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摘要 

 

在電腦視覺領域中，物體偵測是相當基礎且重要的問題。同時可應用在很多方面，例如：

視訊監控，導航，影像檢索…等。主要目的是找出物體在影像中的正確位置不論場景如

何地變化. 

本論文提出一套新穎的系統架構應用於彩色影像中。首先, 我們發展出一種稱做特徵

值顏色的方法。此方法是透過對某特定物體類別做一統計上的分析所推導得到的結果.

在這個新的特徵色彩空間上，前景物像素點可以容易地與背景物的像素點作區分，即使

是在一些具有光線變化的場景。至於在候選區塊的確認步驟，我們利用數種重要的物體

外觀特徵包含角點、邊緣資訊與小波轉換之係數，來建構一串連且多重維度之物體分類

器。依據此串連架構，可以對輸入影像中可能的前景物像素點作有效之確認。由於先前

已利用色彩資訊濾除大量無關的背景像素點，故此掃瞄步驟將可快速的執行並找出前景

物。 

與一般傳統外觀類型的偵測方式相比,我們所提出的特徵色彩空間可以事先過濾大量

無關的背景像素點.因此可以有效的快速定位出物體的位置。即使是靜態影像，我們仍

舊可以成功的從非固定式的照相機偵測出前景物。我們分別利用車輛與交通號誌的偵測

來驗證所提出方法的可行性。實驗結果證明結合特徵色彩資訊與局部外觀資訊之偵測方

式是強而有效的。 
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Abstract 

 
Object detection is a fundamental and important problem in computer vision and can be 

applied to various applications like video surveillance, navigation, content-based image 

retrieval and so on. Its goal is to find the exact location of an object no matter how the 

environmental conditions change.  

This thesis presents a novel framework for detecting objects in color images. First of all, a 

novel eigen color representation derived from a statistical analysis of object instances is 

presented. In this new eigen-color space, different object pixels can be easily identified from 

background, even though they are lighted under varying illuminations. At the hypothesis 

verification stage, each detected pixel corresponds to an object hypothesis. Several important 

appearance features including corners, edge maps and coefficients of wavelet transforms were 

used for constructing a cascade multi-channel classifier.  With the cascade structure, an 

effective scanning process can be performed to verify all possible candidates. Because the 

color feature eliminates most background pixels in advance, the scanning process can be 

performed extremely quickly to locate each desired object.   

Compared with the traditional appearance-based methods, our proposed eigen-color space 

can filter out most of impossible candidates in advance and thus each desired object can be 

very efficiently located from the background. Even thought still images are handled, each 

object still can be efficiently detected from a non-stationary camera. Two important 

applications are demonstrated in this thesis; that is, vehicle detection and road sign detection. 

Experimental results demonstrate that the integration of eigen color feature and local 

appearance features can form a powerful and superior tool in object detection. 
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Chapter 1. Introduction 
 

 

 

 
Automatic object detection in unstructured environments where illumination varies 

dynamically has been a great challenge in pattern recognition and computer vision research. It 

is also the first step in all monitoring systems that the objects is detected and examined. It 

determines most important quality of accuracy in the system. After detecting and examining 

the moving objects accurately, tracking and analysis of the object’s behavior are relatively 

simpler.  

 

1.1 Motivation  

To detect objects from their background, the most commonly used feature is motion.  When 

the camera is static, this feature can be easily extracted using the techniques like image 

differencing or background subtraction [4], [5].  The former technique usually will extract a 

moving object with many holes and the latter one will fail in object detection when 

illuminations change large.  More importantly, the two techniques will fail to deal with static 

objects since motion features no longer exist.  When static objects are handled, the 

appearance-based method [23]-[27], [29] will be better adopted.  For example, Sung and 

Poggio [24] proposed an example-based method to train a detector from lots of training 

samples for face detection.  Papageorgiou and Poggio [25] adopted the similar 

example-based learning technique to detect people in complex scenes without using any 

motion information.  In [27] Agarwal and Roth proposed a part-based representation for 

body part extraction.  Their framework selected distinguishable parts of objects and learned 
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the discriminative classifier over the parts and then detected each desired object from images.  

The above method can detect objects only from a fixed view.  To tackle the multiple-view 

problem, Schneiderman and Kanade [29] proposed a wavelet-based method for training a 

detector to detect faces or cars no matter what their viewpoints are.  For the above 

example-based method, a lot of positive and negative training examples should be collected at 

the training stage.  Then, at the detection stage, a window with a fixed size is used to scan all 

pixels in the input image to locate all possible candidates.  To tackle the size variation of an 

object, the input image will be scaled to different resolutions and then a very time-consuming 

scanning is performed from left to right and from up to down to locate each desired object. To 

improve the detection efficiency, Viola and Jones [22] presented a cascade structure to train a 

classifier for detecting object in real time.  This scheme takes advantages of integral image 

and Adaboost algorithm to filter out all impossible candidates extremely efficiently.  Their 

major contribution is the idea of cascade structure which can avoid lots of feature verification 

for detecting objects in real time.  This technique also lacks capabilities for detecting objects 

from multiple viewpoints.  Li et al. [23] extended this boosting idea called “Float Boost” for 

real-time multi-view face detection.  Furthermore, Zhu et al. [28] used corners and edge 

densities of a vehicle to define two special templates called EAT and CAT for vehicle 

detection.  However, it may fail when highly textured images are handled.    

As mentioned before, objects will include larger appearance variations like their colors, 

sizes, and shapes changing according to their different viewing positions, lighting conditions, 

and cluttered background.  All the variations will increase many difficulties and challenges 

in selecting a general feature for describing an object.  The general feature can be global or 

local for well describing an object under different conditions.  For the global feature like 

skin color, it can be used for filtering out impossible candidates in advance.  For example, 

we can use neural networks to learn a skin color classifier for skin color detection and then 
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detect each face candidate from still images at the coarse stage.  At the fine stage, the local 

feature can be then used for verifying candidates more accurately.  For example, features like 

edge fragments, corners, or wavelet features can be used for object description and verifying 

an object more accurately.  When an object (like face) owns its specially color, its global 

feature can be easily defined and extracted for object detection.   However, for objects like 

vehicles or road signs, since their colors are not fixed, it is very difficult to define a global 

feature for object representation and thus narrowing down the search areas of possible 

candidates.  If a general color transform can be found for object representation (even objects 

lighted under different conditions), the color will become a very useful cue to filter out 

impossible candidates more efficiently.  

This thesis presents a novel color-based algorithm for detecting static objects directly from 

images by first locating possible candidates using their colors and then combining different 

appearance features together to form a cascade classifier for candidate verification.  The 

contribution of this thesis is to present a statistic method for deriving an eigen-color space that 

makes object colors more sufficiently concentrated on a compact area.  The model is leaned 

by observing how the object colors change in static images under different lighting conditions 

and cluttered backgrounds.  In this space, a classifier can be then designed for searching 

possible candidates from images.  Since this classifier can filter out most of background 

candidates, only few candidates should be further checked.  Due to the filtering effect and 

discriminative abilities of the proposed method, desired objects can be very effectively 

detected from static images.  We focus on the problem of detecting specific objects which 

commonly appear in applications like surveillance systems, driver assistance systems, and 

image retrieval.  In these applications, two common targets repeatedly appear in the analyzed 

scenes; that is, vehicles and traffic signs.  In Section 1.2, a brief review of these two targets 

will be given. 
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1.2 Review of Related Works 

1.2.1 Previous Methods for Vehicle Detection 

One of the major issues in object diction is vehicle detection [1]-[11]. It has many related 

applications such as self-guided vehicles, driver assistance system, intelligent parking system, 

or measurement of traffic parameters like vehicle count, speed, and flow.  One of most 

common approaches to vehicle detection is using vision-based techniques to analyze vehicles 

from images or videos.   However, due to the variations of vehicle colors, sizes, orientations, 

shapes, and poses, developing a robust and effective system of vision-based vehicle detection 

is very challenging.  To address the above problems, different approaches using different 

features and learning algorithms for locating vehicles have been investigated.  For example, 

many techniques [2]-[6] used background subtraction to extract motion features for detecting 

moving vehicles from video sequences.  However, this kind of motion feature is no longer 

usable and found in still images.  For dealing with static images, Wu et al. [7] used wavelet 

transform to extract texture features for locating possible vehicle candidates from roads.  

Then, each vehicle candidate is verified using a PCA (principal component analysis) classifier.  

In addition, Z. Sun et al. [8] used Gabor filters to extract different textures and then verified 

each candidate of vehicles using a SVM (support vector machines) classifier.  In addition to 

textures, “symmetry” is another important feature used for vehicle detection.  In [9], Broggi 

et al. described a detection system to search for areas with a high vertical symmetry for 

locating vehicles.  However, this cue is prone to false detections such as symmetrical doors 

or other objects.  Furthermore, in [10], Bertozzi et al. used corner features to build four 

templates of vehicles for vehicle detection and verification.  In [11], Tzomakas and Seelen 

found that the area shadow underneath a vehicle is a good cue to detect vehicles.  In [12], 

Ratan et al. developed a scheme to detect vehicles’ wheel features as cues to find possible 
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vehicle positions and then used a method called Diverse Density to verify each vehicle 

candidate.  In addition, Bensrhari [13] and Aizawa [14] used stereo-vision methods and 3D 

vehicle models to detect vehicles and obstacles.  The major drawback of the above methods 

to search vehicle using local features is the need of a fully time-consuming search to scan all 

pixels of the whole image.  For the color feature, although color is an important perceptual 

descriptor to describe objects, there were seldom color-based works addressed for vehicle 

detection since vehicles have very large variations in their colors.  In [15], Rojas and 

Crisman used a color transform to project all road pixels on a color plane such that vehicles 

can be identified from road backgrounds.  Similarly, in [16], Guo et al. used several color 

balls to model road colors in L*a*b* color space and then vehicle pixels can be identified if 

they are classified no-road regions.  However, since these color models are not compact and 

general in modeling vehicle colors, many false detections were produced and leaded to the 

degradation of accuracy of vehicle detection. 

1.2.2 Previous Methods for Road Sign Detection 

Road sign detection is an important and essential task in an intelligent driver support system.  

The texts embedded in a road sign usually carry much useful information like limited speed, 

guided direction, and current traffic situations for helping the drivers drive safely and 

comfortably.  However, it is difficult to detect road signs directly from videos due to 

different environmental condition changes.  For example, a road sign will have different 

appearance changes including its lightings, colors, or shadows under different days, seasons, 

and weathers.  In addition, for the camera mounted in front of a moving car, the perspective 

effects will make a road sign have different sizes, shapes, contrasts, and motion blurs.  In 

some cases, it would be occluded with other objects like trees.  To tackle the above problems, 

there have been many works [32]-[39] proposed for automatic road sign detection and 
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recognition via a vision-based technique.  Since a road sign usually has a high-contrast color 

to its background and a regular shape, we can divide these approaches into two categories, i.e., 

color-based and shape-based.  For the color-based approach [32], Bénallal and Meunier 

found that the difference between R and G, and the difference between R and B channels can 

form two stable features for road sign detection in day time.  In [33], Escalera et al. used a 

color threshoding technique to separate road sign regions in the (R, G, B) channels from the 

background.   In addition to the RGB space, other color spaces like YIQ and HSV are also 

good for road sign detection.  For example, in [36], Kehtarnavaz and Ahmad used a 

discriminant analysis on the YIQ color space for detecting desired road signs from the 

background.  As to the HSV color space, in [37], [53], Vitabile et al. presented a sub-space 

dynamic thresholding technique to find a road sign color like red so that all possible road sign 

candidates can be detected.  They further improved their system using FPGA language for 

hardware implementation.  Moreover, Fleyeh [52] used an improved HLS (Hue, Lightness, 

Saturation) color space for detecting color road signs from road scenes.  Since a road sign 

has different colors (like red, blue, or green) for demonstrating its functionalities like warning 

or direction messages, different detectors should be designed for tackling its color variations. 

 In addition to color, shape is another important feature for detecting road signs.  In [44], 

Barnes and Zelinsky adopted the radial symmetry feature to detect possible road signs and 

then to verify them using a correlation technique.  In [45], Piccioli et al. proposed a template 

matching scheme to search all possible road signs from images.  In addition, Wu et al. [43] 

used the corner feature and a vertical plane criterion to cluster image data to different 

categories so that each road sign candidate can be found.  Moreover, Blancard [48] used an 

edge linking technique and the contour feature to locate road sign candidates and then verified 

them according to their perimeters and curvature features.  The shape feature also can be 

learned from a set of training samples.  In [46], Haritaoglu and Haritaoglu used texture 
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features and support vector machines to detect road signs in a scene.  Garcia-Garrido et al. 

[55] extended the Hough transform to find any curves in an image for detecting circular and 

stop signs. Usually, different shapes of a road sign represent different warning or directional 

messages.  If only the shape feature is used, different shape detectors should be designed for 

detecting different road signs and will make the detection process become very 

time-consumed.  Therefore, there are some hybrid methods proposed for road sign detection.  

For example, Bahlmann et al. [47] used a color representation, integral features, and the 

AdaBoost algorithm for training a stronger classifier to detect road signs from videos in real 

time.  Furthermore, Fang et al. [34]used fuzzy neural networks and a gradient feature to 

locate and track road signs and then incorporated a geometry model of road signs for road 

sign verificaiton.  In [45], Piccioli et al. used a clustering technique to extract “red” regions 

as road sign candidates and then verified them using a set of shape features.  In [38], 

Kastinaki et al. used local color, texture features, and a conditional maximum entropy model 

to detect road signs.  Then, all candidates are verified by matching them against a set of 

predefined road sign templates. Moreover, Escalera et al. [54] integrated three features, i.e., 

chromatic image, gradient and distance energy, to more accurately detect road signs from road 

scenes and then recognize them using the genetic algorithm and simulated annealing.  For a 

good shape-based approach, it should have good abilities to overcome the shape variations 

and occlusions of a road sign when it is captured using a moving camera. 

 

1.3 Overview of Approach 

1.3.1 Vehicle Detection system 

The flowchart of the vehicle detection system is shown in Fig. 1.  At the beginning, we 

propose a color transformation to project all the colors of input pixels on a color space such 
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that vehicle pixels can be easily identified from backgrounds.  Here, Bayesian classifier and 

radial basis function (RBF) network are used for this identification.  Then, each detected 

vehicle pixel will correspond to a possible vehicle.  Since vehicles have different sizes and 

orientations, different vehicle hypotheses are generated from each detected vehicle.  For 

verifying each hypothesis, we use three kinds of vehicle features to filter out impossible 

vehicle candidates.  The features include edges, coefficients of wavelet transform, and 

corners.  Using proper weights obtained from a set of training samples, these features can be 

then combined together to form an optimal vehicle classifier.  Then, desired vehicles can be 

very robustly and accurately verified and detected from static images.   

 

Eigen Color 
Transform

Test
Images

Vehicle Feature 
Extractor

Vehicle Color 
Detection 

Verificaiton Vehicles

Edge Maps, 
Coefficients of WT, 

and Corners

Vehicle Hypothesis

Training 
Images

 

Fig. 1: Flowchart of the proposed vehicle detector. 

 

 

 

Fig. 2: Flowchart of the proposed road sign detection system. 
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1.3.2 Road Sign Detection system  

Fig. 2 illustrates the flowchart of the proposed system to detect road signs.  The system 

assumes that the camera is mounted in the front of the car for capturing different video 

sequences.  The camera optical axis direction is not required being perpendicular to the 

image plate of road signs.  Four major modules are included in the proposed system; that is, 

road sign candidate extraction, verification, rectification, and thresholding, respectively. 

Details of each component are described below:   

(a) Road sign candidate extraction: In order to quickly locate the road signs, a novel eigen 

color model is proposed to detect road sign candidates from their backgrounds.  The 

model is learned from thousands of road sign images.  Then, using this model and RBF 

(radial basis function) networks, only one detector is needed for extracting different road 

sign candidates even though their colors are different. 

(b) Verification: Once all potential road signs have been selected, a verification procedure is 

then proposed for candidate verification.  The process will build a set of road sign 

templates for reducing the perspective effects.  Then, each candidate is converted into a 

distance map so that impossible road sign candidates can be filtered out. 

(c) Rectification：After verification, a rectification process is then applied for more 

accurately recognizing a skewed road sign. 

(d) Thresholding: Once a road sign is extracted, a thresholding scheme is then adopted for 

binarizing it so that different texts embedded in it can be extracted.    
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1.4 Organization of the Dissertation 

The rest of the dissertation is organized as follows. In chapter 2, we describe the proposed 

eigen color method and its corresponding eigen color model to vehicle and road sign. The 

design of the color detector using different learning engines is also given. In chapter 3, we 

will introduce several appearance features used in our object recognition module. We also 

present the object verification module with cascade structure in this section. In chapter 4, we 

provide experimental results in object detection under different environments and the 

accuracy of the color pixels classification. Comparison results with other sophisticated 

methods are also discussed. Finally, we give the conclusions and list the future works in 

chapter 5.  
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Chapter 2. Eigen Color Detector 
 

 

Color information is a useful feature as pre-processing in object detection. For example, face 

and fire detection use the skin and fire color as detection cues. In general, skin and fire 

candidate regions are easy to extract and model in image by its color distribution at RGB 

color space. However, for the specific objects class (like vehicles), it is difficult and complex 

to model the color distribution due to the large variation. This section will introduce a new 

color transformation for mapping all pixels in images from (R, G, B) color space to a new 

domain.  By extracting the useful information to form a new feature space, feature energy of 

the object pixels are compacted and easy to separate from the background pixels. Then, a 

specific “object color” can be found and located for effective object detection. 

 

2.1 Karhunen-Loe`ve Transform 

Dimensionality reduction is a useful skill in pattern recognition.  Too many features lead to 

more computation load and create confusion such as to decreasing the classifier performance.   

By selecting a subset of features from the original data, the high dimensional data still have its 

main distinguishing characteristic. That is to reduce the dimensionality of a high dimensional 

data without significant loss in accuracy. In practice, high-dimensional data are often loose 

without tight clusters.  Human beings can not realize the shape, density of the data in high 

dimension.  Projecting data into lower-dimension space makes data clusters easy to observe 

by human eyes. By projecting data onto an appropriate lower-dimensional space (feature 

space), data clusters would have a local structure that makes the close neighborhood 
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meaningful. 

Karhunen-Loe`ve transform (K-L transform) is a well-know and widely used technique for 

statistical analysis.  It has various names, such as principal component analysis, the 

eigenvector transform or the Hotelling transform.  This method usually was adopted in 

feature extraction, data compression, image processing…etc. K-L transform tries to describe 

the data as good as possible in a lower dimensional space.  Assume the data set contains N 

samples and ix  be an n-dimensional vector.  The algorithm maps the n-dimensional 

patterns onto an m-dimensional space, where m<n. We have to compute a transformation 

matrix H which is constructed by the eigenvector of the covariance matrix.  The 

computation of the transformation matrix is as the following algorithm: 

Step 1 : Let *m  denote the mean and 
__

C  denote the covariance matrix respectively. 

 

  

 

Step 2 : Compute the eigenvalues 1 2, ,..., d   and construct the associate  

eigenvector 1 2, ,..., de e e  of 
__

C  . Sort them as 1 2 ... d      .   

Step 3 : Form the matrix H = 1, 2[ ,..., ] .T
de e e  

After transformation, the covariance matrix of the feature becomes a diagonal matrix. This 

matrix projects the input data into a subspace whose axes are in the direction of the largest 

variation as follow: 

Step 4 : 

 

 

 

for 1,...,i iy Hx i N 

*

1

__
* *

1

1
 ,

1
( )( ) .

N

k
k

N
T

i i
i

m x
N

C x m x m
N







  




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2.2 Color Feature Extraction  

In this section, we present the detail procedure about the eigen color extraction. Assume that 

there are N training images collected from various natural scenes. We choose the RGB color 

space and the ith pixel x in the selected image can be represented as: 

, , ,[   ].i i r i g i bx x x x  

Through a statistic analysis, we first compute the covariance matrix *  of the color 

distributions of R, G, and B from these N images. Using the Karhunen-Loe’ve (KL) transform, 

the eigenvalues and the corresponding eigenvectors of *  can be further obtained and 

represented as i  and ie   respectively, where 321   for i = 1, 2, and 3.  Then, we 

selected the eigenvectors to form three new color features iC  by a linear combination of the 

each RGB components, which can be defined as:  

 for =1, 2, and 3,  r g b
i i i iC e R e G e B i  (1) 

where ( , , ) r g b
i i i ie e e e .  In [17], Ohta et al. used the above principal component analysis for 

region segmentation and indicated the color feature 1C  with the largest eigenvalue is the one 

used for color-to-gray transform, i.e.,  

 1

1 1 1

3 3 3
  C R G B . (2) 

Other two color features 2C  and 3C  are orthogonal to 1C  and have the following forms: 

 2

R -
 

2


B
C and 3

2 - -

4


G R B
C . (3) 

All the color features can be obtained by projecting the pixels’ gray values of red, green, and 

blue components onto a color space which is expanded with the three vectors (1/3, 1/3, 1/3), 

(1/2, 0, -1/2), and (-1/4, 1/2, -1/4).   In [18], Healey used the similar idea for image 

segmentation and pointed out that the colors of homogeneous dielectric surfaces (like roads or 
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clouds) will move close along the axis directed by Eq.(2), i.e., (1/3, 1/3, 1/3) .  In [15], Rojas 

and Crisman also found that the colors of roads will concentrate around a small cylinder along 

the axis directed by Eq. (2).  In other words, if we project all the road colors to a plane which 

is perpendicular to the axis pointed by 1C , all the road colors will concentrate around a small 

circle [15].  The above principal component analysis (PCA) gives us an inspiration to 

analyze object colors.  We use an example-based learning approach to derive a color model 

of an object class. From a training set of examples collected in different lighting environments, 

the derived color features can cope with small illumination variances. 

 

 

      

(a)                              (b) 

Fig. 3: Parts of vehicle training samples. (a) Vehicle images. (b) Non-vehicle 
training images. 

 

2.3 Eigen Color Model  

2.3.1 Vehicle Color Model 

At the beginning, the vehicle training images are collected from different scenes including 

roads, parking lots, building, and natural scenes.  Fig. 3 shows parts of our training samples.  

(a) is the set of vehicle images and (b) the examples of no-vehicle images.   Based on the 
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training samples, using the KL transform, we found that the eigenvector with the largest 

eigenvalue of this data set is (1/3, 1/3, 1/3) (the same as in Eq. (2)).  In addition, the color 

plane ( , )u v  perpendicular to the axis (1/3, 1/3, 1/3) expanded by other two eigenvectors is: 

               
2 p p p

p
p

Z G B
u

Z

 
  and { , }p p p p

p
p p

B G R B
v Max

Z Z

 
 ,   (4) 

where ( pR , pG , pB ) is the color of a pixel p and ( )/3 p p p pZ R G B   used for 

normalization.  In practice, the noise existing in the training samples will disturb the 

accuracy of the orthogonal basis (described in Eq.(4)) to find correct vehicle colors.  Thus, 

many false alarms in detecting vehicle colors will be found if Eq.(4) is directly used.  

Actually, in color image processing, for the R, G, and B channels, if they are used separately, 

each of them will be more easily affected by noise than their composition, i.e., (R+G+B)/3.  

Therefore, we can replace the components pB  and pR  in Eq.(4) with the gray component 

pZ  to reduce these false alarms.  According to this idea, the following is a new color 

transform created for vehicle color detection: 

               
2 p p p

p
p

Z G B
u

Z

 
  and { , }p p p p

p
p p

Z G Z B
v Max

Z Z

 
 . (5) 

The color transformation described in Eq.(5) will concentrate all vehicle pixels on a smaller 

area than Eq.(4).  There are also other color planes perpendicular to the axis (1/3, 1/3, 1/3).  

For example, if the training images are collected only from road images, another color plane 

(s, t) perpendicular to the axis (1/3, 1/3, 1/3) can be found, i.e.,  

 

 
-

 p p
p

p

R B
s

Z
 and 

- +2 -p p p
p

p

R G B
t

Z
 . (6) 

 



 16

However, the color space ( , )u v  has better discrimination abilities to extract vehicle pixels 

from the background than the color space (s, t).  We can plot all the colors of vehicle pixels 

of training images on the (u, v) and (s, t) planes using Eq.(5) and Eq.(6), respectively.  Fig. 4 

shows the results of color transformation using Eqs.(4)-(6), where (a), (b), and (c) are the 

results using Eq.(4), (5), and Eq.(6), respectively.  The variances of pixel distributions of 

(a)-(c) are listed in Table 1. 

 

 

 

  

(a)                                  (b) 

 

(c) 

Fig. 4: Plots of the results of color transformations of vehicle pixels.  (a) Result of 
color transformation using Eq.(4).  (b) Result of color transformation using Eq.(5).  (c) 
Result of color transformation using Eq.(6). 
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We adopt the Fisher criterion [19] to evaluate the separation abilities of each transform in 

the classification of vehicle pixels.  The criterion uses the ratio of the “between-class” 

variance to the “within-class” variance to measure how well a transform T can separate a 

space into two classes *
1C  and *

2C .  The “between-class” variance is the distance between 

the means of two classes (denoted by 1m  and 2m , respectively).  The “within-class” 

variance is the sum of their variances, i.e. 1s  and 2s .  Then, the Fisher criterion is defined 

by  

2

1 2
2 2
1 2

between-class distance

within-class distance

m m
J

s s


 


. 

The larger the ratio J is, the more separation ability the transform T has.  Table 1 lists the 

values of J when Eqs. (4), (5), and (6) are used.  Clearly, the color space ( , )u v  defined in 

Eq. (5) has better discrimination abilities to separate the vehicle pixels from background  

 

Table 1: Separation ability analysis among different color transformations. 
Clusters centers  Cluster‘s variances Color  

Transform Vehicle  Non-vehicle Vehicle Non-vehicle 

Distance 

Between Centers 
J(T) 

Eq. 4 (-0.05, 0.13) (0.27, 0.58) 0.37 0.73 0.55 0.4516 

Eq. 5 (-0.05, 0.05) (0.27, 0.3) 0.29 0.48 0.41 0.5345 

Eq. 6 (-0.03, 0.22) (0.53 , 0) 0.65 0.99 0.6 0.2567 

 

 

pixels than other spaces defined in Eq. (4) and Eq.(6), respectively.  The ability of these 

methods to detect vehicle pixels will be further compared in the experimental section.   

Given an input image, we first use Eq. (5) to project all color pixels on the (u, v) space.  

Then, the problem of vehicle detection becomes a 2-class separation problem which tries to 

find a best decision boundary from the (u, v) space such that all vehicle pixels can be well 
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separated from the non-vehicle class.  Section 2.4 will presents two kinds of classifiers for 

classifying vehicle pixels in the (u, v) space.  The first is a Bayesian classifier and the other 

one is trained by the radial basis function network. 

 

 

  

(a)                        (b) 

Fig. 5: Green color detection in the HIS color space. (a) Original image including a road 
sign and various green background objects. (b) Result of green color detection in the HIS 
color space. 

 

2.3.2 Road Sign Color Model 

Since a road sign has a specific color, we can design a detector to search this color for finding 

different road sign candidates.  For example, in Fig. 5(a), the road sign has a specific “green” 

color.  Then, we can create a green color detector to detect all green objects.  However, in 

real scenes, many irrelevant green objects like tree, mountain, or grass will also be detected.  

Like Fig. 5(b), after simple green color classification, many non-road-sign objects were also 

detected. Hence, precise color modeling method is necessary for road sign detection. 

  This thesis assumes that all the road signs are made of kinds of metal or plastic material 

with smoother and flatter surfaces.  Due to the smooth and flat surface of a road sign, its 

reflectance property will be very different to (or higher than) other objects (like trees, 

mountains, buildings) in the analyzed road scene.  Then, our idea is to design a novel color 
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transform model for detecting the pixels with higher reflectance from their backgrounds.  

After the transformation, these pixels will form a connected region.  Through a connected 

component analysis, different road sign candidates can be then extracted from videos for 

further verification and recognition.   

In our experiments, there were 280 road sign samples collected for deriving these 

eigenvectors.  After calculations, the three eigenvectors are given as follows: (0.3396, 

0.3392, 0.3212), (0.4896, 0.0923, -0.4181), and (0.2898, 0.4823,0.2279) .  The color 

feature 1C  with the largest eigenvalue is the one used for color-to-gray transform and is 

approximated as follows:  

 1

1 1 1

3 3 3
C R G B   . (7) 

In addition, the color plane ( , )u v  perpendicular to the axis (1/3, 1/3, 1/3) expanded by the 

other two eigenvectors is defined as follows:  

 
2( )R B

u





 and 
2*R B G

v
 




, (8) 

where   is a normalized factor. 

 

Fig. 6: Color projection using Eq.(8). Blue color means the background pixels.  The 
green region is obtained from guide signs.  The red region is obtained from regulatory 
signs. 
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Fig. 7: Result of color projection. (a) Original image.  (b) Result of color projection 
using Eq.(8). 
 
 

Fig. 6 shows the projection result of road sign pixels and non-road sign pixels using Eq.(8).  

Here, the green and red regions denote the projection results of pixels in green road signs and 

red ones, respectively. We also re-project the results of two green regions which are trees and 

green road signs, respectively as shown in Fig. 7.  Although these two regions are “green”, 

they can be easily separated on the (u, v) space if a proper classifier is designed for finding the 

best separation boundary. 

 

2.4 Training Color Detector 

 

In order to effectively locating object from background, we propose a new color model to 

directly model object colors as described in the previous sections.  Then, similar to skin 

color detection, we can use this color model to transform all pixels on a 2-D color space.  On 

this color space, all pixels will concentrate on a much distinctive area.  By modeling the 

characteristics of this area, the learning engines we used are Bayesian classifier and radial 

basis function (RBF) network.  
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2.4.1 Bayesian Classifier 

In statistical pattern recognition, we focus on how to developing decision or classification 

strategies which form classifiers.  The design of classifier attempts to integrate all available 

information such as measurement of a priori probabilities of data.  Then, the classifier 

minimizes the total expected loss and using Bayes’ formula as the optimum measure of 

performance.  The class-conditional density function of probability of a pattern x, when x 

belongs to class iw  , can be given as follow: 

( / ), 1, 2,...,ip x w i M  

All the class-conditional densities are completely know a prior, the decision boundary 

between pattern classes can be established using the optimal Bayes decision rules. By way of 

introduction, consider a vector x with Gaussian distribution, the probability density function 

of x is:  

2
1 1

( ) exp
22 *

x m
P x

 

     
   

 

m and σ are mean and standard deviation respectively. We can get the decision boundary 

function is: 

   11 1
( ) ln ( ) ln , 1,2,...,

2 2

T

i i i i i id x p w C x m C x m i M         

C is covariance matrices. The Bayes classifier assigns a pattern x to class iw  if  

( / ) ( ) ( / ) ( ), 1,2,.... ,i i j jp x w p w p x w p w j M j i    

The detail derivate procedure can be found in [58]. 



 22

As mentioned in Section 2.3, after transformation, we design a Bayesian classifier for 

accurately identifying object pixels from backgrounds with colors.  We assume that the RGB 

color components in the (u, v) domain forms a multivariate Gaussian distribution.  Assume 

that vm  and nm  are the mean colors of the vehicle and non-vehicle pixels calculated from 

our collected training images in the (u, v) color domain, respectively.  In addition, v  and 

n  are their corresponding covariance matrices in the same color domain, respectively.  

Then, given a pixel x, we define its probability belonging to a object pixel as a normal 

distribution: 

               
1

( | ) exp(- ( ))
2

v

v

p x object d x





,    (9) 

where    11
( )

2
t

v v v vd x x m x m    .  Similarly, the probability of x belonging to a 

non-object pixel is defined as follows: 

               
1

( | - ) exp(- ( ))
2

n

n

p x non object d x





,    (10) 

where    11
( )

2
t

n n n nd x x m x m    .  According to the Bayesian classifier, we can assign 

a pixel x to the class “object” if   

           object| - |p x p non object x . (11) 

Eq.(11) can be further rewritten as follows: 

    | ( ) | - ( - )p x object P object p x non object P non object , (12) 

where ( )P object  and (non-objec)P  are the priori class probabilities of object pixels and 

non-object ones, respectively.  Plugging Eqs. (9) and (10) into Eq.(12) and taking its log 

form, we have the following classification rule: 

 Assign a pixel x to class “object” if ( ) - ( )>n vd x d x  ,  (13) 
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where = v

n

( - )
log[ ]

| | ( )

P non object

P object




. 

 

2.4.2 Radial Basis Function Network 

In addition to the Bayesian classifier, we also use the radial basis function (RBF) network to 

classify object pixels.  As shown in Fig. 8, the RBF network we used includes an input layer, 

one hidden layer, and an output layer.  Each hidden neuron is associated with a kernel 

function by the form: 

)
2

||||
exp()( 2

2

j

j
j

mx
x





 , 

where x is an n-dimensional input feature vector, jm  and j  represent the center and the 

width of the jth hidden neuron.  Each output neuron is approximated using a linear 

combination of kernel functions, i.e., 

1

( ) ( )
R

i ij j
j

x w x 


  , for i=1, …, C, 

where ijw  is the connection weight between the jth hidden neuron and ith output layer 

neuron, and C the number of outputs.  When classifying, the output of the radial basis 

function is limited to the interval (0, 1) by a sigmoid function: 

1
( )

1 exp(- ( ))i
i

F x
x




. 

The parameters ijw  of the RBF networks are computed by the gradient descent method such 

that the cost function is minimized: 

2

1 1

1
( ( ) ( ))

N C

i k i k
k i

E y x F x
N  

  , 

where N is the number of inputs and ( )i ky x  denotes the ith output associated with the input 
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sample kx  from the training set.  Then, if a pixel belongs to the object class, it will be 

labeled to 1; otherwise, 0.  When training, all pixels in (R, G, B) domain are transformed to 

(u, v) domain using Eq.(5) or Eq.(8) according to different object classes (i.e. vehicles and 

road signs). 

 

Fig. 8: Structure of the RBF network 

 

Compared with other classification algorithms like Adaboositng [26] or SVM (support 

vector machines)[23], the RBF network is simpler and has limited performances in data 

classification.  However, our focus is to prove the superiorities of our proposed color 

transform to detect vehicle pixels even if only a simple classifier is used.  The comparisons 

between the RBF network and the Bayesian classifier for detecting object pixels will be 

performed in the experimental section. 
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Chapter 3. Object Verification 
 

 

 

 

 

 
In the previous section, the eigen color model and two classifiers were presented for 

extracting object pixels from static images.  Each detected pixel will correspond to a 

possible candidate.  Then, this section will present a verification scheme for verifying each 

candidate more accurately.  In some cases, due to noise, some candidate pixels will be lost 

and cannot be recovered from the color classification process.  The problem can be easily 

handled using a morphological dilation operation [51] for generating more candidate regions.  

In this technique, if a pixel passes the classification stage, we generate not only a hypothesis 

but also its neighborhoods as possible candidates.  Then, even though some pixels are lost, 

their corresponding real pixels still can be found using the extending technique.  

 

3.1 Object Hypothesis  

Given a vehicle pixel X, the verification process will first generate different hypothesizes with 

different sizes for tackle the size variations of vehicle appearances.  Here, a hypothesis 

( )I
sH X  is a sub-image extracted from the input image I with the size s sw h  at the center X.  

The minimum vehicle size used in this thesis is assumed to be 36 36 .  To generate the set 

of hypotheses more efficiently, we can gradually reduce I into a series of smaller images with 

the scale factor 0.9 so that a pyramid structure is constructed.  Each layer in this structure is 

a smoothed image sI  having the size 0.9 0.9s s
I Iw h , where Iw  and Ih  are the width and 

height of I.  In the pyramid structure, a vehicle hypothesis ( )I
sH X  having the size s sw h  
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in I will become a 36 36  sub-pattern in sI .  Thus, in what follows, the hypothesis 

( )I
sH X  is verified all based on the 36 36  sub-pattern in sI .  More details about the 

pyramid structure will be discussed in Section 3.2.5. 

In order to verify the correctness of ( )I
sH X , we build a set of classes 

i
C  of vehicle 

templates for estimating its maximum vehicle response at different orientations.  Here 
i

C  

is a collection of different vehicle templates whose orientations are all at the same angle i .   

All the vehicle templates in 
i

C  have the same size 36 36 .  The maximum vehicle 

response is defined as the maximum similarity between ( )I
sH X  and all vehicle templates.  

In this thesis, two features including vehicle contour and wavelet coefficients are used to 

measure this similarity.  In addition to these two features, we also use the corner feature to 

enhance the accuracy of vehicle detection.  In what follows, details of each feature are 

introduced. 

 

 

   
      (a)                     (b) 

Fig. 9: Result of distance transform.  (a) Original Image.  (b) Distance transform of (a). 
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3.2 Vehicle Features 

3.2.1 Contour Feature 

Contour is a good feature to describe vehicle’s shapes and usually represented by chain 

coding.  However, the technique of chain coding is easily affected by noise.  Therefore, 

different from chain coding, we use a distance transform to convert an object contour to a 

distance map.  Based on this map, different vehicle hypothesis can be well discriminated. 

First, a 33 mask is used to detect all boundary points from a vehicle V.  When this mask 

is used and moved at a non-zero pixel p, if one pixel in this mask is zero, then p is a boundary 

pixel.  Assume that VB  is a set of boundary pixels extracted from V.  Then, the distance 

transform of a pixel p in V is defined as 

    
 

( ) min ( , )
V

V
q B

DT p d p q


 , (14) 

where ( , )d p q  is the Euclidian distance between p and q.  In order to enhance the strength 

of distance changes, Eq.(14) is further modified as follows 

    
 

( ) min ( , ) exp( ( , ))
V

V
q B

DT p d p q d p q


  , (15) 

where 0.1  .  Fig. 9(b) shows the result of the distance transform of Fig. 9(a).  Thus, 

according to Eq.(15), a set ( )CF V  of contour features can be extracted from V.  If we scan 

all pixels of V in a row major order, ( )CF V  can be then represented as a vector, i.e., 

 0( ) [ ( ),...., ( ),....]V VC iF V DT p DT p , (16) 

where all ip  belong to V  and i is the scanning index. 
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3.2.2 Wavelet Coefficients  

Wavelet transform is a very useful tool to represent images at different resolutions.  It has 

been successfully applied in many applications like compression, watermarking, texture 

analysis, communications, and so on.  The wavelet transform uses two kinds of filers to 

decompose a signal into different resolutions, i.e., the low-pass filter ( )h k  and the high-pass 

one ( )g k .  Then, given a discrete signal f(n) (assumed at the fine resolution j=0 and 

represented as 0 ( )S f n ), with the low-pass filter ( )h k , the approximation of f(n) at lower 

resolution j-1 can be calculated as follows:  

                 1 ( ) ( ) ( 2 )j j
k

S f n S f k h k n





  .                   (17) 

In addition, information lost between ( )jS f n  and 1 ( )jS f n  can be obtained using the 

high-pass filter ( )g k  as follows 

      1 ( ) ( ) ( 2 )j j
k

W f n S f k g k n





  .                   (18) 

From the view of signal processing, 1 ( )jS f n  and 1 ( )jW f n  are, respectively, the 

components of low frequency and high frequency of ( )jS f n .  The above procedure, which 

is also known as the sub-band coding, can be repeatedly performed.  Fig. 10(a) shows the 

diagram of 1D wavelet transform.  The 1D wavelet transform can be easily extended to two 

dimensions.  The simplest way to generate 2D wavelet transform is to apply two 1D 

transforms to the rows and columns of a 2D signal f(m, n), respectively.  Fig. 10(b) shows 

the block diagram of 2D wavelet transform.  Given f(m, n), convolving its rows with ( )h k  

and ( )g k , we get two sub-images whose horizontal resolutions are reduced by a factor 2.  

Both sub-images are then filtered columnwise and downsampled to yield four quarter-size 

output subimages.  The filters ( )h k  and ( )g k  we use are the D4 family of Daubeches’s 
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basis [21], i.e., {h(0), h(1), h(2), h(3)}=
1 3 3 3 3 3 1 3

{ , , , }
4 2 4 2 4 2 4 2

   
 and {g(0), g(1), g(2), 

g(3)} = {h(3), -h(2), h(1), -h(0)}. 

  

Sjf(n)

h(k)

g(k)

2

2

Sj-1f(n)

Wj-1f(n)
 

(a) 

 

f(m,n) 
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H

L
2↓

2↓

2↓

h[k]

g[k]

g[k]

2↓g[k]

2↓h[k]

 

(b) 

Fig. 10: Block diagram of discrete wavelet transform.  (a) 1D Wavelet transform.  

(b) 2D Wavelet transform.   

 

 

A three-scale wavelet transform is used to process all vehicle images.  Since all 

templates have the same size, the scale factor of the wavelet transform to all the processed 

vehicle patterns is the same.  Then, each wavelet coefficient is quantized to three levels, i.e., 

1, 0, -1, if its value is larger than 0, equal to 0, and less than 0, respectively.  After that, all 

the quantized coefficients are recorded for further recognition.  When recording, each 

wavelet coefficient is further classified into different bands, i.e., LL, LH, HL, and HH.  

According to this classification, a pixel p is labeled as 1, 2, 2, and 4 if it locates in the LL, LH, 

HL, and HH bands, respectively.  Let ( )l p  denote the labeling value of p.  Then, given a 

vehicle V, from its wavelet coefficients, we can extract a set ( )WF V  of WT features. If we 
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scan V in a row-major order, ( )WF V  is further represented as a vector, i.e., 

 0 0( ) [ ( ) ( ),...., ( ) ( ),....]W W
W V i V iF V l p Coeff p l p Coeff p , (19) 

where all ip  belong to V  and i is the scanning index.  Usually, the HH band contains 

more edge information than other bands.  Therefore, in Eq.(19), a larger label is used to 

weight the HH band.  As to the LH and HL bands, since they contain more edges than the LL 

band, they have larger weights than the LL band (but less than the HH band). 

 

 

3.2.3 Integration of Wavelet Feature and Edge Map 

In Sections 3.2.1 and 3.2.2, two features have been illustrated to describe the visual 

characteristics of a vehicle template.   We are now able to integrate these two features 

together for computing the similairty between a hypothesis ( )I
sH X  and a vehicle template V.  

Given V, based on Eqs. (16) and (19), we can extract its two feature vectors ( )CF V  and 

( )WF V  from its contour and wavelet transform, respectively.  For convience, we combine 

these two features together to form a new feature vector ( )F V , i.e., ( ) [ ( ), ( )]C WF V F V F V .   

For a vehicle class 
i

C , if there are 
i

N  templates in 
i

C , we can calculate its mean 
i

  

and variance 
i

  of ( )F V  from all samples V in 
i

C .  Then, given a vehicle hypothesis H, 

the similary between H and 
i

C  can be measured by this equation: 

 -1( , ) exp(-( - ) ( - ) )
i i i i

t
H HS H C F F      , (20) 

where t means the transpose of a vector and HF  is the feature vector of the vehicle 

hypothesis H.  Therefore, given a position X, its vehicle reponse can be defined as follows 

 
,

( ) max  ( ( ), )
i

i

I
s

s
R X S H X C

 . (21) 
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When calculaing Eq.(21), the parameter i  can be further eliminated if the direction of the 

hypothesis ( )I
sH X  is known in advance.  In [51], a good moment-based method is 

provided for estimating the orientation of the longest axis of a region.  If ( )I
s X  is the 

orientaiton of ( )I
sH X , Eq.(21) can be further rewriten by 

 
( )

( ) max  ( ( ), )I
s

I
s Xs

R X S H X C


 . (22) 

Based on Eq.(22), the vehicle response at the position X can be easily estimated.  

 

  

(a)                        (b) 

Fig. 11: Results of corner deteciton.  (a) and (b): vehicles containning many corners. 

3.2.4 Corner Feature 

Vehicles usually contain many corners even though they have different visual changes like 

orientations, sizes, colors, or types.  Like Fig. 11, vehicles in (a) and (b) contain different 

numbers of corners.  Therefore, corners can form a good feature for vehicle verificaiton.  

The Harris corner detector [20] is used to extract various corners for the task of vehicle 

verification.  Assume that xI  and yI  are the first derivatives of an image I in the x and y 

directions, respectively.  Then, the detector operates on the matrix: 

 
2

2
( , ) ( , )

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
i i

x i i x i i y i i

x y Ne x y x i i y i i y i i

I x y I x y I x y
M x y

I x y I x y I x y

 
  

 
 . (23) 
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where ( , )Ne x y  is a local neighborhood centered around (x, y).  If the two eignevalues of M 

are large, then a small motion in any direction will cause significant changes of intensity at 

the point (x, y).  This indicates that the point is a corner.  Accoding to this obsevation, the 

corner response function CR is given by: 

 2det -  (  )CR M trace M , (24) 

where   is a parameter set to 0.04 (see Harris [20]).  The local maxima of CR (larger than 

a threshold) indicates the corner’s positions. 

 

 

Fig. 12: Image pyramid structure for locating vehicles. At each step, the image is rescaled 
with 0.9 ratio until a pre-defined resolution is achieved. 

 

3.2.5 Verification Procedure 

In real implementation, we borrow a well-known pyramid technique from face detection 

[22]-[23] to speed up the calculation of Eq.(22).  Like Fig. 12, this technique constructs a 

pyramid structure of an image by gradually reducing its size.  Assume that Iw  and Ih  are 
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the width and height of a test image I.  Each layer in this structure is a smoothed image sI  

having the size 0.9 0.9s s
I Iw h  obtained by sub-sampling I.   In this structure, a vehicle 

hypothesis ( )I
sH X  having the size s sw h  (or - -0.9 36 0.9 36s s ) in I will become a 

36 36  sub-pattern in sI .  Then, given a vehicle pixel X in I, if the maximum value of 

( )
( ( ), )I

s

I
s X

S H X C


 is found in the layer sI , its real vehicle size will be s sw h .   

In order to quickly find desired vehicles from the above pyramid structure, we follow the 

idea of Viola and Jones [22] to construct a simple cascade (or hierarchical) classifier.  The 

classifier uses a set of weak classifiers to gradually filter out impossible candidates.  In this 

structure, each weak classifier uses a lower threshold to detect vehicles such that a higher 

detection rate can be maintained but also with a high false alarm rate.  However, the false 

alarm rate will gradually decrease if more features are accordingly used.  With the structure, 

all desired vehicles can be located very efficiently and accurately.  As shown in Fig. 13, the 

color feature is first used for eliminating almost impossible vehicle candidates.  Then, the 

corner feature is used to filter out additional negatives.  Finally, the subsequent classifier 

finds desired vehicles using the features of edge maps and wavelet coefficients. 

In this cascade structure, two thresholds are used to remove spurious negatives and to 

declare whether a vehicle is detected at the position X.  Let C  be the average number of 

corners appearing in all the training vehicle samples.  If X contains a real vehicle, the 

number of corners around X should be larger than 0.5 C .   In addition to C , we use 

another threshold R  to eliminate impossible vehicle candidates according to their vehicle 

responses.  Let R  be the average value of ( )R X  for all the centers X of the training 

vehicle samples.  For a vehicle pixel X, if its response ( )R X  is larger than 0.8 R , it is a 

vehicle candidate.  The parameters R  and -1

i
  (the weight used in Eq.(20)) can also be 
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learned using the AdaBoost algorithm [26] for increasing the accuracy of vehicle verification.  

However, experimental results prove that the above verification scheme performs well enough 

in detecting all desired vehicles.  Finally, there would be many vehicle candidates which are 

overlapped together due to noise or shadows.  If candidates are inside other stronger 

candidates, they will be eliminated. 
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Fig. 13: Cascade structure used for vehicle detection. 

 

 

3.3 Road Sign Features 

3.3.1 Geometrical Properties 

Given an image, after the color classification and a connected component analysis [51], 

different road sign candidates can be then extracted.   This section will use their geometrical 

properties to filter out impossible candidates.  Since a road sign has different shapes 

according to its different functionalities, we divide the road signs into three categories, i.e., 

circle, rectangle, and triangle, respectively.  Then, a coarse-to-fine scheme is proposed to 

gradually remove impossible candidates.  At the coarse stage, three criteria are first used to 

roughly filter out impossible candidates.  The first criterion requires the dimension of road 
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sign being large enough, that is: 

>10Rw  and >10Rh , 

where Rw  and Rh  are the width and length of a road sign R, respectively.  The second 

criterion requires the ratio between Rw  and Rh  satisfying 

  min( , )
1 1

R R

R R

h w

w h 
 > 0.6, 

since the ratio is close to 1.  Let RE  and re RA a  denote the number of edge pixels and the 

area of R, respectively.  The third criterion requires the road sign R having enough edge 

pixels; that is, if 

/ re 0.02R RE A a  , 

R is filtered out. 

 

     

      (a)                  (b)              (c) 

Fig. 14: Result of distance transform.  (a) Original Image.  (b) Edge map.  (c) 
Distance transform of (b). 

 

3.3.2 Modified Distance Transform with Weighting 

At the fine stage, each candidate is verified using its shape. Assume that RB  is a set of 

boundary pixels extracted from R. Then, the distance transform of a pixel p in R is defined as 

    
 

( ) min ( , )
R

R q B
DT p d p q


 , (25) 

where ( , )d p q  is the Euclidian distance between p and q.  In order to enhance the strength 
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of distance changes, Eq.(25) is further modified as follows 

    
 

( ) min ( , ) exp( ( , ))
R

R
q B

DT p d p q d p q


  , (26) 

where 0.1  .  Fig. 14 shows the result of the distance transform.  (a) is an image R of 

road sign and (b) is its edge map.  Fig. 14(c) shows the result of its distance transform.  

Thus, according to Eq.(26), a set RF  of contour features can be extracted from R.  If we 

scan all pixels of R in a row major order, RF  can be then represented as a vector, i.e., 

 0[ ( ),...., ( ),....]R RR iF DT p DT p , (27) 

where all ip  belong to R and i is the scanning index.  In addition to the outer contour, a 

road sign usually contains many text patterns.  To verify a road sign candidate more 

accurately, its outer shape plays a more important role than its inner text patterns in road sign 

classification.   Thus, a new weight iw  which increases according to the distance between  

 

   

              (a)                     (b)                    (c) 

Fig. 15: Weighting result of an image. (a) Original Image.  (b) Weighting function. (c) 
Result of (a) after weighting.  

 

the pixel ip  and the original O is included.  Assume that O is the central of R and ir  is the 

distance between ip  and O, and the circumcircle of R has the radius z.   Then, the weight  

iw  is defined by: 
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2exp(- | - | ), if  z;  

0,                     otherwise.
i i

i

r z r
w

 
 


  (28) 

With the help of iw , Eq.(27) can be rewritten as follows: 

 0 0[ ( ),...., ( ),....]R RR i iF w DT p w DT p .  (29) 

Fig. 15 shows the result of distance transform with a weighting function.  (a) is the original 

image R and the yellow circle shows the circumcircle of R.  (b) is the weighting function 

defined in Eq.(28) and (c) is the result after weighting.  There are only three types of road 

signs, i.e., circle, triangle, and rectangle needed for further verification.  For each type iR , a 

set of training samples is collected for capturing its shape characteristics.  If there are iN  

templates in iR , we can calculate its mean i  and variance i  of RF  from all the samples 

in iR .  Then, given a road sign candidate H, the similarity between H and iR  can be 

measured by this equation: 

         ),)()(exp(),(
__

1
__

t
iHiiHi uFuFRHS    (30) 

where t means the transpose of a vector and HF  is the feature vector of the candidate H.  

Based on Eq.(30), we can well categorize H into different types with the equation: 

          ),(minarg)( i
R

RHSHtype
i

 . (31) 
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(a)                    (b) 

Fig. 16: Rectification of a circle road sign.  (a) Input road sign.  (b) Rectification 
result of (a).  
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3.4 Road Sign Rectification 

After verification, in order to handle skewed road signs, a rectification procedure should be 

further applied to it for recognizing all its embedded texts more accurately. 

3.4.1 Circular Road Sign 

Assume that R is the detected road sign.  First of all, the Canny edge operator [49] is utilized 

for getting all its edge pixels.  Then, the chain coding technique with 8 neighbors is adopted 

for extracting its outer boundary.  According to the boundary feature, the shape type of R can 

be recognized using Eq.(31). 

If R is recognized as a circular type, four control points are selected for rectification.  Like 

Fig. 16(a), p, q, r, and s are the most top, right, bottom, and left points of R, respectively.  

Considering them as control points, we can get the longest axis of R.  Assume that its length 

is 2a.  Then, a projective transformation M can be found for rectifying R into a normal shape 

R’ (see Fig. 16(b)).  The relationship between R and R’ can be defined as follows 

 

 0 1 2

6 7

'
1

m x m y m
x

m x m y

 


 
 and 3 4 5

6 7

'
1

m x m y m
y

m x m y

 


 
, (32) 

 

where (x, y) is the coordinate of a pixel in R, ( ', ')x y  the coordinate of its corresponding 

point in R’, and 0 1 7( , ,..., )m m m  the parameters of the projective model M.  Let p’, q’, r’, 

and s’ be the four corresponding points of p, q, r, and s in R’, respectively, and have the 

following coordinates:  

' (0,- )p a , ' ( ,0)q a , ' (0, )r a , and ' (- ,0)s a . 

Given the above four pairs of correspondence, M can be solved by a linear method [50].  
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Once M is obtained, all the points in R can be transformed into R’ using Eq.(32).   

 

0v
1v1nv 

2nv 

( 1)niv 

( 1)niv 
( )niv

id
 

Fig. 17: Technique for iteratively pruning a point iv  whose id  is the minimum. 

 

 

3.4.2 Rectangular and Triangular Road Signs 
 

If R is recognized as a rectangular or triangular road sign, another method will be used for the 

rectification task.  First of all, we use a corner detection method [20] to detect all high 

curvature points along the boundary of R.  Let RC  be the set of high curvature points in R.  

If there are n points in RC , we will use a curve pruning technique to reduce the number of 

points in RC  to m points.  If R is a rectangle, m will be four.  If R is a triangle, m will be 

three. The pruning technique is described as follows.  Assume that 0 1 -1{ , ,..., }R nC v v v  and 

ivL  represents the straight line formed by the neighbor vertices 
n(i-1)v  and 

n(i+1)v  of iv .  

Here, ( )ni  means i mod n.  If 
ivL has the form i iy m x c  , the distance id  between iv  

Iterative Minimum Distance Pruning Algorithm:  
Step 1: Find a vertex iv  from RC  such that min

k R
i kv C

d d


 ; 

Step 2: Eliminate iv  from RC ;  

Step 3: If RC  includes more than m points, go to Step 1. 
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and 
ivL  can be then calculated by: 

| - - |

1
i iv i v i

i

i

y m x c
d

m



, 

where the coordinates of iv  are ( , )
i iv vx y .  Fig. 17 shows details of the simplification 

technique.  This technique is to iteratively prune a point iv  whose distance id  is the 

minimum and summarized as follows.   

  

' (0,0)p  ' ( ,0)q w

' (0, )s h ' ( , )r w h
     

' (0,0)p 

' (0, )s h

3 3
' ( , )

2 2

h h
r 

3 3
' (- , )

2 2

h h
q 

 

                     (a)                                (b) 

Fig. 18: Rectification of road signs.  (a) Rectangle road sign.  (b) Triangle road sign. 

 

After pruning, R will have its corresponding number of control points.  Like Fig. 18(a), if 

a rectangle is detected, four control points are selected and denoted as p, q, r, and s, 

respectively.   Let Rw  be the distance between p and q, Rh  the distance between q and r.  

Then, the rectified rectangle R’ has four points p’, q’, r’, and s’ with the following 

coordinates: 

' (0,0)p  , ' ( ,0)q w , ' ( , )r w h , and ' (0, )s h . 

Based on the four matching pairs: (p, p’), …, and (s, s’), like Eq.(32), we can build an affine 

model M to transform R into R’.  Similarly, M can be solved by a linear method [50]. 

If R is a triangle, only three control points are selected.  Like Fig. 18(b), the three control 

points are denoted as p, q, and r, respectively.   In addition to them, another new control 
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point s is generated and selected as the gravity point of R.  Let h  be the distance between p 

and s.  Then, the rectified rectangle R’ has four points p’, q’, r’, and s’ with the following 

coordinates: 

' (0,0)p  , 
3 3

' (- , )
2 2

h h
q  , 

3 3
' ( , )

2 2

h h
r  , and ' (0, )s h . 

Based on the four matching pairs: (p, p’), …, and (s, s’), like Eq.(32), we can find another 

affine model M for transforming R into R’.  Once M is found, even though a skewed road 

sign is handled, it still can be rectified into a regular shape. 

 

3.5 Binarization 

Once a road sign R is extracted, to recognize the texts in R, we use a moment-based 

thresholding approach [51] to binarize R.  Let gs  denote the global variance of R.  In 

addition, 
f

s  and 
b

s  are the variances of foreground and background objects parts.  The 

optimal threshold t for binarizing an image can be found by minimizing the within-group 

variance as follows:  

 2 2* argmin( ( ) ( ))t t
f f b b

t
t q t q ts s= + , (33) 

where 
0

( )
t

t

b
i

q P i
=

= å , 
1

( ) 1
G

t t

f b
i t

q P i q
= +

= = -å , G the maximum gray value of R, and ( )P i  the 

occurrence probability of intensity i  in R.  The global variance 2
gs  is defined as: 

2 2

0

( ) | | ( )
G

g g
i

t i P is m
=

= -å ,                    (34) 

where 
0

( )
G

g
i

iP im
=

= å .  Let 2 2 2( ) ( ) ( )
w f f b b
t q t q ts s s= + . From Eq.(34), after some 

calculations, we have 
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 2 2 2( ) ( ) ( ) ( )[ ]t t

g w f b f b
t t q t q t u us s= + - , 

where t

f
u  and t

b
u  are the mean values of foreground and background objects in R when the 

threshold t is used.  Let 2 2( ) [ ]t t t t
b f b f

t q qs m m= - .  Then, we have 

 2 2 2( ) ( ) ( )
g w
t t ts s s= + . (35) 

Since 2
gs  is constant, the problem to find a threshold t that minimizes ws  becomes finding 

a threshold t for maximizing 2s .  To more efficiently calculate 2( )ts , its three terms can be 

updated using the following three recursive forms:    

1 ( 1)t t
b bq q P t    , 1

1

( 1) ( 1)t t
t b b
b t

b

q u t P t
u

q




  
 , and 

1 1
1

11

t t
g b bt

f t
b

u q u
u

q

 








. 

Since the number of possible values of t is small, the optimal t can be easily found by trying 

all the possible values of t which maximizes 
2s .  Once t is obtained, the texts in R can be 

easily extracted. 
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Chapter 4. Experimental Results 
 

 

 

 

 

4.1 Vehicle Detection Performance 

In order to analyze the performance of our proposed method, various static images captured 

under different weather conditions and lighting conditions were used.  For the training 

vehicles, they were collected from different sources including roads, parking lots, cluttered 

backgrounds, and so on.  The dimension of training vehicles is clipped to 3636.  To tackle 

the variations of vehicle orientation, eight classes of vehicles with different orientations were 

collected.  We quantize the vehicle classes according to the angle between the line from 

camera center and the vehicle center. (i.e., camera tilt angles o0 , o15 and vehicle orientations 

o0 , o30  o90 and o120 respectively. ) In addition, for measuring the accuracy of our proposed 

method to detect vehicles directly from still images, a database including 354 images acquired 

under different lighting and weather conditions was used.   

 

4.1.1 Results of Vehicle Pixels Classification 
 

To evaluate and measure the performances of our proposed method to detect vehicle colors, 

the precision and false-alarm rates are defined.  Precision is the ratio of the number of 

correctly detected vehicle pixels to the number of exactly existing vehicle pixels.  False 

alarm rate is the ratio of the number of background pixels but misclassified as vehicles to the 

number of all background pixels.  These two measures are defined as: 

Precision = Cvehicle  / Nvehicle  and  Rate of False-Alarm = Fvehicle / Nback-pixels, 
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where Nvehicle is the total number of vehicle pixels, Cvehicle the number of correctly detected 

vehicle pixels,  Nback-pixels  the number of all background pixels, and Fvehicle the number of 

background pixels but misclassified as vehicle ones.  When calculating these two measures, 

the ground truth of vehicle pixels was manually obtained.  In what follows, several 

experiments under different conditions were demonstrated for analyzing the robustness and 

effectiveness of our proposed method.    

The first experiment was conducted to compare the results of vehicle color classification 

when different color transforms are used.   Fig. 19 shows the comparison results of vehicle 

color classification when Eq.(4), Eq.(5) and Eq.(6) are used, respectively.  (a), (b), and (c) 

are the results using Eq.(4), Eq.(5), and Eq.(6), respectively.  The precision rates of Eq.(4), 

Eq.(5), and Eq.(6) are 85.3%, 87.2%, and 86.3%, respectively.  In addition, their 

corresponding false-alarm rates of vehicle pixel detection are 4.1%, 2.4%, and 8.9%, 

respectively.  The lower false-alarm rate implied that most of background pixels were 

filtered out and did not need to be further verified.  Thus, many redundant searches can be 

avoided in advance and the verification process can be significantly speeded up to find 

desired vehicles.  Although Eq.(6) has a better precision rate than Eq.(4), its false-alarm rate 

is too higher than Eq.(4).  Eq.(5) performs the best among the three methods.  Fig. 20 

shows another comparison among them, where the results of Eq.(4), Eq.(5), and Eq.(6) are 

shown in (a), (b), and (c), respectively.  Their precision rates are 75.3%, 81.6%, and 78.9%, 

respectively.  In addition, their corresponding false-alarm rates of vehicle pixel detection are 

3.6%, 2.1%, and 4.5%, respectively.  Eq.(5) still performs the best among these methods in 

the classification of vehicle pixels.   
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(a)                       (b)                       (c) 

Fig. 19: Results of vehicle color classification when different color transforms are used.  
(a) Result of color classification using Eq.(4).  (b) Result of color classification using 
Eq.(5).  (c) Result of color classification using Eq. (6).  

   

   

(a)                       (b)                       (c) 

Fig. 20: Results of vehicle color classification when different color transforms are used.  
(a) Result of vehicle color detection using Eq.(4).  (b) Result of vehicle color detection 
using Eq.(5).  (c) Result of vehicle color detection using Eq. (6). 

 

   

(a)                  (b)                    (c) 

Fig. 21: Results of vehicle color detection. (a) Original image. (b) Result of vehicle color 
detection using the Bayesian classifier.  (c) Result of vehicle color detection using the 
RBF network. 
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(a)                       (b)                       (c) 

Fig. 22: Results of vehicle color detection.  (a) Original image. (b) Result of vehicle 
color detection using the Bayesian classifier.  (c) Result of vehicle color detection using 
the RBF network. 

 

The second experiment was conducted to compare the performances of vehicle color 

detection using the Bayesian classifier and the RBF network, respectively.  Fig. 21 shows 

the results of vehicle color detection using Eqs.(13) and the RBF network, respectively.  (b) 

is the detection result of (a) using the Bayesian classifier and (c) the one using the RBF 

network.  In (b), the precision rate and false-alarm rate of vehicle pixel detection are 87.7% 

and 2.8%, respectively.  In (c), its corresponding precision rate and false-alarm rate are 

86.1% and 5.9%, respectively.  Clearly, the false-alarm rate of the RBF network is higher 

than the Bayesian classifier.  Therefore, the Bayesian classifier performs better than the RBF 

network.  Fig. 22 shows another set of performance comparisons between the two classifiers.  

(b) and (c) are the results of vehicle color detection using the Bayesian classifier and the RBF 

network, respectively.  Their precision rates are 84.1% and 84.4%, respectively.  In 

addition, their false-alarm rates are 3.1% and 5.2%, respectively.  The Bayesian classifier 

still had a lower false-alarm rate and performed better than the RBF network. 
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(a)                       (b)                       (c) 

Fig. 23: Results of vehicle color detection under a cloudy day.  (a) Original image. (b) 
Result of vehicle color detection using the Bayesian classifier.  (c) Result of vehicle 
color detection using the RBF network. 

 

  

(a)                                 (b) 

    

(c) (d) 

Fig. 24: More examples of vehicle color detection.  (a),(c) Original image.  (b),(d) 
Detection result of vehicle color.   
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In addition to sunny images, a cloudy image was also used for making a fair comparison 

between their performances under different weather conditions.  Fig. 23 shows the detection 

results of vehicle color obtained from a cloudy image.  The precision rates of (b) and (c) are 

83.1% and 83.5%, respectively.  As to the false-alarm rates of (b) and (c), they are 1.6% and 

5.7%, respectively.  The Bayesian classifier still performed better than the RBF network 

since the former had a lower false-alarm rate than the latter one.  Although other 

complicated neural networks like SVM (Support Vector Machines) can be used for reducing 

the false-alarm rate, the Bayesian classifier performs well enough to detect vehicle pixels. 

 

 

     

(a)                      (b)                         (c) 

Fig. 25: Results of vehicle detection when the verification process is used.  (a) Result of 
color classification.  (b) Result of vehicle detection without verification.  (c) Result of 
vehicle detection after verification.  

  

  

Fig. 26: Result of vehicle detection in a parking lot.  Although these vehicles had 
different colors, all of them were correctly detected. 
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For more accurately analyzing the performances of our proposed vehicle color detector, two 

more experiments were performed.  Fig. 24 demonstrates more results of vehicle color 

detection when the Bayesian classifier was used.  In Fig. 24(b), the precision rate and 

false-alarm rate were 86.1% and 6.3%, respectively.  Although the false-alarm rate is high, 

none of vehicle candidates was missed.  Fig. 24(d) shows another result of vehicle color 

detection.  The precision rate and false-alarm rate of vehicle pixel detection are 89.9% and 

2.1%, respectively.  All of possible vehicle candidates were correctly extracted even though 

vehicles were parked behind the trees.  

 

4.1.2 Vehicle Detection Results 
 

Another set of experiments was performed to examine the abilities of our vehicle detection 

method to detect vehicles directly from static images.  Actually, after color classifying, all 

the detected vehicle pixels will form different regions.  In Fig. 25, (a) is the result of color 

classification.  If a region has enough pixels, we can consider it as a vehicle candidate.  

Then, we had the detection result shown in (b).  However, there were many false alarms in 

(b).   After using our proposed verification method, a more accurate result was obtained in 

(c).  Clearly, the proposed verification scheme makes quite improvements in the accuracy of 

vehicle detection.  Fig. 26 shows another result of vehicle detection obtained from a parking 

lot.  Although these vehicles had different colors, all of them were still correctly detected 

and located.  Although some vehicles occluded by a tree, they still were correctly detected.  

Fig. 27 shows three cases of vehicle detection when vehicles in roads have other orientations.  

Even though vehicles have various orientations, they still were well detected. 
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(a)                              (b) 

  

(c) 

Fig. 27: Results of vehicle detection from roads.  Although these vehicles had 
different orientations and colors, all of them were correctly detected. 

 

   

(a)                                  (b) 

Fig. 28: Results of detecting vehicles from highways.  Although these vehicles 
were with different colors, all of them were correctly detected. 
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(a)                                   (b) 

 

(c) 

Fig. 29: Results of vehicle detection under a rainy day. 

  

Fig. 30: Results of vehicle detection when occlusions happened. 

 

In addition to parking lots and roads, the proposed method also works well to detect vehicles 

from highways.  Fig. 28 shows two results of vehicle detection when highway images were 

used.  Fig. 29 shows another case of vehicle detection when images were captured under a 

rainy day.  According to the results in Fig. 28 and Fig. 29, even though vehicles were 
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captured under different lighting or weather conditions, the proposed method still performed 

very well to detect all kinds of vehicles.  Table 2 lists the quantitative performance analysis 

of our proposed method to detect vehicles under different weather conditions and scenes.  

Since the sunny day has better lighting conditions, our proposed method works better in such 

a day than other weather conditions.  The average precision rate of vehicle detection using 

the proposed algorithm is 94.9%.  In addition, the average false-alarm rate and missing rate 

are 8.23% and 5%, respectively. The above three measures are defined as: 

Precision = Cno.vehicle  / Nno.vehicle  , 

False-Alarm = Fno.vehicle / (Cno.vehicle + Fno.vehicle )  , 

Missing = 1- Precision.  

where Nno.vehicle is the total number of vehicles, Cno.vehicle the number of correctly detected 

vehicles,  and Fno.vehicle the number of background objects but misclassified as vehicles. 

 

Table 2: Evaluation on vehicle detection when different weather conditions and scenes 
were handled. 

Weather and Scene No. of 

Vehicles 

Correct 

detection 

False 

detection

No. of 

miss 

Precision 

Rate 

False Alarm 

Rate: 

Missing 

Rate 

High way 1 175 170 6 5 97.14% 3.42% 2.85% 

High way 2 153 147 7 6 96.07% 4.57% 3.92% 

Road 1 126 121 10 5 96.03% 7.93% 3.96% 

Sunny 

Road 2  77 75 9 2 97.4% 11.68% 2.59% 

Road 3 146 136 22 10 93.15% 15.06% 6.84% 

Parking lot 1 92 88 8 4 95.65% 8.69% 4.34% 

Parking lot 2 106 98 13 8 92.45% 12.26% 7.54% 

Cloudy 

High Way 3 117 107 16 10 91.45% 13.67% 9.4% 

Parking lot 3 109 104 7 5 95.41% 6.42% 4.58% Rainy 

Road 4 96 90 4 6 93.75% 4.16% 6.25% 

Average 1197 1136 102 61 94.90% 8.23% 5% 
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For making fair comparisons, three methods proposed by Agarwal and Roth[27], Zhu et 

al. [28], and Schneiderman and Kanade [29] were implemented, respectively.  For other 

methods using motion information [4], [30] or range data [13], [14], [31] to detect vehicles, 

we did not compare them in this thesis.  Table 3 lists the accuracy comparisons of vehicle 

detection among these three methods [27], [28], and [29].  In [27], Agarwal and Roth 

proposed a part-based representation scheme to represent vehicles using a vocabulary of 400 

vehicle parts. Since the combination of vehicle parts is huge, their detector will generate many 

false alarms when a complicated background (including many edges and corners) is handled.  

In [28], Zhu et al. used SVM to classify vehicles based on the features of Gabor moments, 

edge area templates (EAT), and corner area templates (CAT).  These two methods [27], [28] 

failed to detect vehicles with various orientations.  As to the Schneiderman and Kanade’s 

detector [29], they used lots of labeled training images to build the appearance models of the 

detected objects based on the wavelet feature.  Eight detectors were designed for detecting 

vehicles having different orientation changes.  Compare with these three methods, our 

proposed color classification scheme can eliminate over 80% non-vehicle pixels so that our 

approach has the best efficiency in vehicle detection.  In addition, since our color 

classification scheme can pre-filter out many false alarms, our proposed method has higher 

tolerance to complicated backgrounds.  It also makes our approach have the highest 

detection accuracy.  All the quantitative analyses of these methods in vehicle detection are 

tabulated in Table 3.  Table 4 lists all the detailed functional comparisons.  The two 

methods proposed in [27]-[28] have limited abilities to handle vehicles having different 

orientations.  In [29], since they used eight detectors to find all vehicles having different 

orientations, their time complexity is the highest.  The speed of each method was measured 

on a Pentium CPU 2.4G with 512M memory.  Since our scheme can filter out most of false 

candidates using the color feature, it has the best efficiency than other approaches.  All the 
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above results have proved that the proposed method is a robust, accurate, and powerful tool 

for vehicle detection. 

 

Table 3: Performance comparisons among different methods. 

Detection Accuracy View, Scale, and 

Orientation  

Method  

 Side view 

 Fixed scale  

 Fixed orientation 

 Front and rear view 

 Multi-scale  

 Fix orientation 

 Multi- views 

 Multi- scales  

 Multi- orientations 

Our method  95.7% 95.1% 94.9% 

Agarwal and Roth [27] 77.9% X X 

Zhu et al. [28] 81.3% X X 

Schneiderman and 

Kanade [29] 

92.5% 92.1% 91.3% 

 

 

Table 4: Functional comparisons among different methods. 

Functionality 

Methods 

Multiple views, 

and orientation 

Efficiency and 

Speed 
Features 

Number of 

hypotheses. 

Our method YES High, 0.15 ~ 0.5sec 
Color, Corners, 

WT, and Edges. 

Pixels that pass the 

color classification 

Agarwal and Roth [27] NO Low, 10 sec 
Forstner interest 

operator 

All the pixels and 

sub-windows. 

Zhu et al. [28] NO Low, 5 sec. Gabor moments. 
Based on EAT and 

CAT templates 

Schneiderman and 

Kanade [29] 
YES Low, 5 min  WT 

Search the whole 

image exhaustively. 
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 Table 5: Frame rate analyses of our system among different video dimensions and functions.   

   Functions 

Dimension 

Road Sign Detection Road Sign Detection 

+ Text Detection 

Road Sign Detection  

+Text Detection + Rectification 

320240 20 fps 16 fps 8 fps 

640480 5 fps 4 fps 2 fps 

 

4.2 Road Sign Detection Performance 

To examine the performances of our proposed method, several video sequences collected 

from different highways and roads were used.  The sequences were captured under different 

lighting and weather conditions (like sunny, cloudy, and rainy).  The camera was mounted in 

the front of the car and its optical axis is not required being perpendicular to the road sign.  

A database including more than four thousand images was collected and constructed for 

examining the robustness of the proposed system.  Our system was implemented and tested 

on a general PC with the Intel Pentium CPU 2.0G.  The language for implementing our 

system is Microsoft visual C++6.0.  Table 5 shows the frame rate analyses of our system 

when different video dimensions are handled and functions are added.  When a 320240 

video frame is handled, the detection rate is 20 fps.  When more functions are added or 

higher frame dimension are handled, the frame rate becomes worse.    

The precision and false-alarm rates are defined for evaluating and measuring the 

performances of our proposed method to detect road signs.  Precision is the ratio of the 

number of correctly detected road sign pixels to the number of exactly existing road sign 

pixels.  False alarm rate is the ratio of the number of background pixels but misclassified as 

road sign to the number of all background pixels.  These two measures are defined as: 
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Precision = Csign  / Nsign  and  Rate of False-Alarm = Fsign / Nback-pixels, 

where Nsign is the total number of road sign pixels, Csign the number of correctly detected road 

sign pixels,  Nback-pixels  the number of all background pixels, and Fsign the number of 

background pixels but misclassified as road sign ones.  When calculating these two measures, 

the ground truth of road sign pixels was manually obtained.  

  

4.2.1 Road Sign Color Segmentation 

To theoretically analyze which color coordinate system provides the best traffic sign color 

segmentation result, we use the “Fisher criterion” [19] to evaluate their separation abilities.  

The criterion uses the ratio of the “between-class” variance to the “within-class” variance to 

measure how well a transform T can separate a space into two classes 1C  and 2C .  The 

“between-class” variance is the distance between their means (denoted by 1m  and 2m , 

respectively).  The “within-class” variance is the sum of their variances, i.e. 1s  and 2s .  

Then, the Fisher criterion is defined by  

2

1 2
2 2
1 2

between-class distance
( )

within-class distance

m m
J T

s s


 


. 

For a color domain, the larger value of J is, the better separation ability it has.  Table 6 lists 

the values of J when different color spaces including RGB, YIQ, HSV, L*a*b, Luv, and our 

method were compared.  Clearly, our method has the best J among all the color domains. 

Table 6: Separation ability analysis among different color spaces. 

Separation Ability RGB YIQ HSV L*a*b Luv Proposed method 

Red 0.81 1.41 0.01 4.11 4.12 4.62 
J(T) 

Green 0.49 0.70 0.20 2.13 1.75 3.52 
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Fig. 31: ROC curve analysis among different methods. 

 

In addition to color space, we also compared our method to other approached including the 

color thresholding technique [33] and the YIQ color module [36].  In our method, an RBF 

neural network was used for altering the effect of our proposed color transformation.  For 

fair comparisons, the RBF neural network was also used to train a classifier on the RGB space 

for road sign detection.  As to our detector, two different schemes were adopted for detecting 

road signs having different colors.  For the first one, each road sign color has its 

corresponding detector which was trained at different time.  Then, an “OR” operation was 

used to combine the detection results together.  Since it needs multiple passes to locate a 

road sign, we name it a multiple-pass color detector in this thesis.  For the second one, only 

one detector is trained for all types of road sign even though their colors are different.  Since 

only one scanning pass is needed for road sign detection, it is named as one-pass detector in 

this thesis.  Fig. 31 shows the performance analyses among different methods using ROC 

curves [56], [57] .  Clearly, the one-pass detector performs the best among the above 

methods. 
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(a)                    (b)                      (c)    

   

(d)                    (e)                    (f) 

Fig. 32: Result of color classification.  (a) Original image.  (b) Classification 
result of the thresholding technique. (c) Result of the YIQ technique. (d) Result of 
the RBF classification on the RGB color space.  (e) Result of the one-pass detector. 
(f) Result of the multiple-pass detector. 

 

Fig. 32 shows the results of road sign color detection among these techniques.  (a) is the 

original image.  (b) and (c) are the results using the thresholding and YIQ techniques, 

respectively.  The precision and false alarm rates of (b) and (c) are 95.1%, 94.8% and 19.7%, 

18.4%, respectively.  It is noticed that the mountain has a similar color to the road sign and 

thus there were many false road sign region detected in both (b) and (c).  (d) is the result of 

the RBF classification on the RGB color space.  Higher false alarm rate was obtained from 

(d).  (e) is the result of the one-pass detector.  The precision and false alarm rates of (e) are 

93.2% and 2.62%, respectively.  (f) is the detection result using the multiple-pass detector.  

The precision and false alarm rates of (f) are 94.4% and 2.97%, respectively.  The precisions 

of both our schemes are similar to the threshold technique and the YIQ method.  However, 

the false alarm rates of our schemes are much lower than the above three methods.  Usually,  
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              (a)                    (b)                       (c) 

   

               (d)                   (e)                     (f) 

Fig. 33: Comparisons of color classification among different methods.  (a) Original 
image.  (b) Classification result using the thresholding technique. (c) Result of the 
YIQ technique. (d) Result of the RBF classification on the RGB color space. (e) 
Result of the one-pass detector. (f) Result of the multiple-pass detector. 

 

 

a lower false alarm rate means less computation time for candidate verification.  About the 

multi-pass detector, since we did not know which color a road sign had, two color detectors 

were implemented for detecting green and red road signs, respectively.  Then, the two results 

were combined together using an “OR” operation.  There is no significant performance 

difference between (e) and (f).  However, the one-pass detector needs less scanning pass to 

detect desired road signs.  Thus, it is more efficient than the multiple-pass detector.   

Compared with other methods, our proposed methods still had better performances.  

Fig. 33 shows the case when multiple road signs appeared together in the same frame.  (b) 

and (c) are the results of the thresholding and YIQ schemes, respectively. (d) is the result of 

the RBF classification on the RGB space for detecting road sign pixels. (e) and (f) are the 

results using our one-pass and multiple-pass schemes, respectively. Clearly, our proposed two 
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schemes have lower false alarm rates and better accuracies than other schemes.  Although 

the one-pass detector had less accuracy than the multiple-pass one, its false alarm rate is much 

lower than the multiple-pass one.  Since the one-pass detector has better efficiency than the 

multiple-pass one, we adopt the one-pass detector for road sign color classification in all the 

following experiments. 

4.2.2 Road Sign Detection, Rectification and Text Extraction 

After detecting road sign pixels, the verification process is then applied for verifying each 

road sign candidate.  Fig. 34 shows a series of detection results when circular road signs 

were handled.  All these circular road signs were correctly detected.  Fig. 35 shows the 

detection results when two triangular roads were handled.  Fig. 36 shows the cases when 

multiple rectangular road signs appeared together in the analyzed scene.  In (b) and (c), even 

though the road signs had similar colors to the sky, our method still worked very well to find 

them.  According to the above results, clearly no matter what type a road sign is, our 

proposed method works very well to detect it. 

 

   

             (a)                        (b)                     (c) 

Fig. 34: Detection results of circular road signs. 
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(a)                                 (b) 

Fig. 35: Detection results of two triangular road signs. 

   

            (a)                      (b)                    (c) 

Fig. 36: Detection results when multiple rectangular road signs appeared in the same scene. 

  

Fig. 37: Results of road sign detection when low contrast video frames were handled. 

 

Fig. 37 is another case when a low-contrast frame was handled.  Even though the frame 

contrast was low, each road sign was still successfully detected using our proposed method.  

Fig. 38 shows the detection results when rainy days were handled. (a) and (c) are the detect 

results of road signs.  (b) and (d) are the results of color classification using our proposed 
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method.  Our method is robust to detect road signs when different weather conditions are 

handled.  Fig. 39 shows the case when a skewed road sign was handled. (a), (b), and (c) are 

the detection results using our proposed scheme.  (d), (e), and (f) are the rectification results 

of (a), (b), and (c), respectively.  Clearly, no matter how skewed the road signs are and what 

color they have, the proposed rectification scheme can handle all of them correctly. 

 

    

(a)                     (b) 

   

(c)                     (d) 

Fig. 38: Results of road sign detection when rainy days were handled. (a) and (c): results of 

color classification using our proposed method. (b) and (d): results of road sign detection. 
 
 
 

The next set of experiments was used to demonstrate the performances of our method to 

detect road signs under different weather conditions in a sequential video.  Fig. 40 shows a 

series of detection results when consecutive video frames under a cloudy day were handled.  

In (a) and (b), a smaller and darker road sign was detected.  Then, its size gradually became  
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larger. (c) shows the detection result of a larger road sign.  Experiment results shows that the 

proposed method is reliable and suitable for real time issue. All its variations were still 

successfully detected. 

 
 
 

   

(a)               (b)                   (c) 

                  

  (d)              (e)                 (f) 

Fig. 39: Detection result when a skewed road sign was handled.  (a), (b), and (c): results of 

road sign detection.  (d), (e), and (f): Results of rectification. 
 
 

After road sign detection, the embedded texts on a road sign can be then extracted though a 

bi-leveling technique (see Section 3.5) and a connected component analysis.  Fig. 41 shows 

the results of text line extraction from road signs under different lighting conditions.  (a) is 

the result of a normal road sign. (b) and (c) are the text extraction results obtained from 

blurred images.  (d) is the text result extracted from a dark road sign.  Each desired text line 

was correctly detected using our proposed method.   
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     (a)                                  (b) 

  

                     (c)                                   (d) 

Fig. 40: Road sign detection in a video sequence under a cloudy day. 

 

The database we used included 502 roads signs which come from 20 individual videos. 

The number of correctly detected road signs is 480.  In addition, the number of 

falsely-detected road signs is 27 and the number of missed road signs is 22.  After 

calculation, the accuracy of our proposed method is 95.6%.  The false alarm rate and missed 

rate are 5.32% and 4.38%, respectively.   All the above results have proved that the 

proposed method is a robust, accurate, and powerful tool in road sign detection. 
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    (a)              (b) 

  

                 (c)                                (d) 

Fig. 41: Results of text line detection. (a) Normal road signs.  (b) and (c): Blurred road signs.  

(d) Dark road signs.  
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Chapter 5. Conclusions and Future Works 
 

5.1 Conclusions 

This thesis has presented a novel color-based object detection method for detecting objects 

directly from static images. First of all, an eigen color transform is proposed for making 

object colors more sufficiently concentrated on a compact area.  Then, different object pixels 

will form different clusters if they are projected on this eigen color space.  Two classifiers 

were trained in this thesis for detecting vehicles and road signs, respectively.  With these 

classifiers, lots of redundant no-object pixels can be filtered out in advance and only few 

candidates should be further verified.  At the verification stage, three visual features 

including edge maps, coefficients of wavelet transform, and corners were integrated to form a 

multi-channel classifier.  Then, each desired object can be very accurately detected from 

static image.  With a coarse-to-fine verification scheme plus an image pyramid, desired 

objects can be accurately and effectively detected and verified even though they are with 

various scale and orientation changes.  Due to the filtering effect of the proposed color 

transformation, the searching domain of object candidates can be significantly narrowed down.  

Thus, the proposed framework can detect each object efficiently even without using any 

motion feature.  Two targets, i.e., vehicles and road signs were demonstrated for proving the 

flexibilities of our proposed transform in object detection.  Different weather conditions and 

road scenes were testing in this thesis for proving that our method is robust and effective. 

Several quantitative comparisons among our method and some well-known approaches were 

also performed.  All the experiment results show that the proposed method is superior to 

other approaches for detecting objects in terms of accuracy, robustness, and stability.  
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5.2 Future Works 

Recently, detecting the important objects in traffic images is the active research of 

Intelligence Transportation System (ITS).  Forward-looking image processing for driver 

assistance has attracted more studies to date. Generally, the problem focuses on two main 

topics: the detection of roads and the detection of obstacles, vehicles or traffic signs.  In this 

thesis, we have present reliable vehicle and traffic sign detection results. Our work can be 

extended to combine the lane extraction module yielding the promising vision-based driver 

systems. Moreover, we are trying to extend our eigen color method for traffic scene analysis 

in real-time. It is useful to analyze the whole traffic images and segments into some 

meaningful regions. The lower part of the road scene image contains more important objects 

than upper part. Therefore, the background objects such as sky, mountains and trees in a road 

scene can be ignored in the upper parts. Our future work will explore the framework to 

integrate the other ITS applications like lane and road area detection for improving the 

driver’s safety. 

Another improvement is to utilize the component-based classifier in our cascade structure. 

For example, in the cases of vehicles, the major components should be wheels, the headlight 

and taillight. We trained a set of view-turned, global classifier to achieve view invariance in 

our system. In fact, it is difficult to collect complete training set, which cover the all possible 

variations of objects especially for partially occlusion. Building the classifier based the 

components is a solution to decrease the number of required training examples. Furthermore, 

we can also decrease the computation in global approach which needs to verify the region of 

interest with each view-turned classifier. 
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