
�ºÓ»»ñW��.

£ G � � . � } ÿ °

} ÿ ¡ Z

Ãy/�
x�%n�Å	¹w

t·;@~

Content Aware Image and Video Resizing

@ ~ ß � rÑ±

¼ 0 > 0 � A!Ç}ÿ

� º Ó » Ü è Ü O × `



i



ii



Ãy/�
x�%n�Å	¹w

t·;@~

®ï� rÑ± ¼0>0� A!Ç}ÿ

�ºÓ»»ñW��.£G��.�}ÿ°

ãy�!ÇKÝ���õ�´f»îÝ-²�AFÙéÚ�ó�éÚõW¹é��

�O¼%n�Ån¹wÝ@~�ÿ�¼�#��FÙÝ�°Î/æ%n�Ý/�¼

;�����Q�9ËÞ�I/���×¹wÝ]°���|;�%n�ÝßTÎ

×°Ìb�xPÎ�Ýf»�®ß¹wîÝ´Ë�yÎ�b×°.ï¿àÖ6Ý]

°�Ét%n��×°f´�¥�Ý ½¼;�%nÝ����Æ¿à×°��Ý

]°�?N×Í ½Ý¥�P�Q¡´0×Í�|�ât9£GÝÖ6Ú��Þ/

�Ýª´ª�t±�

Q�9ËÖ6Ý]°ÎbÍ§×Ý�A�¥�ÝÎ�KåÏ½%nÝ���£

�¡§�Ö6KºÞ9°¥�ÝÎ�Ét�.h�Ãy/�
xÝ%n¹w*�#

½�è�¼Ý�9°]°¿àÉtT^D%n�f´�¥�Ý/��¼2���f

»¹wX®ßÝ�¶�»AD³Fè�Ý2µ�º®ßÚÆîÝ�Ê�Ãy94¡

F�&ÆÝêÝÎÞ%n�ÝNÍ ½®��f»Ý���¾Õ3K�¶ÝêÝ�

�GßÝ]°8f�&ÆEN×Í ½Ý����´f»®t·;�¸ÿ¹w¡Ý

%n?��Q�

h²�&Æ�Þ9øÝ*�TàÕÅnî�tÝî¹�¥�Î�Ýf»²�&

Æ�Ämî¹8!ÝÎ�3�!Ý` FÝ¹wÎ×lÝ�ÍJÎ�ºE�E��

®ß¨×Ë` îÝ�¶�
Ý¾W9ÍêÝ�&Æ�?ÎÝº��ª�0�NÍ

Î�3�!` FÝn=P�Q¡§×9°�à38nÎ�Ý��Î×lÝ�t

¡�&Æ¿àt·;*��3` õè î´0×Í¿ÉF�ÞÚÆîÝ´Ëª�

t±�

n"C���f»¹w�Ö6�t·;*�

iii



Content Aware Image and Video Resizing

Student: Yu-Shuen Wang Advisor: Dr. Tong-Yee Lee

Department of Computer Science and Information Engineering

National Cheng Kung University, Tainan, Taiwan, R.O.C.

Abstract

Research on automatic resizing of images and videos is becoming ever more important

with the proliferation of display units, such as television, notebooks, PDAs and cell

phones, which all come in different aspect ratios and resolutions. To achieve full pre-

sentation of images and videos, we introduce a content aware technique which considers

the interior pixels while resizing the images and videos. Specifically, we represent an

image/frame with a grid mesh and then warp the mesh based on the saliency mea-

sure. Unlike the previous methods, which strove to preserve the prominent objects

untouched, our method allows them to be scaled uniformly, enabling the distortion

propagation in multiple directions. In addition to the resizing of static images, we

extend our resizing technique to videos. The most important issue on this extension

is the temporal coherence since the interior contents keep changing when the video is

played. Due to the camera and object motions, simply preserving consistent resizing

of temporally adjacent pixels cannot achieve temporal coherence and thus, resulting

in flickering or waving artifacts. To solve this problem, we detect the camera mo-

tion based on the SIFT features and then decompose the scene into foreground and

background regions. Obviously, the background motions depend on the camera while

the foreground motions are arbitrary. We introduce different constraints to preserve

their temporal coherences due to their different natures. All the criteria are formulated

into energy terms and we solve for the resized images and videos by minimizing the

objective function.

Keyword: Content Aware, Image and Video Resizing, Warping, Temporal Co-

herence, SIFT features, Optimization
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Chapter 1 Introduction

Research on automatic resizing of images and videos is becoming ever more important

with the proliferation of display units, such as television, notebooks, PDAs and cell

phones, which all come in different aspect ratios and resolutions. Cropping images or

videos to fit the display medium inevitably discards information, and resizing the con-

tents to arbitrary aspect ratios produces distortion. Any homogeneous algorithm that

applies the same operator to every local region (e.g., bicubic interpolation) distributes

distortion equally, the prominent objects to appear squashed or squeezed. Our goal is

to design a resizing scheme that minimizes noticeable distortion of prominent features

and structural objects, such as people, vehicles or buildings.

Start from image resizing, seam carving [1,2] and image warping [3,4] have been

proposed to resize images non-homogeneously. Seam carving greedily removes or in-

serts 1D seams that pass through the less important regions in the image. Warping

methods place a grid mesh onto the image and then compute a new geometry for this

mesh, such that the boundaries fit the new desired image dimensions, and the quad

faces covering important image regions remain intact at the expense of larger distortion

to the other quads. Since humans are less sensitive to distortion of homogeneous infor-

mation, such as clouds or sea, both classes of methods attempt to keep the prominent

objects untouched and distort only the homogeneous regions. Unfortunately, keeping

the prominent objects unchanged is certain to fail if their widths are larger than the

target image width. In other words, the absence of homogeneous regions along the

resizing direction would cause obvious distortion.

It follows that both the carving and the warping approaches proposed so far do not

utilize well the homogenous information along the direction orthogonal to the resizing

direction. As shown by the Car example in Figure 1.1, squeezing or stretching the sky

and clouds clearly causes only little distortion, however reducing the image width by

compressing the horizontal pixels not only warps the sky but also distorts the car. In

contrast, reducing the image width indirectly by increasing its height, followed by a

downsampling, can utilize the sky better to absorb distortion. Unfortunately, whether
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original image direct SC indirect SC direct Wolf07 indirect Wolf07 our result

Figure 1.1: The middle columns present direct and indirect narrowing results by the forward

seam carving method [2] (denoted as forward SC ) and the warping method of [4]. Indirect

narrowing achieves the desired aspect ratio by first increasing the height of the image and

then downsampling. Note that structural objects, such as the car and jumping people,

suffer obvious discontinuity with seam carving. Direct resizing by seam carving preserves

the girl’s face but not the car, and indirect resizing preserves the car but not the girl’s

face. This is because the homogeneous information is distributed horizontally in the Girl

image and vertically in the Car image. For the more complex Walking people image, both

previous methods cannot preserve well the aspect ratios of the people with either direct

or indirect resizing strategy due to their one-directional propagation of distortion. Our

algorithm achieves better results for all three images.

the direct or indirect resizing will achieve better results depends on the image content:

the two strategies produce opposite effects for the Car and the Girl images. In contrast

to the previous approaches, our algorithm finds optimal uniform scaling for prominent

objects by means of a global optimization, thus implicitly allowing distortion to be

distributed in all directions to fully utilize the available homogeneous areas.

Specifically, we represent the input image with a grid mesh and deform the mesh

to achieve image resizing. The importance value of each pixel is determined by the

2



combination of gradient magnitude and the saliency measure. We then set the quad

importance as the average of its interior pixel importance values. To absorb distortions

using all the homogeneous regions, we determine a scaling factor for each quad and

wish the deformed quad as similar as possible to its original version. Due to the various

importance values, the quads covering prominent objects are uniformly resized while

quads with homogeneous materials inside are squeezed and stretched to satisfy the

target resolution. The overall resizing scheme is formulated into energy terms and

we minimize the objective function to achieve image resizing. Since both the scaling

and the deformed mesh are unknown, we solve this non linear objective function by

alternatively updating the deformed vertex positions and the quad scaling factors.

The extension from image resizing to video resizing requires the consistent resiz-

ing of corresponding objects between neighboring frames. Näıvely resizing individual

frames in a content-aware manner easily leads to temporal incoherence, causing flick-

ering or waving artifacts. To address the problem, previous works consider videos as

spatiotemporal cubes and constrains temporally adjacent pixels to transform coher-

ently (by “temporally adjacent pixels”, we mean pixels in consecutive frames that have

the same spatial location, up to 1-ring neighborhood). However, this approach often

fails to guarantee temporal coherence, since it is motion-oblivious : it assumes that

features remain in the same spatial location or 1-ring neighborhood between consec-

utive frames, and this assumption breaks down when large camera or object motion

is presented. For example, camera zooming makes object features occupy regions of

different sizes even between consecutive frames, possibly causing seam carving to re-

move features inconsistently across frames due to its strategy of one seam removal per

frame. Camera or object sliding also easily leads to deviation from correspondence be-

tween temporally adjacent pixels (Figure 1.2). Similar temporal incoherence problems

happen with the methods based on non-uniform warping [4,5] (see examples in the

accompanying videos).

We introduce motion-aware constraints for temporally coherent resizing of videos,

which, to the best of our knowledge, have not been studied before. We observe that

temporal coherence can be achieved by preserving the motion information of the input

3



c©Mammoth HD

Figure 1.2: Object or camera motion diverts feature correspondence from temporally ad-

jacent pixels. In this example, due to camera movement, features within the quad in red

should be constrained to those within the yellow quad instead of the temporally adjacent

quad in blue.

video, usually consisting of camera and object motion, and we thus design separate

constraints to preserve camera motion and object motion. Specifically, we align every

pair of consecutive frames (i.e., grid meshes) using their interframe camera motion

and constrain their relative positions to retain camera motion. We preserve object

motion by detecting distinct moving areas of objects across multiple aligned frames

and constraining each of them to be resized consistently. To combine with the spatial

preservation of prominent objects, our final resizing optimization is naturally formu-

lated over all video frames aligned in a common camera coordinate system, where the

resizing effect of individual frames is driven by content-aware deformation of per-frame

uniform grids. We strike a balance between spatial content preservation and tempo-

ral coherence to minimize the visual artifacts. Finally, to improve performance and

scalability, we break long video sequences into short overlapping clips and resize the

individual clips in a streaming manner while constraining their in-between temporal

coherence over the overlapping frames.

In addition to retargeting images and videos, our resizing technique can also benefit

the Focus+Context visualization. The need to examine and manipulate large surface

models is commonly found in many science, engineering, and medical applications. On

a desktop monitor, however, seeing the whole model in detail is not possible. Therefore,

4



Figure 1.3: (left) Original view of the thorax model. For a detailed observation of the

cervical vertebra, an intuitive approach is to shorten the distance between the model and

the camera. However, the other regions, such as the lower part of the spine, will be clipped

off due to the limited screen space (middle). In contrast, our method magnifies the focal

region while keeping the entire model displayed on the same screen (right).

previous methods allow the user moving the mouse cursor to specify a region that

he/she wants to observe in more detail, and the system displays an enlarged version

of that region in another part of the screen. Unfortunately, such a straightforward

sub-window technique requires the user to interpret translation relation between the

sub-window and the main window. Another simple approach is to zoom in on the

region of interest while cropping off parts of object that are farther away. Such local

magnification visualization, however, cannot maintain a full view of the model (see

Figure 1.3).

To display complex models on the screen which has limited resolution, researchers

have proposed Focus+Context frameworks, which magnify the area of interest without

clipping off the other parts [6–12]. These methods expand the region of interest through

the theory of optical lens or other distortion methods to achieve this aim. However,

none of them has addressed the issue of stretching and distorting the remaining parts

5



of the model while magnifying a specific region. While expanding the focal region,

these methods simply let the distortion occur in the surrounding area and ignore the

artifact. In contrast, our method lets the free space absorb the resulting distortion

rather than letting the distortion uniformly spread throughout the nearby spaces.

We present a new, interactive Focus+Context method for visualizing large surface

models. Our method, based on an energy optimization model, allows the user to

magnify an area of interest to see it in detail while deforming the rest of the area

without perceivable distortion. The rest of the surface area is essentially shrunk to use

as little of the screen space as possible in order to keep the entire model displayed on

screen. This method allows the user to clearly observe the model’s detail in the region

of interest while not losing the overall view of the model’s shape and topology. The

visualization conveys a complete visual message to the user and reminds the user of

the overall perception of the model at all time, while the user’s attention is focused

on a local region. We demonstrate the efficacy and robustness of our method with a

variety of models.

6



Chapter 2 Related Work

Image Retargeting

Many algorithms have appeared in the literature for retargeting images to displays

of different resolutions and aspect ratios. Traditional methods perform homogeneous

resizing without considering the image content, equally propagating the distortion over

the entire image and noticeably squeezing prominent objects. To achieve resizing with-

out distortion, many approaches attempt to remove the unimportant information from

the image periphery [13–16]. Based on a face detection technique [17] and a saliency

measure [18,19], the image is cropped to fit the target aspect ratio and then uniformly

resized by traditional interpolation. However, cropping methods may potentially re-

move prominent objects close to the image boundary.

Recently proposed retargeting methods try to retain prominent objects while re-

ducing or removing other image content. Seam carving methods [1,2] reduce the image

size in a certain direction by removing monotonic 1D seams of pixels that run roughly

in the orthogonal direction (image expansion is achieved by duplicating such seams

instead). To reduce artifacts, they search for minimal-cost seams that pass through

homogeneous regions by computing their forward [2] or backward energy [1]. These

methods produce very impressive results, however their discrete nature may cause no-

ticeable jags in structural objects.

Image warping [3,4] offers a continuous solution to image resizing. The warping

functions are generally obtained by a global optimization that squeezes or stretches

homogeneous regions to minimize the resulting distortion. Gal et al. [3] warp an image

into various shapes, enforcing the user-specified features to undergo similarity trans-

formations. Wolf et al. [4] automatically determine the importance of each pixel and

merge the pixels of lesser importance in the reduction direction. Gal et al. [3] employ

a simple heuristic to determine the scaling of the marked features, so that when the

image is squeezed in one direction, the features are uniformly scaled by the squeezing

ratio, and when stretched, the features do not scale at all.

7



Redistribution of pixels under patch-based coherence and completeness constraints

is studied in [20,21]. These methods afford more flexibility for image editing operations,

including image resizing, though at much higher computational cost. The concepts

from image retargeting have also been transferred to content-aware shape resizing [22]

and focus+context visualization of 3D models [23].

Video Retargeting

Almost all the image retargeting methods can be adapted to resize videos by addressing

two problems: augmenting image importance models with motion information and

resizing individual frames in a temporally coherent manner. We show that the influence

of camera and object motion should be considered in both problems. However, to the

best of our knowledge, none of the existing importance models except those used in

the cropping-based retargeting methods [24,25] take camera motion into account. Liu

and Gleicher [24] compute motion contrast, i.e., the motion at each pixel subtracted

from the background motion, to define motion saliency, which is then incorporated into

the importance model together with image saliency and object saliency. Tao et al. [25]

explicitly extract moving foreground objects to solely define important parts.

The cropping-based retargeting methods achieve temporally coherent results by

searching for a smooth cropping sequence. The retargeting methods involving local

redistribution of pixels demand pixel-level temporal coherence, which is apparently

more difficult. The existing methods enforce coherence between temporally adjacent

pixels in a spatiotemporal video cube. For example, Wolf et al. [4] propose to penalize

position changes of temporally adjacent pixels in a linear least-squares optimization

formulation. Similar temporal coherence is achieved using a 3D random walk model

in [5], which instead focuses on improving the efficiency of [4]. Rubinstein et al. [2]

obtain time-smoothing seams by solving for monotonic 2D connected manifold seams

using graph cuts. However, we observed that simply enforcing constraints between tem-

porally adjacent pixels is often insufficient or even invalid, especially when large object

movement or large camera motion is involved, causing flickering or waving artifacts.

8



Note that the above retargeting methods have their own advantages and disad-

vantages [2]. For example, compared to cropping-based methods, which completely

discard less important regions, nonlinear retargeting, such as seam carving and non-

uniform warping, has better ability to preserve scene context at the cost of allowing

some degree of distortion, especially to less important regions. Our resizing framework,

as another nonlinear retargeting method, is proposed not to replace any existing resiz-

ing tool, but to provide users more options for their specific needs. As recently shown,

several types of retargeting methods may need to be used together to produce visually

pleasing resizing of a general image or video [26].

Focus+Context Visualization

Many related algorithms have been developed to visualize complicated information of

3D volumetric models. The outer opaque layer always overlays the internal information

and results in visualization problems. Hence, Viola et al. [27] automatically compute

the importance of each voxel to avoid hiding the important regions by the outer trivial

voxels. Zhou et al. [28] advocate a feature-based method to enhance the volumetric

features and render the parts of the model inside and outside the focal region in different

styles. McGuffin et al. [29] applied deformation techniques to browse volumetric data.

Their approach opens up, spreads apart, or peels away the outer layers to reveal the

hidden structures.

To visualize tiny information, such as the bump surface of a human colon, in a

clear and detailed view, researchers have proposed many methods to magnify the focal

area and either distort or overlay the neighboring regions to highlight the region of

interest. Keahey et al. [6–8] deformed the texts or 2D images by a transformation grid,

determined by nonlinear magnification fields. Bier et al. [30] presented an intuitive

interface for the user to specify the focal region and render the information inside the

focal region with a different style to enhance the feature of interest. Carpendale et

al. [9,10] proposed several distortion patterns, such as stretch orthogonal and nonlin-

ear radial, to demand more space for the focal region to achieve 3D distortion that

9



is independent of the viewpoint. LaMar et al. [11] applied hardware acceleration to

deform the rendered 2D images or 3D volumes. They accomplished the goal by dynam-

ically computing the texture coordinates for the grid vertices of the applied mask and

rendering the texture with the coordinates that are projected onto the homogeneous

space to make the results desirable. Unlike the above-mentioned methods, Wang et

al. [12] proposed an interactive technique to render volumetric models according to

optical-lens theory. Their method simulates the ray direction that is determined by

the position of the focal point and displays the expanded image within the magnifying

lens. Both [11] and [12] provide different shapes of bounded lens for the user to magnify

the regions of interest.
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Chapter 3

Optimized Scale-and-Stretch for Image Resizing

Figure 3.1: We partition the original image (left) into a grid mesh and deform it to fit the

new desired dimensions (right), such that the quad faces covering important image regions

are optimized to scale uniformly while regions with homogeneous content are allowed to be

distorted. The scaling and stretching of the image content is guided by a significance map

which combines the gradient and the saliency maps.

3.1 Overview

We present a “scale-and-stretch” warping method that allows resizing images into

arbitrary aspect ratios while preserving visually prominent features. To minimize the

resulting distortion, we determine an optimal scaling factor for each local region (see

Figure 3.1) instead of enforcing the size of salient image regions to remain unchanged.

The scaling factors are iteratively optimized, and the amount of deformation to each

region is guided by a significance map that characterizes the visual attractiveness of

each pixel; this significance map is computed automatically using a combination of

gradient- and salience-based measures. We call our strategy “optimized scale-and-

stretch” since it allows regions with high importance to scale uniformly and regions

with homogeneous content to be distorted. We warp the grid mesh that represents

the image such that it fits the new image dimensions, and each quad’s deformation

matches the local scaling factor. The scaling transformations and the positions of the
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grid vertices are both variables in the global optimization process. We design a very

efficient alternating optimization procedure that allows resizing fairly large images in

real time and is easy to implement. The efficiency stems from the specially-tailored

objective function formulation that reduces the nonlinear problem to a series of linear

problems with a fixed system matrix. The matrix can be pre-factorized, and each

iterative step only requires a back-substitution.

The key aspect of our method is that the distortion due to image resizing is opti-

mally distributed over the image, irrespective of the direction of the resizing operation

(horizontal, vertical or both). This gives our technique the full freedom to utilize ho-

mogeneous image regions to hide the distortion. Moreover, our method enjoys the

advantage of respecting structures within the image (such as straight lines or arches)

thanks to the continuity of the warping function.

3.2 Arbitrary image resizing

We represent an image as a mesh M = (V,E,F) with vertices V, edges E and quad

faces F, where V = [vT0 ,v
T
1 , ...v

T
end] and vi ∈ <2 denote the initial vertex positions.

The vertices and edges form horizontal and vertical grid lines partitioning the image

into quads. To resize an image of m× n pixels into an arbitrary size of m′ × n′ pixels,

we fix the position of the top-left vertex v0 and let the user specify a new position for

the bottom-right vertex vend. The rest of the boundary vertices are constrained to slide

along their respective boundaries in order to keep the image rectangular. We solve the

problem of finding a deformed mesh geometry V′ = [v
′T
0 ,v

′T
1 , ...v

′T
end], where ideally

each quad undergoes a transformation that consists of uniform scaling only. Clearly, it

is impossible to meet this goal for an arbitrary new image size, so some quads should

inevitably deform; we spread the distortion according to the significance of each quad

and obtain the new mesh geometry by a global optimization.
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original image using gradient map using significance map

Figure 3.2: We define the significance map as the product of the gradient magnitude

and the saliency measure. Compared with the gradient map, the significance map is less

sensitive to the disturbance of trees and leaves, focusing on the old man and the little girl.

We compare the results of narrowing the original image using the gradient map and our

significance map. The shapes of the old man and little girl are preserved better with our

significance map.

3.2.1 Quad significance

Previous image retargeting methods have used various measures to determine the sig-

nificance value of a pixel automatically. Both Avidan and Shamir [1] and Wolf et

al. citeWolf2007 consider pixels with large gradient magnitudes as important. Rubin-

stein et al. [2] determine the pixel significance by accumulating the discontinuity of

its neighbors if the pixel is removed. We propose a new measure of quad significance

that can better detect prominent image objects. We observe that only quads that are

both attractive to the human eye and contain structured objects should be protected

against distortion and thus should have high significance values. Hence, we combine

two measures to determine the pixel significance: image gradient and saliency map [18].

To compute the saliency, Itti et al. [18] apply various filters to extract color, intensity

and orientation properties, and then look for regions that have different properties than
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their surroundings; this analysis is performed on multiple scales. The gradient indicates

the presence of structures, while the saliency map determines the attractiveness of a

region. In particular, the gradient magnitude can be misled by trivial and repeated

structures, while the saliency measure also considers regions that are attractive but

homogeneous as salient. By combining these two measurements, a region is considered

significant only if it is both structural and attractive.

Let I denote the input image. We define the pixel significance map as W =

Wα × Wβ, where Wα = (( ∂
∂x
I)2 + ( ∂

∂y
I)2)1/2 is the 2-norm of the gradient and Wβ

is the saliency map. The significance wf of quad f is defined as the average pixel

significance within the quad. We normalize the wf values to obtain weighting factors

within 0 and 1. Smaller values mean less importance. Figure 3.2 shows an example

of a noisy gradient map and the significance map with the trees filtered out by the

saliency measure.

3.2.2 Mesh-based image resizing

Given the new image size, represented by the new position for the lower right corner

vend, we compute an optimally deformed mesh, such that quads of higher significance

enjoy uniform scaling and quads of lower significance are allowed to be distorted more

(i.e., non-uniformly squeezed or stretched). In addition, we would like to minimize the

bending of the grid lines, because prominent objects usually span a set of connected

quads. Specifically, the deformed mesh is solved for by optimizing the quad deformation

and grid line bending energy terms subject to boundary constraints.

Quad deformation

We formulate the shape distortion energy for each quad by measuring how far the

deformed quad is from a uniformly scaled version of the original quad. Ideally, for

each f ∈ F there would be a scale factor sf such that for each vertex v of the quad,

v′ = sfv + t (where t is a constant translation vector). Let us denote the set of
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(directed) edges of f by E(f); the distortion energy of f is defined as

Du(f) =
∑

{i,j}∈E(f)

‖(v′i − v′j)− sf (vi − vj)‖2. (3.1)

The translation vector t is eliminated by considering the edge vectors. For equal aspect

ratio distortion, larger quads are penalized more, since the distortion is more visible on

an enlarged area. Note that the optimal scaling factor sf is completely defined by vi

and v′i: indeed, if the vertices of the original and deformed quads are fixed, we obtain

sf that minimizes Du(f) by differentiating Eq. (3.1) and equating to zero:

∂Du(f)

∂sf
=

∑
{i,j}∈E(f)

2
(
‖vi − vj‖2sf − (vi − vj)

T (v′i − v′j)
)

∂Du(f)

∂sf
= 0 ⇒ sf =

∑
{i,j}∈E(f)(vi − vj)

T (v′i − v′j)∑
{i,j}∈E(f) ‖vi − vj‖2

. (3.2)

Therefore, sf is defined in terms of the deformed mesh vertices, and Du(f) is

only dependent on those. We define the total mesh uniformity energy by summing up

the individual quad energy terms and adding the significance weights, such that more

distortion would be allowed in areas of lesser significance:

Du =
∑
f∈F

wfDu(f) . (3.3)

Grid line bending

Since prominent objects often occupy multiple connected quads, to prevent their dis-

tortion we wish to minimize the bending of the grid lines. Specifically, the optimiza-

tion system scales the edge lengths but retains the edge orientations during defor-

mation. We define the length ratio of the edges before and after deformation as

lij = ‖v′i − v′j‖/‖vi − vj‖, and introduce the following energy term:

Dl =
∑
{i,j}∈E

‖(v′i − v′j)− lij(vi − vj)‖2. (3.4)

We illustrate the effect of this energy term by comparing with the result of [3] which

does not regard grid line bending (see Figure 3.3). We use the same significance map in
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original image [Gal06] our result [Gal06] our result

Figure 3.3: We compare our method with [3]. The lower row shows the reduction and

expansion results (guided by our significance map in all cases), and the upper row displays

the respective deformed meshes. Our grid line bending energy ensures that the grid lines are

smoothly bent to reduce distortion, while [3] produces C0-continuous grid lines, distorting

structural objects.

both cases. It can be observed that by preventing the grid lines from serious bending,

our algorithm avoids distorting the door and chairs. In addition, this energy term also

alleviates the edge flipping problem which could occur in image warping methods [3,4].

This is because the edge ratio lij is always positive in our definition, encouraging each

edge towards its original direction. Figure 3.4 demonstrates the effectiveness of this

measure, comparing with the result of [4]. Note that both results were obtained without

using constrained systems (see details in the Appendix).

Total energy and boundary conditions

In summary, we wish to minimize the sum of the quad deformation and the line bending

energies:

D = Du +Dl , (3.5)

subject to some boundary constraints. The boundary constraints are the locations of

the top left and bottom right vertices

v′0 = (0, 0)T , v′end = (n′,m′)T , (3.6)

and in addition, the y coordinates (or x, respectively) of horizontal (vertical) boundary

vertices are constrained to remain constant to make sure we get a rectangular image
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original image [Wolf07] our result

Figure 3.4: The original image is narrowed by [4] and our algorithm. Since [4] only

constrains the vertically connected pixels to have similar displacements, self-intersection

may occur. In this example, the right part of the image gets flipped, concealing some

petals.

shape:

v′i,y =

 0 vi is on the top boundary

m′ vi is on the bottom boundary,

v′i,x =

 0 vi is on the left boundary

n′ vi is on the right boundary.
(3.7)

These constraints are simply substituted into the linear system during the optimization.

We solve for the deformed mesh using an iterative solver; note that both the scaling

transformations sf and the deformed edge lengths lij are unknown, and the latter

depend nonlinearly on the vertex positions. The iterative solver starts from an initial

guess for V′ (see details in the next section) and determines the quad transformations

sf and the edge ratio lij for each edge. The new vertex set V′ is then solved for by

minimizing the total energy (3.5) subject to constraints (3.6) and (3.7). Note that

with sf and lij fixed, the energy is a quadratic function of V′, thus the minimization

problem is linear. Furthermore, when keeping sf fixed, the x and y coordinates of the

grid vertices are not coupled and can be solved separately with the same system matrix

(and different right-hand sides), reusing the matrix factorization. The alternating steps

continue until all the vertex movements are smaller than 0.5.

In our experiments we have observed that the scaling transformations sf of neigh-

boring prominent quads should be similar because the prominent objects usually span
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Figure 3.5: The original image (inset) is expanded in height. The sky region is stretched

to reduce distortion, causing the quads covering various regions of the pillars to be scaled

to different sizes (left). We solve an optimization problem to make the sizes of connected

prominent quads similar; this keeps the uniform thickness of the pillars (right).

several quads. We therefore propose to reduce the difference of adjacent scaling factors

after they are determined by (3.2), i.e., smooth the sf ’s in each iteration. Denote by

N(f) the adjacent quads of f and by wg the average of all the quad significance values;

we obtain the smooth scaling factors s′f by minimizing the following energy each time:∑
f∈F

∑
q∈N(f)

1

2
(wf + wq)(s

′
f − s′q)2 +

∑
f∈F

wg(s
′
f − sf )2. (3.8)

Figure 3.5 shows a resizing example demonstrating the effect of this smoothing process.

To make sure the minimization of the non-negative objective function D eventually

converges, we determine the value of D after each new vertex set V′ is obtained and

verify that Dt+1 ≤ Dt, where t is the iteration number. Specifically, we repeatedly

update the vertex set Vt+1 = 0.7 Vt+1 + 0.3 Vt until the new obtained Dt+1 is smaller

than Dt or all the vertex movements are smaller than 0.5. Overall, the alternating

optimization approach is quite efficient, since the system matrix (the gradient matrix

of D), as well as the smoothing matrix in (3.8), is sparse and remains fixed. Therefore,

we can precompute a sparse factorization, and then each iteration requires only a

back-substitution.
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3.2.3 Initial guess

The convergence speed of nonlinear optimization depends on its starting position. One

possibility is to use the original mesh as the initial guess, however this leads to slow

convergence if the final deformed mesh is very different from the original mesh. It is

desirable to choose a good starting point that is close to the optimal solution. We use

two types of initial guesses in our experiments:

Previous frame. If a user resizes an image by continuously manipulating the handle

vertex vend, we take the previous frame as an initial guess. Since the deformation is

continuous and the sizes of two consecutive frames are similar, their optimal solutions

are expected to be close to each other. We used this type of initial guess for all the

examples in this paper except Figure 3.6, and found that the number of iterations is

typically less than 10.

Homogenous resizing. If an image is resized directly by specifying the new di-

mensions, a better initial guess may be obtained by simple homogeneous resizing

(x, y) → (ax, by). Figure 3.6 illustrates such an initial guess and the iterative re-

finement process.

3.2.4 Significance-aware initial mesh

To achieve interactive resizing, we represent the image by a coarser quad mesh, and

create the resized image by linearly interpolating the interior content after the mesh

is nonlinearly deformed. The quad mesh can be considered as a subspace of the given

image. To reduce the linearization artifacts, it makes sense to place the mesh vertices

more densely in the salient regions, so as to approximate the nonlinear deformation

better there. Using an adaptive mesh might is one option; however this complicates

the mesh structure and makes the implementation more difficult as well. To enjoy the

regular structure, we propose to adapt the initial uniform grid mesh M to the image

significance map by slightly deforming the shapes and sizes of the quads while keeping
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original image initial guess 10 iterations 30 iterations

Figure 3.6: The original image is resized starting from an initial guess obtained by homo-

geneous resizing, and then iteratively refined by our optimization algorithm such that the

distortion concentrates in the homogeneous areas.

Figure 3.7: Results of resizing an original image (top) using a uniformly partitioned mesh

(bottom left) and a significance-aware mesh (bottom right). Notice that the building

structures are preserved better with the use of the significance-aware initial mesh.

the mesh connectivity intact (see Figure 3.7).

The basic idea is to attract more vertices to the important regions. Specifically,

we shorten an edge {i, j} if its nearby quads cover some prominent objects. To deform
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the mesh, we minimize the following objective functional:

Ω =
∑
{i,j}∈E

(1 + wij)‖v′i − v′j‖2, (3.9)

where wij is a weighting factor determined by averaging the significance of the quads

sharing the edge {i, j}. The constant value 1 is added to reduce the proportion of

this weighting factor. The optimization is constrained by the boundary vertices in

the same fashion as in Section 3.2.2. Since the entire mesh is constrained to remain

rectangular, the edge contraction process actually redistributes edge lengths according

to their weighting factors. The edges of higher significance will get shorter, while those

of smaller significance will get longer. We solve for the mesh geometry iteratively,

updating the vertex positions by minimizing (3.9) in each step and recomputing the

weights, as the quad significance changes during the deformation. We stop when all

the vertex movements are smaller than 0.5 pixel.

3.3 Results and discussion

We have implemented our image resizing system on a PC with Duo CPU 2.33GHz.

The technique is very efficient even though the solver iteratively updates the vertex

positions until the process converges. This is because the matrix of our least-squares

system is fixed and its factorization can be pre-computed. Therefore, each step only

needs a back substitution to determine the vertex positions. Obviously, the compu-

tational cost depends on the size of the mesh. A finer mesh leads to better results

but slower interactive speed. In all our experiments, we found that an initial quad of

20×20 pixels produces sufficiently good results. Using such a coarse mesh is reasonable

since the deformations applied to neighboring regions should be similar. Factoring a

matrix of 1976 vertices for a 1024×754 image typically takes 0.034 seconds, and a back

substitution to update the vertex positions takes 0.002 seconds.

We demonstrate the effectiveness of our resizing technique with several examples

(see Figures 1.1, 3.3, 3.4, 3.8, 3.9, 4.8). By adding user interface to place and ma-

nipulate additional positional constraints, our system also allows the user to perform
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freeform deformation on general images without significantly distorting the prominent

objects. We show the interactive system in the accompanying video.

Edge flipping, which leads to local self-intersections, may occur in warping al-

gorithms. This causes discontinuity and may conceal prominent objects. Solving for

the deformed mesh using a constrained system (see the Appendix for details) can

completely eliminate this problem, with the tradeoff of increased computational cost.

Fortunately, our grid line bending energy is effective in alleviating edge flipping; it

rarely occurs even when the constrained system is turned off. This energy component

also reduces the frequency of re-factorization when the constrained system is turned

on.

Comparison

In Figure 3.11, we compare some results of [2,4] and our method. It can be observed

that Wolf et al.’s and our methods, which are both warp-based, produce smooth results,

while seam carving produces noticeable discontinuity, especially in images containing

structural objects. For instance, the coral, people, San Francisco Heart and house

roof are jagged since the pixels are directly removed. Comparing with the results

of [4], our method can preserve the aspect ratios of prominent objects better and

avoid self-intersections (see supplemental material for more comparison results). In

Figure 3.9, we demonstrate that seam carving guided by forward energy [2] produces

less discontinuities than seam carving using our significance map. This is because the

forward energy considers the discontinuity of merged pixels after seam removal, while

our significance map does not. Nevertheless, our significance map coupled with our

optimized warping produces smoother results and preserves structural objects better

than seam carving with forward energy. We believe the combination of our significance

map and the forward energy can also benefit the seam carving method.

Seam carving is excellent in dealing with highly textured areas. For example, re-

moving pixels from a sandy region would be better than compressing it. In addition,

direct editing of pixels in seam carving methods leads to higher flexibility in terms of
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Figure 3.8: Greedy resizing strategies may produce artifacts. When the image on the

left is shortened by [2], seams passing through the flower vase have low accumulated

distortion; however, their removal destroys the vase structure. Our algorithm solves a

global optimization and preserves the vase.

original image SC using our map SC using forward energy our result

Figure 3.9: Comparison of our result with seam carving methods (denoted by SC) using

our significance map and the forward energy. SC with forward energy does a better job of

preserving the structures of the castle and bridge than SC using our map. In contrast, our

warp-based method has no discontinuity problems, and preserves the aspect ratios of the

castle and bridge better than SC with forward energy.

image content manipulation, enabling applications like object removal. However, the

discrete nature of seam carving may damage structures because the information on

the removed seam is lost. In contrast, warping methods have better ability to preserve

structural objects since the applied deformations are continuous and the image compo-

nents are linearly interpolated. Moreover, warping methods solve a global optimization
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on the entire image at once, rather than proceeding sequentially on 1D components,

thus they do not suffer from greediness effects. Figure 3.8 demonstrates how the greedy

strategy could misdirect the resizing process. Finally, the computational cost of warp-

ing methods is independent of the resizing dimensions while that of seam carving is

proportional to the number of seams.

Limitations

Our algorithm may contract a quad into a line or even a point, removing the quad

content. Such direct removal may introduce discontinuities (although the removed

information is the least important). It could be argued that when the significance map

allows it, our algorithm performs cropping, which is actually the most reasonable in

some cases.

Figure 3.10: (left) Original image. (right) Prominent lines not parallel to the main axes

may be distorted due to different degrees of squeezing of adjacent quads.

Our algorithm may significantly stretch homogeneous quads to preserve the aspect

ratios of prominent objects, causing the linear interpolation of the quad interior to

show artifacts. Filling the interior using texture synthesis methods can solve this

problem [31]. For images without any homogeneous regions, our method has no region

to which to concentrate the distortion and thus produces results similar to conventional

(homogeneous) resizing.

Like all previous methods, our method may fail to preserve the shapes of prominent
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image lines of arbitrary orientations (as opposed to parallel to the main axes) due to the

quads not being aligned with the feature. The adapted mesh we create is an attempt to

compensate for that somewhat, but obviously, if the feature is diagonally oriented, it is

very hard to adapt the mesh by our mechanism. Although our grid line bending energy

term can reduce the bending distortion, when adjacent quads covering the prominent

line are squeezed to different degrees, the slope of each prominent segment may change

inconsistently (see Figure 3.10). User-defined marking of the quads covering prominent

lines and increasing their significance can successfully keep prominent lines straight.

However, this strategy may lead to an over-constrained system causing other regions

to distort more.

Appendix

To completely eliminate the mesh self-intersection problem, we can solve for the de-

formed mesh while checking the inequality constraints eTije
′
ij ≥ 0, where {i, j} ∈

E, eij = vi − vj and similarly for e′ij. We modify the objective function to be

L = D +
∑

ij λij‖e′ij‖2, where λij is a weighting factor determined according to the

inspection of the mesh after each iteration. Initially we set λij = 0 since all the

inequality constraints are satisfied. During the search for the optimal solution, we

detect conflicts with the inequality constraints after each iteration. If this happens,

we increase the corresponding factor λij to a large number (we used 10000) to enforce

the flipping edge to have zero length. This changes the objective functional L, so we

recompute the system matrix ∂L/∂V′ and its factorization.
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original image [Rubinstein08] [Wolf07] our results
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original image [Rubinstein08] [Wolf07] our results

Figure 3.11: Comparison of our results with those of improved seam carving [2] and the

warping method of [4]. The results of [4] and our method tend to be smoother than those

of seam carving. Notice the discontinuities in the corals, people, San Francisco Heart and

the house roof, which are due to the pixels being directly removed. Compared with [4], our

method can preserve the aspect ratios of prominent features better.

27



Chapter 4

Motion-Aware Temporal Coherence

for Video Resizing

c©ARS Film Production

Figure 4.1: Overview of our automatic content-aware video resizing framework. We align

the original frames of a video clip to a common coordinate system by estimating inter-

frame camera motion, so that corresponding components have roughly the same spatial

coordinates. We achieve spatially and temporally coherent resizing of the aligned frames

by preserving the relative positions of corresponding components within a grid-based opti-

mization framework. The final resized video is reconstructed by transforming every video

frame back to the original coordinate system.

4.1 Overview

An ideal solution to temporally coherent video resizing is to first recognize compatible

objects across different video frames and then resize them within individual frames in

a consistent manner. However, this involves object recognition and tracking, which are

challenging tasks on their own. Observing that achieving temporal coherence largely

means avoiding motion artifacts, such as flickering and waving, we aim to preserve the

motion information in an input video, usually consisting of camera motion and object

motion.
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Camera motion and object motions have very different natures, demanding sep-

arate strategies to preserve them. Camera motion is of low degree of freedom and

brings a global visual effect to whole scene, usually containing both static and dy-

namic objects. Assuming that input videos always contain static objects (e.g., static

background) whose visual movement is completely due to camera movement, we use a

feature-based method to estimate the camera motion between every pair of consecutive

frames (Section 4.2.1). By “object motion”, we refer to the intrinsic motion of dynamic

objects, independent of camera movement. Object motion can often be of high degree

of freedom and simultaneously caused by multiple objects at different locations. Precise

estimation of object motion is a challenging task. Fortunately, by the smooth warping

nature of the core technique, it is sufficient to use the remaining motion subtracted

from the camera motion to roughly estimate object motion, avoiding the necessity for

precise alpha-masks of the dynamic objects.

We build a new video resizing framework by designing motion-aware temporal co-

herence constraints (Section 4.3.2) and applying the importance maps to guide content-

aware resizing of individual frames (Section 3.2.2, also briefly denoted in Section 4.3.1).

We embed each frame into a uniform grid mesh. Our system simultaneously deforms

all the meshes with spatial and temporal constraints. We preserve camera motion

by constraining relative positions of every two consecutive meshes, aligned using the

estimated interframe camera motion. We achieve temporally coherent resizing of dy-

namic objects by detecting their moving areas and deforming each distinct moving

area in a consistent manner. As our temporal constraints and importance maps are

all dependent on the frame alignment, we found it more intuitive to formulate the

optimization in a common camera coordinate system. Once we obtain the deformed

meshes, we transform them back to the original coordinate system of each frame and

warp the corresponding images to produce the final resized video. Figure 4.1 gives

an overview of our resizing framework. Note that we show every twentieth frame for

better visualization.
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4.2 Video Importance Map

In this section we first introduce our adopted method for frame alignment and then

present a method to compute an importance map for each video frame, such that the

consecutive maps change smoothly. Instead of defining the importance map of each

frame individually, we measure the importance of a region by considering the contents

of neighboring frames that are aligned at that region.

4.2.1 Frame Alignment

We align video frames by estimating camera motion between every two consecutive

frames. Camera motion estimation has been studied extensively (see [32] for an in-

sightful survey). Our preliminary experimentation with a 2D affine transformation as

the camera model easily gave unreliable results when the area occupied by dynamic

objects was significantly increasing. To trade precision for robustness, we express inter-

frame motion using a restricted model which consists of scaling and translation. While

losing the ability of modeling camera roll operations, which are seldom used in video

production, our model is able to robustly estimate the other camera motion effects,

such as sliding, zoom, yaw, and pitch. Although we are aware that a 2D projective

transformation might be a more precise camera model for this task, we found that this

restricted model is more robust and works well for most regular videos. More impor-

tantly, it allows us to solve for the x and y components in the optimization separately,

thus significantly reducing computational cost and memory requirements (Section 4.3).

We employ a feature-based method to estimate our camera model, similar to those

used in the literature of video stabilization [33,34]. We first detect the feature points of

each frame by sift [35], which is reported to perform best among many local feature

descriptors. We then use ransac [36] to robustly extract the feature correspondence

between the frames and estimate the restricted model (i.e., solving for the scaling and

translation parameters). We need to handle a degenerate problem when there are too

few pairs of feature correspondence found and will discuss its solution in Section 4.4.
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Once we obtain the transformations between every pair of consecutive frames, we

are able to accumulate them to align the video frames to a common camera coordinate

system. Figures 4.1 and 4.7 show some examples of frame alignment with respect to a

camera coordinate system defined at the first frame of a video clip. Note that we do not

compute alignment between every frame back to a fixed reference frame, since temporal

incoherence is often noticeable only for neighboring frames. Even more importantly,

there generally exists no single reference frame that shares sufficient backgrounds with

every other frame to allow for robust alignment. We denote by Tt7→` the accumulated

transformation from frame t to frame `, which transforms pixels at time t to the

coordinate system defined at time `. We use homogeneous coordinates to represent

positions and vectors and thus express Tt7→` as 3×3 matrices. Note that we have T`7→t =

(Tt7→`)
−1. The accumulated transformations will be used for both our importance map

computation and the motion-aware temporal coherence formulation. We discuss the

quality of the accumulated transformations further in Section 4.4.

4.2.2 Aligned Importance Map Blending

Since the importance map of each frame largely determines how each image is non-

uniformly deformed during resizing, we require importance maps that change smoothly

across adjacent frames. This motivated us to define the importance map of each frame

by blending the importance maps of neighboring frames at aligned positions. Each

importance map takes into account salient information in both spatial and temporal

context, but excludes motion purely caused by camera movement, since it is almost

homogeneous within individual frames and thus of little importance. Specifically, we

define the blended importance value at pixel p of frame t as

Ī t(p) =
t+k

max
`=t
{I t(p), δ I t(p) + (1− δ) I`(Tt7→` p)}, (4.1)

where I t denotes a traditional (single-image) importance map at frame t and k denotes

the bounded number of neighboring frames. We mitigate the contribution of neighbor-

ing frames away from frame t by setting blending factor as δ = (`− t)/k. Defining the

importance map of an image, I t, is challenging on its own, requiring scene understand-
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Figure 4.2: We blend the information of a bounded number of aligned neighboring frames

to define an importance map at each frame. Pixels with high and low importance are

visualized in green and blue, respectively. Our model produces time-smoothing maps that

capture salient information in both spatial and temporal context.

ing. We adopted the method in Section 3.2.1 to compute I t as the multiplication of

gradient magnitude and image saliency [18], though other information (e.g., from face

detection) can be easily incorporated as well.

In Equation 4.1, we chose to take the (weighted) maximum importance among

the aligned frames at a given pixel, which guarantees that object motion, usually

reflected as moving object boundaries, can be implicitly captured by our importance

model. We do not incorporate an explicitly defined motion saliency map here to avoid

the problem of weighing and fusing irrelevant saliency cues [37]. Unlike the previous

importance models [4,24], which consider motion only between two consecutive frames,

our model also captures motion information only observable over a longer time period.

For example, our importance maps record objects’ motion paths by observing their

movement within multiple frames. Figure 4.2 shows two blended importance maps of

a video containing simultaneous camera and object motion. Note that the blending

process marks some background pixels as important, since their corresponding pixels

in the neighboring aligned frames are important due to the motion of the moving boat.
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This is a desirable effect, as the blended maps give higher importance values to moving

objects and capture salient information in both spatial and temporal context, thus

better preserving the aspect ratio of foreground objects.

By increasing the value of k, we obtain more time-smoothing importance maps

and also capture the motion context better. On the other hand, larger k means that

a larger amount of important regions from different frames are combined into a single

map, which may lead to a more homogenous map in some scenarios. An extreme

example is when each pixel is marked as equally important when multiple objects move

around the entire scene within the involved frames, reducing the scheme to homogenous

resizing. We have experimented with different values for the blending parameter k.

Please see the supplemental video Kcomparison.mp4 for comparisons. Although an

adaptive time window that considers video contents might be more appreciated from

a theoretical point of view, we found that setting k = 60 works well for all of our

experimental examples.

Rubinstein et al. [2] discussed the possibility of using all video frames to compute

a single importance map for carving the video with static seams. However, their model

works only for videos produced by stationary cameras, since their formulation does not

exclude camera motion. As our model processes frames aligned by interframe camera

motion, it can successfully handle videos created by dynamic cameras.

4.3 Grid-based Resizing Optimization

We now describe our video resizing framework, which uses the blended importance

maps to guide the spatial content preservation of individual frames and motion-aware

temporal coherence constraints to preserve both camera and object motion. Since we

are always operating on aligned frames, it is more intuitive to formulate the optimiza-

tion over all frames of a video clip aligned in a common camera coordinate system1,

determined by the first frame of the video clip in our case (Figure 4.1). We drive the

1Note that we can equivalently formulate the optimization in the original spatiotemporal coordinate

system (i.e., before frame alignment) through coordinate transformation.
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Figure 4.3: We preserve camera motion by retaining relative positions of consecutive uni-

form grids associated with video frames aligned at a common camera coordinate system.

deformation of each aligned frame at time t using an associated uniform grid mesh

M t = {Vt,Et,Qt} with vertex positions Vt, edges Et and quads Qt. All grid meshes

are independent of video content and have the same connectivity but they are usually

of different sizes and locations due to frame alignment, leading to a non-cubic shape

in the spatiotemporal space (Figure 4.3).

4.3.1 Spatial Content Preservation Energies

We adopt the previously introduced method (Section 3.2.2) to resize individual frames

by redistributing the vertices of the associated grid meshes. To deform the grid meshes

while respecting the video content, we need to compute an importance value for each

quad qt ∈ Qt of M t based on Ī t(p). We define it as the average importance over the

pixels in qt; the importance values are normalized into the range [0, 1].

The energy for preserving the quad aspect ratios according to the normalized quad
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importance ωtq is formulated as

Du =
∑
t

∑
qt∈Qt

ωtq
∑

{i,j}∈E(qt)

∥∥(ṽti − ṽtj)− stq(vti − vtj)
∥∥2, (4.2)

where ṽt∗ is the (unknown) deformed vertex position of vt∗ ∈ Vt after resizing, E(qt)

denotes the edge set of qt, and stq is the unknown uniform scaling factor of quad qt,

depending on both ṽt∗ and vt∗. We also adopt the energy in Section 3.2.2 which penalizes

bending of grid lines and thus alleviates the edge flipping problem:

De =
∑
t

∑
{i,j}∈Et

∥∥(ṽti − ṽtj)− ltij(vti − vtj)
∥∥2 (4.3)

with ltij = ‖ṽti − ṽtj‖/‖vti − vtj‖. Please refer to Section 3.2.2 for more details about

these two energies.

4.3.2 Temporal Coherence Energies

Due to the different natures of camera motion and object motion, we design separate

constraints (or more precisely, energy terms) to minimize temporally inconsistent dis-

tortion. Both types of constraints are equally important to achieve temporally coherent

resizing and they are not interchangeable.

Camera Motion Preservation

Interframe transformations naturally reflect camera motion and should be preserved

in order to retain it. This can be achieved by preserving the relative positions of

consecutive aligned frames, i.e., by asking the positions of corresponding pixels in

adjacent frames (aligned in a common camera coordinate system) to be the same after

resizing. Since interframe transformations are of low degree of freedom, this can be

equivalently achieved by preserving the relative positions of consecutive grid meshes.

The above discussion leads us to preserving the relative coordinate of grid vertex vti

(in red) with respect to the corresponding quad qt−1 (in yellow) of M t−1 that contains

the spatial location of vti (Figure 4.3). Specifically, we use the following energy term:

Dα(vti) =
∥∥ṽti −∑ṽt−1

j ∈qt−1 at−1j ṽt−1j

∥∥2, (4.4)
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where at−1j denotes the relative coordinate of vti with respect to qt−1 before resizing (we

use barycentric coordinates).

Equation 4.4 works only for grid vertices that have correspondence in the previous

frame. However, due to frame alignment, there are usually some vertices (near to

the grid mesh borders) that fail to find the corresponding positions in the previous

frame, denoted as Vt
β. Since temporal coherence is required on every local region of

the video frames, we need special treatment for the vertices without correspondence.

For every such vertex vti ∈ Vt
β, a näıve solution might be to simply constrain the

positions of the pixels that are temporally adjacent before alignment to be same after

resizing, i.e., by minimizing ‖ṽti −Tt7→t−1 ṽt−1i ‖2, where Tt 7→t−1 = (Tt−17→t)
−1 is needed

to offset the influence of frame alignment already encoded in the coordinates of vt−1i

and vti. However, this näıve solution is undesirable: although the sets of vertices

with and without aligned features in the previous frame (i.e., Vt \ Vt
β and Vt

β) are

disjoint, they are governed by the same set of interframe camera motions. As discussed

before, constraining temporally adjacent pixels before alignment always attempts to

retain a motion-oblivious interframe transformation (i.e., an identity transformation),

which conflicts with the preservation of motion-aware interframe transformations in

Equation 4.4.

Instead, we enforce the deformations around the vertices that are temporally

adjacent before alignment to be as similar as possible. To achieve this, we use the

Laplacian coordinates [38], denoted as L(vti) =
∑
{i,j}∈Et(v

t
i − vtj), to represent local

features, and use δ(ṽti) = L(ṽti)−L(vti) to measure the deformation caused by resizing.

Note that the original Laplacian coordinates are always the same at corresponding

vertices up to interframe transformations, that is, L(vti) ≡ Tt7→t−1 L(vt−1i ). Thus

we measure the deformation difference at corresponding positions by comparing the

corresponding new Laplacian coordinates

Dβ(vti) =
∥∥δ(ṽti)−Tt7→t−1 δ(ṽ

t−1
i )

∥∥2
=

∥∥L(ṽti)−Tt7→t−1 L(ṽt−1i )
∥∥2. (4.5)

By combining the above criteria, our final energy for preserving camera motion can be
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Figure 4.4: We use the motion information in a bounded number of aligned neighboring

frames to define a motion saliency map at each frame. We preserve object motion by

detecting distinct moving volumes of foreground objects, covered by quads in different

colors, and resizing each of them consistently.

formulated as

Dc =
∑
t

∑
vti∈Vt\Vt

β

Dα(vti) +
∑
t

∑
vti∈Vt

β

Dβ(vti). (4.6)

Object Motion Preservation

The camera motion constraints above are essentially based on the assumption that

the corresponding features across frames are already aligned at the same position,

which works well for (static) backgrounds. However, the corresponding features from

(dynamic) foreground objects usually have different locations even in the aligned frames

(e.g., the moving lady in Figure 4.5), as foreground objects have their own motion

which is independent of camera motion. Therefore we need additional constraints to

preserve the motion of foreground objects. We observed that relative sizes of dynamic

objects are roughly retained during resizing thanks to the smooth warping nature of

the regular grid meshes. Thus we only need to consider how to preserve the dynamic
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motion of an individual object. As dynamic objects usually attract most attention,

they should be preserved entirely during resizing. These observations motivated us to

detect moving areas of a dynamic object in individual frames and resize all the moving

areas associated to the same object in a consistent manner. In other words, our aim is

to consistently resize the object’s entire moving volume in the spatiotemporal space.

Since the basis of our resizing method is a smooth mesh warp, we do not require

a precise segmentation of the object’s moving areas. We use a simple technique to

estimate the moving volume, though we can always resort to more robust but complex

methods such as the one proposed by Kang et al. [39] for video montage. To begin

with, we first build an image mosaic [32] as the background scene image of frame

t by averaging the aligned pixel colors from frame t to t + k (k = 60 in all of our

experimental results). We then define a motion saliency map Ot as the L2-norm of the

RGB color difference between the aligned frame t and the background image. Note that

we exclude the influence of camera motion from Ot. Since we rely on color variations

to detect object motion, our method can handle all kinds of foreground objects as

long as they exhibit detectable color variations. To avoid possible interference by

pixels with small motions, which might be due to frame misalignment, we only keep

pixels {p|Ot(p) ≥ γmax(Ot)}, where γ = 0.5, and detect spatiotemporally connected

components of these pixels as the distinct moving volumes (Figure 4.4).

To preserve the consistency of each moving volume, we require all its covering

quads to be resized consistently. Let Bu be the set of quads covering a moving volume

u. See an example of Bu in Figure 4.4 where for instance all the quads covering the

moving volume associated with the mouse are shown in green across frames. Since our

sole concern is the final resizing effect (i.e., frames transformed back to the original

coordinate system), similar to the design of Equation 4.5, we need to offset the influence

of interframe transformations when constraining quads from different frames. Let qu,h

be a quad with index h in Bu and tu,h the time coordinate of qu,h. Rather than

constraining all the quad pairs, which would lead to a much denser system matrix,

we found it sufficient to resize all the quads equally to some randomly chosen quad

qu,h0 ∈ Bu up to interframe transformations, where h0 is a random number. To allow
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Figure 4.5: Top: Camera motion constraints alone cannot guarantee consistent resizing of

foreground objects. Bottom: Adding object motion constraints leads to temporally more

coherent results.

possibly large distortion for moving volumes detected as less important, we constrain

the vertical and horizontal edges of quads separately. Specifically, we formulate the

energy term for object motion as

Do=
∑
u

∑
h6=h0

Do,x(qu,h) +Do,y(qu,h), with

Do,d(qu,h)=
∑

{i,j}∈Ed(qu,h)

∥∥ẽtu,h0i,j −Ttu,h0 7→tu,h ẽ
tu,h
i,j

∥∥2, (4.7)

where ẽti,j = ṽti − ṽtj, d ∈ {x, y} and Ex(qu,h) and Ey(qu,h) denote the horizontal and

vertical edges of qu,h, respectively. Intuitively, minimizing the above energy means

resizing the corresponding edges of qu,h and qu,h0 in the same manner (up to their

interframe transformation). We are allowed to simply compare the edge vectors because

the corresponding edge vectors of all the quads before resizing are the same up to

interframe transformations. Figure 4.5 compares the resizing results with and without

the object motion energies.
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Figure 4.6: An example of video expansion achieved with our method. Left: the original

frame. Right: the expanded frame.

4.3.3 Minimization of Energy Functions

By combing spatial and temporal energies, our final optimization is formulated as

argmin
ṽti

(
Du +De + λ (Dc +Do)

)
, (4.8)

subject to positional, boundary and size constraints. We use the weighting factor λ

to balance the spatial and temporal contribution. Since motion artifacts are more

noticeable, we use a large value of λ (λ = 10 in all our experiments). Each energy term

is dependent on the sizes of individual frames/meshes, which are often different due

to frame alignment. To remove this dependence and revert to the same importance

of individual frames before alignment, we divide per-frame formulation in each energy

term by the corresponding scaling factor (i.e., the scaling component of Tt7→0). Similar

to Section 3.2, we fix the position of the top-left vertex of the first frame and constrain

all the boundary vertices of each frame to slide along their respective boundary lines.

We incorporate the user-specified resizing factor (Sx, Sy) into the size constraints

ṽtn,d − ṽt0,d = Sd(v
t
n,d − vt0,d), ∀t, d ∈ {x, y}, (4.9)

where vt0 and vtn are the top left and the bottom right vertices of frame t, respectively.
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Our optimization is essentially a nonlinear least-squares problem, with the non-

linearity stemming from De. We consider the uniform scaling factor stq and length

factors lti,j as additional unknowns, and solve for {ṽti} and {stq, lti,j} iteratively using

an alternating method. Please refer to Section 3.2.2 for more technical details. Each

alternating iteration involves solving a large sparse linear system, whose system matrix

can be pre-factorized. Therefore we only need to perform fast back substitutions for

each iteration. Note that the x and y coordinates of the vertices are independent in

the objective function, allowing us to solve for them separately.

4.3.4 Scalability

Preserving the temporal coherence at scene/shot boundaries of videos is not necessary

since there are no corresponding objects between subsequent frames. Therefore we

manually segment input videos into individual scenes and leave the implementation of

an automatic scene boundary detection algorithm (e.g., [40]) for future work.

The performance of our optimization (Equation 4.8) depends on both the resolu-

tion of the video and the number of frames involved. Adopting multigrid algorithms,

as done in [5], would alleviate the performance problem to some extent. Since human

beings are often not sensitive to small changes between temporally distinct frames, this

motivated us to break a long video (of a single scene) into shorter clips and solve the

resizing problem on individual clips sequentially. That is, we constrain the temporal

coherence in the overlapping areas in order to achieve coherent resizing of the entire

sequence. Since we trade speed for coherence quality, our current implementation can

achieve interactive performance (around 5 fps).

… Clip p-1

Clip p

pn pn + q (p+1)n + q

… To achieve a smooth resizing effect

between consecutive clips, we slightly

overlap consecutive clips and apply ad-

ditional temporal coherence constraints

to the overlapping frames. Specifically, we divide an input video into multiple clips,

with each clip containing n + q frames, where q is the number of overlapping frames.
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For example, the p-th clip contains frames from pn to (p+1)n+q. We set n = 100 and

q = 30 in our experiments. We resize the first clip (p = 0) using the optimization in

Equation 4.8. For each resized clip p− 1 (p ≥ 1), we directly output its first n frames

as the final resized frames and leave its last q frames as constraints to achieve smooth

resizing transition to its next clip p.

We achieve temporal coherence between clips p − 1 and p by minimizing the

differences of the corresponding vertex positions between the last q frames of clip p− 1

and the first q frames of clip p:

Ds = ϕt

pn+q∑
t=pn

∑
ṽti∈Ṽt

∥∥ṽt,pi − ṽt,p−1i

∥∥2, (4.10)

where ṽt,pi denotes the unknown position of ṽti in clip p and ṽt,p−1i the already-solved

position of ṽti in clip p− 1. We use ϕt to control the transition speed. We found that

a simple linear function ϕt = (pn+ q− t)/q already works well in our experiments. To

resize the whole clip p, we add λDs as an extra temporal energy term into the objective

function in Equation 4.8 and solve the resulting optimization for all the frames of clip

p aligned at its first frame t = pn. Note that the positional constraint is unnecessary

in this scenario since Ds provides an alternative positional specification.

4.4 Results and Discussion

We tested our method on aspect ratio changes of a variety of videos. The chosen

videos range from indoor scenes to outdoor scenes, from scenes containing one object

movement to those involving multiple moving objects, and from intentional camera

motion to unconscious camera shaking. Many of them involve simultaneous camera

and object motion, making the task of content-aware resizing rather challenging. Fig-

ures 4.1, 4.6 and 4.7 show some of the tested examples under different types of camera

and object motions. Although our camera model for frame alignment only contains the

translation and scaling parameters, it can handle almost all types of camera motions

except camera roll, which seldom happens in video production. As demonstrated in

the accompanying videos, our method successfully produces spatiotemporally coher-
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Figure 4.7: Left: frame alignment examples under different types of camera motions,

consisting of sliding, yaw, pitch, and zoom motions. Right: the resized key frames. Note

that the visually prominent features (e.g., human shapes and window shapes) are well

preserved both spatially and temporally.

ent resizing results and faithfully preserves visually prominent regions and motions of

objects and cameras in most cases.

It is well known that interframe motion estimation incurs some approximation er-

rors, even if 2D projective transformations are used as a more precise camera model [32].

To avoid the increasing accumulation error in long videos, we use only a bounded num-

ber of frames to define the importance maps, two consecutive frames to define camera

motion constraints, and only the frames involved in individual moving volumes to de-

fine object motion constraints. More importantly, we break a long video into short

clips, for which the accumulation errors are generally small. As demonstrated in our

supplemental video, this strategy preserves the objects’ aspect ratios better since the

side effect of the alignment error is reduced. Note that our streaming implementa-
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tion usually does not introduce any noticeable resizing artifacts between consecutive

clips, thanks to the blending strategy of importance maps and the smooth transition

constraints applied at the clip overlapping areas. We use our streaming method to

generate all the resizing examples except those used for comparisons with and without

the streaming implementation.

Comparisons

We have compared our resizing results with those produced by homogeneous resizing,

one-directional warping (odw for short) [4] and seam carving (sc) [2]. We have also

compared to a näıve extension of Wang et al.’s [41] omnidirectional warping method for

video resizing (ndw), in which temporal coherence is enforced by simply constraining

temporally adjacent vertices between consecutive frames, similar to Wolf et al.’s con-

straints. We use our blended importance model for both odw and ndw and keep the

original forward energy of sc, since the forward energy considers energy changes caused

by seam removal and thus preserves structures better than a backward energy [41]. We

have also experimented with an importance model determined from individual frames

without blending when comparing to odw and ndw, but found that it usually pro-

duced similar or even worse results (see a comparison example in the supplemental

videos). Since we want to compare the effectiveness of these resizing methods for gen-

eral types of videos, we do not use saliency measures designed for certain special types

of objects, e.g., faces.

In Figure 4.8 we chose to show three representative comparison scenarios involving

(multiple) object motion only, camera (zoom) motion only, and simultaneous object

and camera motion, respectively. Please refer to the accompanying videos for more

comparison examples. Obviously, homogeneous resizing always achieves the best tem-

poral coherence but at the cost of introducing the most serious distortion into important

content. The previous content-aware methods preserve important content better but

exhibit different kinds of artifacts due to their motion-oblivious nature. By the dis-

crete nature of sc, it causes high-frequency artifacts in both the spatial and temporal

domains, exhibiting “jaggies” and flickering. odw and ndw lead to smooth waving
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Figure 4.8: From left to right columns: the original frame images, resizing results with

homogeneous resizing, [2], [4], the näıve extension of [41], and our method. Clearly, only

our method can well preserve the visually prominent features while successfully retaining

temporal coherence. Due to the motion-oblivious temporal coherence constraints, the pre-

vious content-aware resizing methods often cause inconsistent alteration of corresponding

features across frames, e.g., the white bunny in the first example, the arch in the second

example and the woman’s body in the third example.
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artifacts spatially and temporally, since they distribute resizing distortion across the

whole image of each frame in a least-squares manner. We observed that low-frequency

artifacts caused by odw or ndw are generally less noticeable than high-frequency ar-

tifacts by sc. We also found that due to its edge flipping constraints, ndw often

produces less fold-over artifacts than odw, noticeable in the areas of human body of

the sixth row. However, the waving artifacts by ndw occurring in structural or high-

contrast regions are still visually noticeable. Although the previous methods do not

exhibit very serious spatial artifacts in the above examples, they cause a much more

serious problem of temporal incoherence, as shown in the accompanying videos. On

the other hand, our method consistently achieves spatiotemporally coherent resizing

of these videos. For some complex examples such as the third one, achieving both

perfect spatial content preservation and perfect temporal coherence is extremely hard.

For those scenarios, our method still achieves better spatial content preservation than

homogeneous resizing and better temporal coherence than the previous content-aware

methods. Thus we believe that our method strikes a good balance even in complex sit-

uations. In short, compared to previous work, our method achieves comparable results

for trivial cases and visually better results for challenging examples that involve large

camera and/or object movements.

We show the effects of individual components of our algorithm by comparing the

resizing results with and without certain components. For example, we demonstrate

the pure impact of blending the aligned importance maps by comparing the results

with and without using our importance model for odw (see the accompanying video

MapComparison.mp4 ). The comparisons in Figure 4.5 show the significance of ob-

ject motion constraints. We demonstrate the pure effect of the criteria for preserving

both camera and object motions by comparing our method with ndw, since the same

importance maps are used.

Performance

We use uniform grid meshes to drive the deformation of individual frames. Clearly,

denser meshes allow more effective distribution of resizing distortion and thus produce
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better results, at the cost of longer computation and larger memory consumption. For-

tunately, we found that rather coarse meshes are often sufficient to achieve satisfactory

results. In our experiments, we always use similar mesh resolutions (each quad roughly

covers 20× 20 pixels), though we could use even coarser meshes without sacrificing re-

sizing quality for some of the tested videos. We associate a grid mesh with each frame

rather than introducing a mesh for several frames, since otherwise motion artifacts are

more noticeable.

Our resizing method solves the nonlinear optimization problem efficiently by pre-

factorizing the system matrices and performing fast back substitution at each iteration.

The streaming implementation makes our method scalable to long video sequences.

Please refer to the accompanying video for some resizing results of long videos. In

our experiments, it usually takes less than 200 iterations for convergence in the first

clip and less than 100 iterations for the remaining clips, since the resized overlapping

frames from a previous clip already provide a good initial guess for resizing the following

clip. For the first example in Figure 4.7, whose resolution is 480×240, our unoptimized

implementation takes 20 seconds to resize the first 100 frames (around 5 fps on average),

with the memory usage of 180Mb, measured on a PC with Duo CPU 2.33GHz. Of

that time, 5 seconds are spent on the factorization of the system matrices of both x

and y coordinates and 15 seconds on the 105 alternating iterations. We believe that

introducing a GPU based multi-grid solver would further improve the performance of

our system, possibly allowing real-time resizing.

Limitations

We model camera motion using a 2D camera model, which assumes that the world is

a single plane, or the camera rotates around its optical center [32]. Since our model

ignores the parallax effect, where the image displacements of scene points should be

dependent on their distances from the camera, it might cause misalignment for scene

points of varying-depth backgrounds (see an example in the supplemental video SIFT-

Features.mp4 ). Fortunately, the smooth warping nature of our system tolerates some

degrees of error from misalignment. We observed that the alignment deviation usually
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causes only local waving artifacts, i.e., makes some static scene points move locally.

Compared to global waving artifacts by ODW and NDW or flickering artifacts by SC,

local waving artifacts are much less noticeable, as demonstrated in the supplemental

comparison video LocalMisalignment.mp4. In the future it would be interesting to see

if a more sophisticated camera or object motion detection technique could improve the

resizing results further. Resizing of videos containing depth information, possibly from

stereo cameras, is another interesting topic to explore.

Our feature-based frame alignment method may become unreliable when either

too few features are detected (e.g., due to homogeneous backgrounds) or the detected

feature correspondences disagree on the implied camera transformation (e.g., due to

dynamic backgrounds or large foregrounds occupying the scene). In these scenarios,

we replace the unreliable interframe transformation with a linear blending of neigh-

boring reliable transformations (see the supplemental video AlignmentError.mp4 ). In

the extreme case where there are too many unreliable interframe transformations, we

apply an identity transformation to every frame of the video and lose the temporal

preservation of background contents.

Like the other video resizing methods [2,4,5], our method would degenerate to

homogeneous resizing if the importance map is nearly homogeneous. This may be due

to failure of the saliency measure, too large areas of static objects detected as impor-

tant, or too many moving parts spreading over the scene (see the supplemental video:

LinearScaling.mp4 ). In addition, our blended importance map further relies on the pre-

cision of frame alignment since the homogeneous pixels might be erroneously marked

as important from neighboring frames due to frame misalignment. This problem usu-

ally occurs at scenes with highly varying depths or very long videos. In this case, an

intuitive user interface would be useful for users to guide the object correspondence

and saliency measure, achieving better resizing results [42].
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Chapter 5

Application: Focus+Context Visualization

with Distortion Minimization

Figure 5.1: (left) The original model partitioned with a uniform grid space. Since solving

for those deformed cubes that do not contain any model information (in green) provides zero

contribution to the magnification result, we omit their energy terms from our optimization

system (middle). That is, we solve only for the deformed grid vertices of the cubes occupied

by the model (in red) and reconstruct the embedded model by space interpolation to achieve

magnification visualization (right).

5.1 Overview

We propose a framework to interactively deform a polyhedral model to achieve Fo-

cus+Context visualization. Our goal is to non-homogeneously rescale different regions

while preventing the global bounding space of the model from being expanded (see

Figure 5.1) and thus keeping the entire model displayed on the screen. We construct

a uniform grid space for a given model such that the model vertices are embedded

in the grid cubes. While enlarging the cubes covering the user-specified focal region,

our system automatically reduces the other cubes to keep the entire model within the

global bounding space. The deformed model is reconstructed by computing each model
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Figure 5.2: (left) Original model. The focal region (inside the red dotted circle) is magnified

to observe in detail the teeth model using the stretch orthogonal method [9,10] (middle left),

radial Gaussian distortion [9,10] with faster (middle) and slower (middle right) fall-off and

our method (right). Note that, with the stretch orthogonal method and the radial Gaussian,

the surroundings of the focal region are seriously stretched due to the distortion being

uniformly distributed on the model; wider Gaussian fall-off only distributes the distortion

to a larger region. In contrast, our method minimizes distortion and preserves the shape of

the local feature such that each tooth remains similar to its original shape.

vertex as a linear combination of its respective set of cube vertices in the deformed grid

space. Specifically, we wish to scale each local region of the model but keep it similar

to its original appearance. The aim is to preserve the aspect ratio of each local region,

avoiding squeezing or squashing which would result in distortion. We design an opti-

mization procedure that allows cubes covering the model to undergo uniform scales,

while letting empty cubes to be stretched to absorb the resulting distortion. Since the

transformations of connected cubes are not identical, the deformation inevitably causes

distortion. To minimize this resulting distortion, we propose a set of energy terms to

form an optimization system and solve for the grid vertex positions of the deformed

space in a least-squares sense.

We resize each local region of the given model by an approximate uniform scale

such that the locally magnified model resembles the original shape, except that their

local sizes are different. Furthermore, our method accomplishes Focus+Context visu-

alization with the regions close to the focal region automatically expanded to reduce

the distortion. This is a desirable property since these surrounding areas are likely to

be the next focal region during interactive visualization and thus are important as well.

Overall, our algorithm can visualize Focus+Context information on the screen while

keeping the distortion under control and making it unnoticeable (see Figure 5.2).
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5.2 Focus+Context Visualization

Given an input model, we first rescale the model to be of unit size. To ensure that the

entire model remains displayed on the screen, the given model should be placed at a

proper position such that the eight vertices of its 1×1×1 bounding box are all projected

within the screen. Then, we partition the model using a n3 uniform grid space, G =

{V,E,C}, with vertices V, edges E, and cubes C, where V = [vT0 ,v
T
1 , ...v

T
m−1]

T ,

m = (n + 1)3, and vi ∈ <3 denotes the position of vertex i. In other words, there are

n3 identical cubes inside the bounding space.

Using our 2D graphical interface, the user moves a magnifying lens represented by a

red dotted circle to specify a focal region to magnify. The user also specifies a parameter

λ as the magnification factor of the focal region. We refer to the cubes covering the focal

region (i.e., those whose centroids are projected within the red dotted circle) as the focal

cubes. The focal cubes are expanded according to the parameter λ, and the remaining

cubes are automatically expanded or reduced to obtain a deformed grid space G′ while

maintaining the global bounding size. Our system solves for the grid vertex positions by

minimizing a set of energy functions retaining the aspect ratios of the cubes covering

the given model as well as constraining the grid vertices to be within the bounding

space. After deforming the embedding space, the model is reconstructed by computing

each vertex position according to its mean value coordinates within the grid space [43].

Since the global bounding space remains unchanged during the magnification of the

focal region (see Figure 5.3), and the distance between the model and the camera also

remains the same, our system accomplishes the aim of Focus+Context visualization.

5.2.1 Space Deformation

We compute the deformed grid space by determining the scaling transformation of

each cube. Clearly, since the cubes are connected and are not scaled by the same

factor, it is impossible to magnify a specific region without causing distortion to other

regions. Therefore we strive to minimize the deviation of each local transformation

51



from a uniform scale to keep the resulting distortion under control and unnoticeable.

To satisfy the above requirements, we propose several energy functions and formulate

an optimization system to compute the deformed grid space.

Individual Cube Rescaling

Given a cube ck, we compute its deformed version c′k = skck, where sk is a 3 × 3

uniform scaling matrix. To solve for the entire grid space in a least-squares sense, we

integrate the equations into a linear system

‖C′ − SC‖2 = 0, where

Suv =

 sk if u = v

0 otherwise
, and C = [c0, c1, ..., cn3−1]

T . (5.1)

Rather than uniformly spreading the distortion over the grid space, we float distortion

to the cubes that are not occupied by the model because the distortion of those cubes

does not influence the magnification result. Thus, we classify the cubes into two groups:

the principle cubes which cover the input model CP ⊂ C and the trivial cubes CT ⊂

C which do not. Our goal is to prevent the principle cubes from being squeezed.

While solving for the deformed grid space by minimizing the objective function, our

algorithm gives higher penalties to the principle cubes CP if their transformations

deviate from uniform scales so as to better preserve their aspect ratios. The trivial

cubes CT have zero penalties, sacrificing the uniformity of scaling transformation to

absorb the distortion. To implement this idea, we rewrite Equation 1 into the form:

‖C′P − SPCP‖2 + γ‖C′T − STCT‖2 = 0. (5.2)

By setting γ = 0 since the distortion on the trivial cubes CT does not influence the

model’s shape, our system computes only the principle cubes CP by solving the follow-

ing simplified equation:

‖C′P − SPCP‖2 = 0. (5.3)

Note that a cube is formed by a set of vertices and edges. That is, if a cube is uniformly

resized, then its 12 edges would be uniformly expanded or contracted. While deforming
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Figure 5.3: (left) Original model and its global bounding space. While magnifying the

gargoyle’s head without imposing inequality constraints, the entire model is uniformly ex-

panded and some regions may go out of the bounding space (middle). We constrain the

outer grid vertices to be located on the bounding surface (right), and thus ensure that the

deformed model is always displayed on screen in its entirety.

the grid space, our algorithm retains the connectivity of the original grid structure and

only moves the grid vertices to scale individual cubes to different sizes. Let ep = {i, j}

be the pth edge of the cube ck and εp = vi−vj, we can represent the cube as cTk = qkV,

where

qk,uv =


1 if u = p, v = i

−1 if u = p, v = j

0 otherwise

, ck = [εT0 , ε
T
1 , ..., ε

T
11].

Putting the equations together, we can denote Q = [qT0 , q
T
1 , ..., q

T
n3−1]

T and replace the

matrix C by QV. Thus, Equation 3 can be reformulated as

‖QPV′P − SPQPVP‖2 = 0. (5.4)

where VP denotes the vertices of the principle cubes.

Positional Constraints

To solve Equation 4, we need at least one absolute position to locate the deformed grid

space since the equation only expresses relations among vertex positions. However,

constraining only one vertex at a specific position may move the model when the focal

region is magnified. This is because the optimization may transform individual cubes
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Figure 5.4: (top row) Only one position constraint is applied at the bottom right of

the Ramesses model (black point). While magnifying his feet (top middle) and head (top

right), his body would move to the right or left as our algorithm tries to minimize distortion.

(bottom row) All the grid vertices are slightly constrained to their original positions. The

model’s position is now more stable after local magnification.

to different positions to reduce their distortion. Figure 5.4 demonstrates this effect.

To enhance the stability of the visualization, we want all the cubes to be close to

their original positions. Specifically, we constrain each grid vertex to be at its original

position with a small weighting factor and introduce the following energy term:

ω‖IV′P −VP‖2 = 0. (5.5)

We set ω = 0.001 in our experiments to retain the overall model’s position. Larger ω

will lead to immovable grid vertices and failure to deform the grid space.
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Non-Linear Constrained Optimization

We solve for the deformed vertex positions by minimizing the integration of the above

energy terms

arg min
V′P ,SP

‖QPV′P − SPQPVP‖2 + ω‖IV′P −VP‖2, (5.6)

which can be formulated as an over-determined linear system AV′P = b(VP ), where

A = [QT
P , ωI

T ]T and b(VP ) = [STPQT
PVT

P ,V
T
P ]T . To prevent the global bounding space

from expanding, we add inequality constraints to the objective function such that the

grid vertices move only within the bounding space. That is, we minimize

argmin
V′P

‖AV′P − b(VP )‖2, subject to

xl ≤ vx ≤ xu, yl ≤ vy ≤ yu, and zl ≤ vz ≤ zu, (5.7)

where xl, xu, yl, yu, zl, and zu are the lower and upper bounds of x, y, and z coordinate,

respectively. Since A is not a positive definite matrix, we multiply the equation by

AT and solve the system (ATA)V′P = ATb(VP ) to obtain the unknown variables V′P .

Note that the uniform scaling transformations of the cubes are still unknown when

we determine the deformed grid space. Therefore, we can only solve this non-linear

optimization problem by iteratively updating the vertex positions [44].

The scaling factor for the focal cubes is obtained from the input parameter λ.

For the remaining (non-focal principle) cubes, we compute their scaling transfor-

mations according to their deformed (M ′
k) and original (Mk) volumes. Specifically,

sk = (M ′
k/Mk)

1/3I. In the beginning, we set V0
P = VP to start the iteration. We

then compute the scaling transformations for the non-focal cubes from Vt
P , and use

the obtained b(Vt
P ) to solve for the new vertex positions Vt+1

P . Although the scaling

transformation obtained from V0
P is merely an identity matrix, the least-squares solver

will still reduce the volumes of some cubes so as to expand the focal region. However,

the set of vertex positions computed in the first iteration is not the optimum solution

of our proposed objective function because the applied scales are only determined by

the initial guess. Therefore, we repeat the process to update the vertex positions until

the solution converges.
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While iteratively updating the grid vertex positions, we detect whether any vertex

violates the inequality constraints. Since only a few vertices might be transformed

outside the bounding space, not all the inequality constraints have influence on the

optimization problem. Therefore, we consider an inequality constraint fx(v) as

active if vx > xu or vx < xl

inactive if xl ≤ vx ≤ xu
.

Similarly, fy(v) and fz(v) are inactive if vy and vz satisfy their respective constraints.

In the beginning, we consider all the inequality constraints as inactive since all the grid

vertices are located within the bounding space. After computing the new vertex posi-

tions in each iteration, our algorithm detects if any inequality constraint has become

active, and if so, restricts that vertex to be sliding on the space boundary in the next

iteration. To combine the inequality constraints with our proposed objective function,

these constraints are transformed into energy terms [45] (for example, (vx−xl)2 = 0 if

vx < xl) and are added into the linear system if they are active. Note that the active

constraints of x, y, and z coordinates are different; therefore, the three coordinates

of the grid vertices should be solved separately. Let Fx = {fx,0, fx,1, fx,2, ...} be the

index set of active inequality constraints of the x coordinate. We can solve the lin-

ear system AxV
′
P,x = bx(VP ) to obtain the x coordinates of the grid vertices, where

Ax = [QT
P , ωIT ,RT

x ]T , bx(VP ) = [STPQT
PVT

P,x,V
T
P,x,Hx]

T ,

Rx,uv =

 δ if v = fx,u ∈ Fx

0 otherwise
, Hx =

 δxl if vx < xl

δxu if vx > xu
,

and δ is a large number to enforce the soft constraint (we set δ = 100 in our exper-

iments). The other two coordinates of the vertices can be determined in the same

manner. Since the number of equations changes whenever any inequality constraint

becomes active, causing the size and the structure of the linear system to change as

well, our system needs to re-factorize the matrix Ax (or Ay , Az) to compute the new

vertex set. Fortunately, the factorization only takes place when an inequality constraint

is activated or deactivated, which occurs very infrequently because only the boundary

vertices of the principle cubes might violate the inequality constraints. Although our

algorithm deforms the grid space in an iterative manner, the computation is still effi-

cient because the factorization of the linear system is not necessary in every step. In
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Model Mesh vertex Grid vertex Back Recons-

number number Factorization substitution truction

bonefoot 12612 605 0.032 0.001 0.002

ball joint 137062 343 0.021 0.001 0.023

Goddess 523578 565 0.106 0.001 0.087

thorax 99920 973 0.126 0.001 0.016

skull 63264 2714 0.145 0.001 0.011

Ramesses 826266 920 0.151 0.001 0.144

colon 44500 1351 0.101 0.001 0.008

hip 132538 1470 0.176 0.001 0.024

gargoyle 100002 1644 0.134 0.001 0.018

teeth 116604 1851 0.175 0.001 0.020

dancing children 100000 1697 0.131 0.001 0.018

Chinese dragon 437645 1480 0.177 0.001 0.076

Table 5.1: The second and third columns show the model information and the last three

columns show the timing statistic (in seconds). The computation cost of reconstructing

the model depends on the model’s vertex number while the computation cost of grid space

deformation (i.e., factorization and back-substitution) depends on the grid’s vertex number.

most steps, we need only to apply back substitutions to compute the new vertex set

and thus the grid space can be deformed in real time.

For grid vertices whose inequality constraints are active, we examine their positions

to decide when to deactivate them. Since our system solves for the deformed grid space

using soft constraints, the vertices with active inequality constraints are not exactly

located on the grid space boundary, rather they may be slightly inside or outside the

boundary. Specifically, the activated inequality constraint of an outside vertex pulls the

vertex close to the space boundary, but the vertex remains outside. Then, subsequent

movement of the focal region may cause the vertex to move in. When this happens,

its inequality constraint can be deactivated.
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Figure 5.5: We magnify the dragon’s head (in the red dotted circle) to achieve Fo-

cus+Context visualization. From left to right are the original model and the locally mag-

nified models computed by our algorithm after 1, 5, 10, 30 iterations. Notice that the

surrounding region of the dragon’s head is more distorted in the beginning but the distor-

tion is rapidly reduced in subsequent iterations. The results obtained in 10 and 30 iterations

are very similar because the iterative solver has converged.

Initial Guess

Solving a nonlinear optimization problem always needs a starting position, which is

commonly called the initial guess. Obviously, an initial guess that is close to the

optimum solution would lead to faster convergence. Choosing a good starting point

is therefore an important issue. Although it is always possible to start deforming

the grid space from its uniform shape, the extra iterations needed will increase the

computation cost and thus slow down the interactive rate. Figure 5.5 shows an example

to demonstrate the initial guess and the subsequent iterations. Here, we assume that

the cursor movement of the user while specifying the focal region is continuous and the

algorithm starts the iteration from the previous frame because the magnification results

should be similar if their magnified regions are close to each other. In the beginning,

we set the original grid space as the initial guess since there is no previous frame. Our

system repeats the updating process until the movement of each grid vertex is less than

0.001, which takes 8 iterations on average to achieve the minimum solution.

5.2.2 Model Reconstruction

We reconstruct the given model by space interpolation after the grid space is deformed.

Since each model vertex is embedded in a local cube, we can determine its new po-
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sition by a combination of their respective 8 cube vertices. Let u be a vertex of the

given model, and v0 ∼ v7 be its surrounding cube vertices. The model vertex u can

be represented as
∑7

i=0wivi, where wi is the weight determined by the mean value

coordinates [43]. We compute the weighting factor wi in the pre-computation step and

use these values to reconstruct the model each time the bounding space is deformed

since the wi’s remain the same.

5.3 Results and Discussion

We have implemented our algorithm on an Intel Core2 2.33 GHz PC with 2 Gb RAM.

The linear system is solved with Cholesky Factorization provided by the Taucs library

[46]. We partition each input model by a 203 grid space, except the ball joint model

(Figure 5.1) by 103. Clearly, partitioning the model with a finer grid space (especially

for complex models) will lead to better results but increase the computation cost. To

balance between the quality and interactive rate, we found that a 203 grid space is a

good compromise. Table 1 shows the timing statistic and the model information. The

slowest part of our algorithm is the matrix factorization, which mainly depends on

the number of grid cubes. The reconstruction of the given model is efficient because

computing each vertex only requires a linear combination of the surrounding cube

vertices. For example, the Ramesses model in Figure 5.4 contains 826,266 vertices,

which requires only 0.144 seconds to determine the positions of all the model vertices.

Our system can provide Focus+Context information to the user, allowing the user

to view detailed content of the focal region while maintaining the overall perception

of the model. The results shown in Figure 5.8 demonstrate the effectiveness of our

technique. For each input model, we expand different focal regions specified with a

dotted red circle and the model is deformed smoothly to keep the deformed shape

within the global bounding box. In addition, due to the distortion minimization in

our formulation, our system not only retains the aspect ratios of non-focal regions but

also results in the smooth magnification of the surroundings of the focal region. This

means the user needs not carefully specifies the shape and size of the magnifying lens
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Figure 5.6: (left) Original model. (middle) Deformed models by radial Gaussian distortion

(top) [9,10] and by our method (bottom). We use different shades of red to represent the

distortion distribution (right). Notice that the distortion is much smaller with our method

and does not gather around the focal region.

to fit the feature of interest, leading to an easy and intuitive interface.

5.3.1 Distortion Measurement

We determine the degree of similarity between the original and deformed models by

considering the distortion of each local region. The distortion can be measured in terms

of the amount of stretching of individual cubes because the embedded input model is

deformed by space interpolation. Obviously, a deformed cube that is of the same

shape, but different size, as the original cube suffers from zero distortion. Therefore,

to determine the amount of distortion, we first scale each pair of original and deformed
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cubes to the same size and then accumulate the difference of their 12 edge vectors.

Specifically, we compute the equation∑
{i,j}∈Ek

|δ(vi − vj)− (v′i − v′j)|2, (5.8)

where Ek denotes the 12 edges of the local cube k, and δ = (M ′
k/Mk)

1/3, with M ′
k

and Mk denoting the volume of its original and deformed cubes, respectively. The

region with lower distortion value means that it is similar to its original shape and

the region with higher distortion value is naturally stretched. For example, in Figure

5.6, we expand a portion of the colon and measure the resulting distortion due to the

magnification. It can be clearly observed that, without distortion minimization, the

regions surrounding the focal region are seriously distorted. In comparison, our system

produces results with much smaller and unnoticeable distortion. In the case when

all the cubes are principle cubes, our system produces results similar to those with

radial Gaussian distortion [9,10] since there is no space to absorb distortion. Under

this situation, the distortion is uniformly propagated outward from the focal region to

other regions.

5.3.2 Soft Constraint

An interesting feature of our system is the use of soft constraints to solve for the

deformed grid space in a least-squares sense. This leads to the actual size of the

deformed focal region being slightly smaller than the user-specified magnifying factor

for the focal region. We take the gargoyle model in Figure 5.3 as an example to

illustrate this situation. Although we apply a 2× I transformation on the focal region

to determine the deformed grid space, the average volume of the deformed focal region

is 1.46×10−4 while their original volume is 0.26×10−4. The expanding ratio, i.e., 6.35,

is less than the expected 23 because the uniformity and the magnification requirements

conflict with each other (i.e., within the limited space, it is impossible for the focal

region to expand with no distortion), and the least-squares solver finds the optimum

solution to satisfy the overall requirements.

Solving for the deformed grid space using soft constraints inevitable causes a little
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Figure 5.7: Original model (left). Observe that the Gaussian distortion method (middle)

better preserves the global shape of the foot bone than our method (right). However, the

user usually pays more attention to the regions inside and surrounding the magnifying lens

and our method produces very little artifact in these regions.

distortion to the focal region because the system compromises the uniformity of the

focal cubes to reduce the distortion of the overall model. Some applications may require

the focal region to be expanded without distortion. Minimizing the objective function

with hard constraints can achieve this aim and ensure that the size of the deformed focal

cube is equal to the user’s specification. Unfortunately, this approach would rapidly

increase the cost if the focal region changes constantly since the modification of the

hard constraints (i.e., focal region) changes the structure of the linear system and thus

requires matrix refactorization. For efficiency, we solve the objective function with only

soft constraints while the user is changing the focal region interactively and change the

soft constraints into hard constraints to exactly retain the size and uniformity of the

focal cubes after the user’s specification remains fixed for some time.

5.3.3 Pros and Cons

Our system deforms the entire model to achieve Focus+Context visualization. While

magnifying the focal region to display it with higher resolution, some regions are ex-

panded while some are reduced to minimize distortion of every local region. Unlike

the radial Gaussian distortion method [9,10], which deforms only the cubes inside or

close to the focal region, our system rescales almost all the cubes covering the model.

Although the deformation is everywhere, the user can easily observe the continuous

variation of the model’s shape because the model is deformed interactively. Since ev-
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ery local region is rescaled, our method can not retain the model’s global shape while

minimizing the local distortion. For example, in Figure 5.7, the global shape of the

foot bone model is changed with our approach but is better preserved by the radial

Gaussian distortion. We argue that the change of the global shape is not necessarily

a bad feature. According to the theory of human central vision, only a small area in

the center of retina contains a rich collection of cone cells, which is sensitive to light,

fine detail and color. Therefore, users usually concentrate on a region of interest and

its surroundings when using a magnifying lens. This means that the model’s overall

shape is only a concept and the variation of the global shape is not disturbing to the

user. In addition, since our system achieves real time performance, the user can easily

move the magnifying lens to any free space not occupied by the model any time to see

the model’s undeformed global shape.

Our system offers another advantage for Focus+Context visualization. The mag-

nifying lens is of limited size (i.e., smaller than the screen size), and during interactive

visualization, the user is often also interested in the non-focal regions close to the lens

border. Thanks to the distortion minimization, these surrounding regions, which are

likely to be the next focal regions, are also enforced to expand because the cubes are

connected.

Overall, we introduce a novel and interactive technique to achieve Focus+Context

visualization of 3D models. The main contribution of our method is to minimize the

resulting distortion such that each local region appears similar to its original coun-

terpart. Our algorithm retains the original global size of the model by constraining

the grid vertices to move within the global bounding space and prevents the local re-

gions from squeezing through approximating the applied transformations to be close

to uniform scales. Finally, our algorithm has the potential to handle point models and

volumetric data since the embedded model is deformed by space interpolation. While

the cubes are transformed to satisfy the local magnification requirement, the positions

of the point clouds or the voxels are redistributed as the combination of its surrounding

cube vertices.
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Figure 5.8: Original models (leftmost column). Our algorithm expands the focal region and

reconstructs the embedded model from the deformed grid space to achieve Focus+Context

visualization (the remaining columns).
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Chapter 6 Conclusion

We introduced spatial content preservations to retain the aspect ratios of prominent

objects when resizing images and videos. The squeezing and stretching of each lo-

cal region is determined based on the obtained importance values. Since we allowed

prominent objects to be uniformly resized, our method can fully utilize all the available

homogeneous regions to float the resulting artifacts. The preservation of grid lines can

avoid the distortions of objects that occupy connected quads. Besides, this constraint

can also prevent the folded over problem, which is commonly seen in the image warping

methods.

To extent the image resizing to video resizing, we also presented a practical frame-

work which can handle videos of complex dynamic scenes. We observed that camera

and object motion cause feature correspondences to deviate from temporally adjacent

pixels, easily causing flickering or waving artifacts. We found that minimizing motion

artifacts during resizing can be achieved by preserving both camera and object motion

and introduced motion-aware temporal coherence constraints to preserve them. Our

streaming implementation leads to a scalable video resizing system that consistently

produces spatiotemporally coherent resizing results. We believe that by introducing

the concept of motion-aware constraints, we have taken a significant step towards a

more practical video resizing system.

Different content-aware image/video resizing methods each have their own strengths.

It would be interesting to combine our ideas of motion-aware constraints with the other

image resizing methods or with the existing video retargeting methods to achieve bet-

ter temporal coherence. In addition, the preservation of global structures, such as

straight lines and different types of symmetries, is as well important, requiring explicit

structure detection and extra structural constraints.

65



Reference

[1] S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” ACM

Trans. Graph., vol. 26, no. 3, p. 10, 2007.

[2] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for video

retargeting,” ACM Trans. Graph., vol. 27, no. 3, 2008.

[3] R. Gal, O. Sorkine, and D. Cohen-Or, “Feature-aware texturing,” in Proceedings

of Eurographics Symposium on Rendering, pp. 297–303, 2006.

[4] L. Wolf, M. Guttmann, and D. Cohen-Or, “Non-homogeneous content-driven

video-retargeting,” in Proceedings of IEEE ICCV, pp. 1–6, 2007.

[5] Y.-F. Zhang, S.-M. Hu, and R. R. Martin, “Shrinkability maps for content-aware

video resizing,” in PG ’08, 2008.

[6] T. A. Keahey and E. L. Robertson, “Nonlinear magnification fields,” in INFO-

VIS ’97: Proceedings of the 1997 IEEE Symposium on Information Visualization

(InfoVis ’97), p. 51, IEEE Computer Society, 1997.

[7] T. A. Keahey and E. L. Robertson, “Techniques for non-linear magnification trans-

formations,” in INFOVIS ’96: Proceedings of the 1996 IEEE Symposium on In-

formation Visualization (INFOVIS ’96), p. 38, IEEE Computer Society, 1996.

[8] T. A. Keahey, “The generalized detail-in-context problem,” in INFOVIS ’98: Pro-

ceedings of the 1998 IEEE Symposium on Information Visualization, pp. 44–51,

IEEE Computer Society, 1998.

[9] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia, “Distortion view-

ing techniques for 3-dimensional data,” in INFOVIS ’96: Proceedings of the 1996

IEEE Symposium on Information Visualization (INFOVIS ’96), p. 46, IEEE Com-

puter Society, 1996.

66



[10] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia, “Extending distor-

tion viewing from 2d to 3d,” IEEE Comput. Graph. Appl., vol. 17, no. 4, pp. 42–51,

1997.

[11] E. LaMar, B. Hamann, and K. I. Joy, “A magnification lens for interactive volume

visualization,” in PG ’01: Proceedings of the 9th Pacific Conference on Computer

Graphics and Applications, p. 223, IEEE Computer Society, 2001.

[12] L. Wang, Y. Zhao, K. Mueller, and A. E. Kaufman, “The magic volume lens: An

interactive focus+context technique for volume rendering,” in IEEE Visualization,

p. 47, 2005.

[13] L. Q. Chen, X. Xie, X. Fan, W. Y. Ma, H. J. Zhang, and H. Q. Zhou, “A visual

attention model for adapting images on small displays,” ACM Multimedia Systems

Journal, vol. 9, no. 4, pp. 353–364, 2003.

[14] H. Liu, X. Xie, W.-Y. Ma, and H.-J. Zhang, “Automatic browsing of large pictures

on mobile devices,” in Proceedings of ACM International Conference on Multime-

dia, pp. 148–155, 2003.

[15] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen, “Gaze-based

interaction for semi-automatic photo cropping,” in Proceedings of CHI, pp. 771–

780, 2006.

[16] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs, “Automatic thumbnail crop-

ping and its effectiveness,” in Proceedings of UIST, pp. 95–104, ACM, 2003.

[17] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput.

Vision, vol. 57, no. 2, pp. 137–154, 2004.

[18] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for

rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11,

pp. 1254–1259, 1998.

[19] D. DeCarlo and A. Santella, “Stylization and abstraction of photographs,” ACM

Trans. Graph., vol. 21, no. 3, pp. 769–776, 2002.

67



[20] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman, “The patch transform

and its applications to image editing,” in CVPR ’08, 2008.

[21] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani, “Summarizing visual data

using bidirectional similarity,” in CVPR ’08, 2008.

[22] V. Kraevoy, A. Sheffer, D. Cohen-Or, and A. Shamir, “Non-homogeneous resizing

of complex models,” ACM Trans. Graph., vol. 27, no. 5, p. 111, 2008.

[23] Y.-S. Wang, T.-Y. Lee, and C.-L. Tai, “Focus+context visualization with distor-

tion minimization,” IEEE Trans. Visualization and Computer Graphics, vol. 14,

no. 6, 2008.

[24] F. Liu and M. Gleicher, “Video retargeting: automating pan and scan,” in Multi-

media ’06, pp. 241–250, 2006.

[25] C. Tao, J. Jia, and H. Sun, “Active window oriented dynamic video retargeting,”

in Workshop on Dynamical Vision, ICCV ’07, 2007.

[26] M. Rubinstein, A. Shamir, and S. Avidan, “Multi-operator media retargeting,”

ACM Trans. Graph., vol. 28, no. 3, p. 23, 2009.

[27] I. Viola, A. Kanitsar, and M. E. Groller, “Importance-driven volume rendering,”

in VIS ’04: Proceedings of the conference on Visualization ’04, pp. 139–146, IEEE

Computer Society, 2004.

[28] J. Zhou, M. Hinz, and K. D. Tonnies, “Focal region-guided feature-based volume

rendering.,” in 3DPVT, pp. 87–90, IEEE Computer Society, 2002.

[29] M. J. McGuffin, L. Tancau, and R. Balakrishnan, “Using deformations for brows-

ing volumetric data,” in VIS ’03: Proceedings of the 14th IEEE Visualization 2003

(VIS’03), p. 53, IEEE Computer Society, 2003.

[30] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Toolglass and

magic lenses: the see-through interface,” in SIGGRAPH ’93: Proceedings of the

20th annual conference on Computer graphics and interactive techniques, pp. 73–

80, ACM, 1993.

68



[31] H. Fang and J. C. Hart, “Detail preserving shape deformation in image editing,”

ACM Trans. Graph., vol. 26, no. 3, p. 12, 2007.

[32] R. Szeliski, “Image alignment and stitching: a tutorial,” Foundations and Trends

in Computer Graphics and Vision, vol. 2, no. 1, pp. 1–104, 2006.

[33] B.-Y. Chen, K.-Y. Lee, W.-T. Huang, and J.-S. Lin, “Capturing intention-based

full-frame video stabilization,” Computer Graphics Forum, vol. 27, no. 7, pp. 1805–

1814, 2008.

[34] M. L. Gleicher and F. Liu, “Re-cinematography: Improving the camerawork of

casual video,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 5, no. 1,

pp. 1–28, 2008.

[35] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.

Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[36] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,”

Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[37] T. Deselaers, P. Dreuw, and H. Ney, “Pan, zoom, scan - time-coherent, trained

automatic video cropping,” in CVPR ’08, 2008.

[38] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel, “Lapla-
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