are trying to extend our eigen color method for traffic scene analysis
in real-time. It is useful to analyze the whole traffic images and segments into some
meaningful regions. The lower part of the road scene image contains more important objects
than upper part. Therefore, the background objects such as sky, mountains and trees in a road
scene can be ignored in the upper parts. Our future work will explore the framework to
integrate the other ITS applications like lane and road area detection for improving the
driver’s safety.

Another improvement is to utilize the component-based classifier in our cascade structure.
For example, in the cases of vehicles, the major components should be wheels, the headlight
and taillight. We trained a set of view-turned, global classifier to achieve view invariance in
our system. In fact, it is difficult to collect complete training set, which cover the all possible
variations of objects especially for partially occlusion. Building the classifier based the
components is a solution to decrease the number of required training examples. Furthermore,
we can also decrease the computation in global approach which needs to verify the region of

interest with each view-turned classifier.
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