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Automatic Reference Color Selection for Adaptive
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Abstract— This paper proposes a novel automatic reference
color selection (ARCS) scheme for the adaptive mathematical
morphology (MM) method, and is specifically designed for
color image segmentation applications. Because of the main
advantages of being intuitive and simple, in the past decade,
it has contributed to the growing popularity of binary and
gray-scale MM processing. However, the MM process typically
neglects the details of reference color determination. Applying
other ordering methods, which select only black as the reference
color for sorting pixels, result in the problem in which the scope
of the distance measurement is not optimal. The proposed ARCS
scheme is used for determining the ideal reference color for
MM and for color image segmentation application. In addition,
we use both 1D histogram-based modeling scheme binning from
3D color spaces, such as red–green–blue and hue–saturation–
intensity, and 2D color models, such as (H, S), (Cb, Cr),
and (I, By). According to the results of the quartile analysis,
the threshold determination reacts with less sensitivity to the
context variations of the images tested. The experiments focused
on color-based image segmentation using the proposed ARCS
scheme for color MM processing through a bottom–up scenario.
To evaluate the system, four quantitative indices were utilized
for an ARCS comparison using advanced segmentation methods
in the experiments. The cross validation with different system
parameters and a comparison of the morphological gradient
operation with different color models are also presented.

Index Terms— Adaptive mathematical morphology, color
image segmentation, kernel density estimation, reference color
selection, region growing, region merging.

I. INTRODUCTION

IN THE PAST decade, mathematical morphology (MM)
[1]–[3] has been widely applied in image processing

such as image retrieval [4], satellite imagery [5], template
matching [6], [7] aerial surveillance [8], [9], and image
segmentation [10]–[13]. Such high-dimensional image data
have facilitated the extension of MM from binary and gray-
scale to color images, and even higher dimensions of visual
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Fig. 1. Two approaches of the color morphological processing. (a) Marginal
ordering, (b) vectorized ordering.

features [14], [15]. This is crucial for the continual develop-
ment of image processing, which tends to consider only the
illumination information of pixels. However, the task of MM
typically neglects the details of the image content. Because
acquisition techniques for color images continue to advance
and mature, their compatibility with extant algorithms should
be extended, and must be as concrete as possible.

Managing a color image implies that the dimension incre-
ment of a feature vector and the computational complexity
result in a longer execution time compared with manipulating a
gray-scale image. In high-dimensional space, the interchannel
correlation increases, reducing the computational cost and sev-
ering the correlation between channels challenging. MM has
recently become widely used in image processing because of
the advantage presented by set theory. Adaptive MM facilitates
the application of high-dimensional image data, which can be
extended from binary and gray-scale images to color images,
and even to higher dimensions of visual features.

The MM process is an application based on lattice the-
ory in spatial structures [16]. Understanding the relationship
between pixels and sorting them according to their character-
istics becomes crucial. However, ranking higher-dimensional
vectors in a direct manner remains a challenge. Compared
with a single-dimensional image (e.g., binary and grayscale),
no standard ordering mechanism exists for color feature
vectors. Color ordering for color morphological processing
can typically be divided into two approaches: marginal-
and vector-oriented methods (Fig. 1). The marginal-oriented
approach involves operating each color component indepen-
dently. In other words, the ordering method does not con-
sider the marginal correlation between components, and treats
each color component as a gray-scale image. By contrast,
the vector-oriented approach performs color morphology as
a vectorized ordering mechanism including reduced ordering,
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Fig. 2. M-ordering suffers from false color (e.g. pointing by white arrows).
(a) Original image, (b) erosion results using M-ordering, (c) erosion results
using R-ordering.

conditional ordering, and partial ordering. Numerous recent
studies have proposed sequential ordering approaches of color
morphology, which can be categorized into the following four
fundamental modes.

A. Marginal Ordering (M-Ordering)

The M-ordering method, as shown in Fig. 1(a), ranks
each component of channels individually, and ignores any
interrelationship between channels. In an example of the
M-ordering morphological erosion process, a ring-like junction
with false colors emerges between the inside circle and the
geometric shape, as shown in Fig. 2(b). This frequently results
in the appearance of a false color, meaning that this new color
is absent in the original image. This type of method is thus
evidently inefficient and infeasible for use. Chunjiang [17]
proposed a modified M-ordering method, which considered
each feature of a channel for sorting their sequential order to
avoid the generation of a false color.

B. Reduced Ordering (R-Ordering)

The R-ordering approach is the most general ranking
method and is based on the dimension reduction algorithm
for mapping high-dimensional data onto low-dimensional data.
The rank comparison is subsequently used for measuring the
ordering relationship. The most popular methods using the
R-ordering approach are distance mapping and principle com-
ponent analysis. The authors in [18] introduced a vector
median filter and a basic vector directional filter based on
two R-ordering methods, and applied them to a color image.
These filters enabled the system to reduce noise and maintain
valid color information. The authors in [19] proposed a hyper-
spectral image-processing application based on supervised
R-ordering. The advantage of the R-ordering approach is
the ability to perform a morphological operation in reduced
dimensions, which lowers the computational complexity.
Nevertheless, this dimension reduction leads to color informa-
tion loss, and generates ambiguous conditions during the rank
comparison process. For example, the two color pixels p and q
are in a hue–saturation–intensity (HSI) color space. To com-
pute the distances from the color pixels to the reference color,
cre f comprises DHSI(p, cre f ) and DHSI(q, cref ) respectively;
thus, we obtained DHSI(p, cref ) = DHSI(q, cref ). As shown
in Fig. 3, we may encounter ambiguous conditions when
the order judgment is applied for these two color pixels,
consequently reducing the confidence of order ranking and
increasing the probability of an improper color assignment.

Fig. 3. Ambiguous condition for R-ordering while the black being used.

Fig. 4. An example of the lexicographic ordering.

C. Conditional Ordering (C-Ordering)

The C-ordering method, also known as lexicographic order-
ing, is based on a specific condition for comparing the compo-
nent of a feature vector, which sets priorities between changes,
and compares the order of each component in a stepwise
manner. This approach enables the system to entirely avoid
ambiguous conditions that are generated by the sequential
comparison error. However, this ordering method requires
the comparison of each channel, resulting in relatively high
computational complexity. Fig. 4 shows an example of lexi-
cographic ordering, where each color vector of the structural
elements is sorted according to the values. For the mechanism,
the comparative order of the subjects is as follows: 1) Identify
the values of the red component; 2) when the values of the
red component are equal, compare the values of the green
component; and 3) when the values of the green compo-
nent are equal, compare the values of the blue component.
Aptoula and Lefèvre [20] reported the merits and disad-
vantages of this type of method, and applied it in the
morphological processing of color image noise reduction and
color texture classification, and obtained satisfactory results.

D. Partial Ordering (P-Ordering)

The P-ordering approach [21] is a clustering-based scheme
for which a vector partitioning approach is used. By using the
information of the clusters, this approach allows the system
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to conduct ordering according to the weight of the vector and
its extremeness. Evans [22] proposed a novel ranking method
based on the P-ordering scheme, which ranked each pair of
vectors in groups of a higher or lower order. It is efficient
for simply reducing vector-ranking complexity. This type of
methodology basically compares the rank relationship of each
pair of vectors, and is thus called “pairwise vector ordering.”

In addition to these four ordering mechanisms, studies
have presented algorithms designed from other viewpoints.
For example, Lezoray et al. [23] presented a graph-based
ordering method, in which they considered the structure
element (SE) as a complete graph, with each vertex on it
representing a pixel in an image. A weighted factor was
assigned to each edge in the graph, after which the minimum
spanning tree method was used for ranking the element of
the vector. Several other studies [24]–[28] have proposed
composite ranking methods including R+C ordering, P+M
ordering, and bit-mixing ordering in MM processing for a
color image.

The present study proposes an automatic reference color
selection (ARCS) mechanism, which enables the management
of diverse color models while increasing the ability to mea-
sure the distinction between color vectors. In adopting this
mechanism, certain considerations are required. For example,
the binning scheme may contain the sparse population problem
because of the image size. The color histogram has numerous
nonexisting colors beyond the gamut of photos, but only
a few pixels are present per bin, with the position of the
maximum most likely to be dominated by noise. To resolve
this problem, we utilized the kernel density estimation (KDE)
method [29], [30] to identify the definite dominant color.
In addition, we propose an adaptive merging algorithm that
does not require threshold determination. This improves the
region-merging process in a simple and more convincing
manner. We also propose a novel automatic threshold deter-
mination method for region-merging process by conducting
quartile analysis.

The main contributions of this study include improvements
in image segmentation through the use of the proposed ARCS
scheme and the hybrid ordering method in addressing region
merging [31], [32]. The efficiency of morphological ordering
depends heavily on the distribution of image color. We adopted
the complementary color of the dominant color of the test
region as the reference color. The proposed algorithm is
suitable for further semiautomatic image segmentation appli-
cation [33], [34] as long as the merging criteria are defined.
In addition, according to quartile analysis, the threshold deter-
mination reacts with less sensitivity to the context variations
of the tested image. The burden of threshold determination
is avoided substantially, enabling an authentic segmentation
result to be achieved.

The remainder of this paper is organized as follows.
Section II introduces the proposed ARCS and color-
ordering scheme in the adaptive MM. Section III presents
the details of the MM-based image segmentation algo-
rithm. Section IV provides the experimental results. Finally,
Section V offers a discussion of our findings and
a conclusion.

II. COLOR-BASED ADAPTIVE MM SCHEME

A. Color Representations and Color Distances

A typical color model used in image processing is the red–
green–blue (RGB) representation. However, the RGB model
has from an intrinsic disadvantage: a high correlation between
color channels. In addition, it cannot be used to obtain the
original intensity information of the image for reducing the
computational burden during image acquisition. To overcome
this limitation, we used color models that decouple the
intensity component from the color-carrying information such
as HSI and YCbCr. Furthermore, we adopted log-opponent
chromaticity (i.e., I-By) representation [35] for our study.
Regarding the log-opponent chromaticity space, Tan et al. [36]
reported high accuracy in skin detection despite wide varia-
tions in ethnicity and illumination. The results showed that
the spaces of (I, By) and (H, S) were comparable; however,
(I, By) performance yielded a higher true-positive rate and a
lower false-negative rate compared with (H, S). In addition,
two major problems must be solved: 1) color distributions
depend on the illumination color, and 2) when represented
as histograms, the number of bins they are large, thus limiting
the scale of bins that might reasonably be indexed. Because
the correlations among components in these color spaces
are essentially independent, we can manage each channel
individually. This model provides a desirable property for
vectoring the color image, and the chroma and brightness
information can be considered mutually independent.

In color representation, we adopted a 1D histogram-based
model from 3D color space such as RGB and HSI, and
also used a 2D color model such as (H, S), (Cb, Cr), and
(I, By). The statistical histogram h ( j) of image f is obtained
by solving (1), as follows:

h ( j) =
∑

i

δ
[
Lz (ci ) − j

]
, for 0 ≤ j ≤ n, ∀ci ∈ f (1)

where δ(·) denotes the Kronecker delta function (i.e., δ(x)=1
for x = 0; δ (x) = 0 otherwise), Lz (ci ) denotes the binning
function for pixel ci in color model z, which enables the 3D
HSI color model to transform as a ρ-bit value, totaling n = 2ρ

bins, and j denotes the bin index of the color histogram.
In this study, we used ρ = 8 bits, where 4 bits were from the
H component, and 2 bits were each from the S and I com-
ponents. Otherwise, when z = {(H, S), (Cb, Cr), (I, By)},
we employed a 2D histogram with 256-by-256 bins.

Because the dimension of the color space is mostly larger
than 1, it is critical to determine the actual relationship
between the value of the color distance and the awareness
of the human eye. The International Commission on Illumina-
tion (CIE) defines a distance metric Delta-E (dE), which is a
single number that represents the distance between two colors.
When a dE of 1.0 is the smallest color difference discerned by
the human eye, a dE less than 1.0 is imperceptible. However,
certain color differences greater than 1 are acceptable, despite
perhaps being unnoticeable. The major problem of dE involves
resolving the perceptual uniformity issue inadequately. A cer-
tain dE that may be meaningless between two colors because
it cannot be perceived may be conspicuous in another part of
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Fig. 5. Schematic diagram of the proposed ARCS scheme.

the spectrum. The CIE constantly corrects and modifies this
benchmark to produce dE76, dE94, and dE2000. In addition,
dE2000 is the first major revision of the dE94 equation.
Unlike dE94, which assumes that L∗ (where the L∗a∗b∗ color
space) correctly reflects the perceived differences in lightness,
dE2000 varies the weighting of L∗ depending on where in the
lightness range the color falls. The dE2000 equation is still
under consideration and does not seem to be widely supported
in graphical arts applications. The equation is also useful
for dE measurements when an image includes many layered
colors such as the fading effect. This is a rare condition for
natural images. Consequently, the use of the dE color distance
for image segmentation is negligible.

Numerous color distance measurements have recently been
proposed. An improved survey of different distance measures
for vector filters was reported by Celebi [37]. The results of
image segmentation with different distance measures evidently
differ, but the focus of our ARCS algorithm is on the color
spaces and ordering algorithm. In the current study, in addition
to the RGB and HSI color models, we used the norm-2
Euclidean distance measure to perform pixel and region sim-
ilarity. Let Dz denote the color distance in color model z.
In practice, the distance measures are used for measuring the
distinction between the tested color and reference color.

B. Automatic Reference Color Selection Scheme

There is scant, if any, literature on selecting the reference
color cre f . A schematic diagram of the proposed ARCS
scheme is shown in Fig. 5. The major criterion for color
selection theoretically entails selecting the pixel that is most
distant from the tested color pixel. It represents the distinguish-
ing ability between two color pixels. Numerous researchers
(e.g., [16], [23], [25]) have simply employed black as the
reference color. However, this leads to the problem in which
the scope of the distance measurement is not optimal; that is,
the efficiency of ordering depends heavily on the distribution
of the image color. To address this problem, we considered
the color distribution of the image to determine the dominant
color. The most appropriate reference color is selected using
the complementary color of the dominant color. This method
evidently yields the distance measure for achieving the highest
discriminative ability.

Nevertheless, histograms are a common strategy for rep-
resenting medium-size color distributions in 1D or 2D space.
Because of the limited image size, it is possible to form sparse
bins and few pixels per bin for the histogram. Consequently,
the peak of the histogram is dominated by noise. To rectify
this defect, kernel density estimation (KDE) is an alternative
approach for determining the dominant color.

A KDE is a nonparametric graph that can reconstruct an
unknown population from a random data sample. The KDE
does not use regression for fitting a distribution to the data.
The simple concept underlying kernel estimates is that each
bin jw, w = 1, 2, . . . , n is drawn from an unknown density
histogram h ( j), which is replaced by a specified distribution
(e.g., normal), centered on the point, and with a standard
deviation designated by a smoothing parameter hs (called the
bandwidth, and hs > 0). We were interested in estimating the
shape of this function h. Its kernel density estimator can be
expressed as

ĥ ( j) = 1

nhs

n∑

w=1

Øhs (
j − jw

hs
), for 0 ≤ j ≤ n (2)

where Ø(·) denotes the kernel (i.e., standard normal kernel in
this paper), a non-negative function that is integrated to one
and has mean zero; that is,

Øhs (x) = 1√
2πhs

exp

(
− x2

2h2
s

)
. (3)

Finally, the bin with the maximal value computes the comple-
mentary color to serve as the reference color; that is,

j∗ = arg j max
Sx

{ĥ ( j)}, for ∀ j (4)

and

cre f = C
(

L−1
z

(
j∗)), (5)

where j∗ denotes the bin of the histogram with the maximal
value; L−1

z (·) denotes the reverse mapping function, which
is used for obtaining the z color model from the input
bin; and C denotes the complementary color regarding the
color model. For example, when the color model includes
illumination information, the complementary color is selected
from the mirror at the origin. By contrast, the definition of the
regular complementary color is adopted. When the dominant
color is located exactly on the SI plane, we simply consider
black as the reference color. However, the KDE method is
performed for modeling the density of color distribution, and
the densest color may be absent in the original color palette.
Hence, a predefined circular boundary Sx ranging from the
center of the peak density is used to determine the dominant
color.

C. Hybrid Color-Ordering Algorithm

This paper proposes a hybrid color-ordering (HC ordering)
method, which takes advantage of R- and C-ordering. This
method sustains the advantages of R-ordering by reducing the
dimension of the feature vector to lower the computational
cost, but also avoids the ambiguous condition generated by
C-ordering when measuring the importance of the color vector.
In addition, the reference color cre f can be determined using
the proposed ARCS scheme. The HC-ordering approach is
detailed in the following steps.
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1) Global Ranking: R-ordering is a color-ranking operation
based on the distance between the color of the pixel under
resting and the reference color projected onto the color space:

cp <cre f cq ⇐⇒ ∥∥cp − cre f
∥∥z

Dz
>

∥∥cq − cre f
∥∥z

Dz
(6)

where cp and cq denote two pixels with different color com-
ponents, “⇐⇒” denotes an “if and only if” relationship, <cre f

denotes the pixel-based comparison operator with the selected
reference color cre f , ‖·‖z

Dz
denotes the color distance measure-

ment Dz , and the superscript z denotes the used color model,
where z ∈ {(R, G, B), (H, S, I), (Cb, Cr), (H, S), (I, By)}.

2) Local Ranking: C-ordering is employed for avoiding
ambiguous conditions. For example, if two color pixels have
different color components in a color space, but the distance
from the reference pixel is identical, then the result is that
they are classified as the same color. To prevent this problem,
the proposed HC-ordering algorithm considers the C-ordering
method. This method has also been called lexicographical
ordering, and is expressed as

cp <HC cq ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥∥cp − cre f
∥∥z

Dz
>

∥∥cq − cre f
∥∥z

Dz

∪ ∥∥cp − cre f
∥∥z

Dz
≤ ∥∥cq − cre f

∥∥z
Dz

∩

⎧
⎪⎨

⎪⎩

c1
p < c1

q

∩c1
p = c1

q ∩ c2
p < c2

q

∩c1
p = c1

q ∩ c2
p = c2

q ∩ c3
p < c3

q

(7)

where cp = (c1
p, c2

p, c3
p) and cq = (c1

q , c2
q , c3

q) represent two
pixels with 3D color information, ∪ denotes the logical OR
operator, and ∩ represents the logical AND operator.

The main concept of the C-ordering method involves sort-
ing each color component with a specific ordering priority.
A good priority of ordering depends on the context of images.
It enables the system to obtain different results from mor-
phological processing by adjusting the order of comparisons
among the components. For example, when the dilation oper-
ation is applied to the RGB color space with the priority
R→G→B, the red tone of the test image is expanded consid-
erably. Conversely, when the priority G→R→B is adopted,
the green tone is enhanced. However, the RGB color space is
highly sensitive to the human eye; processing color values
in the conventional manner results in an unreal and false
color appearance. The HSI model of color takes advantage
of how the human eye perceives colors; therefore, it is the
most frequently adopted model for image-processing applica-
tions. For edge detection application, the priority of I→S→H
is more appropriate compared with H→S→I, because the
boundary of the object reflects the sharp change in intensity.
Likewise, the human eye is sensitive to minor changes in
intensity, but not with color. However, under the condition in
which the color component is more critical compared with
intensity (e.g., skin color tone detection), and one intends
to depress the distortions caused by the flicker of the light
source, the morphological operator tends to adopt the pri-
ority of H→S→I. This mechanism circumvents an increase
in brightness sensitivity for color-oriented image-processing
applications. Similarly, for the other color models, we adopted
By→I, Cr→Cb, and H→S.

Fig. 6. Dilation and erosion operations, (a) original image, (b) M-ordering
erosion, (c) M-ordering dilation, (d) HC-ordering erosion (SE=3, without
ARCS), (e) HC-ordering erosion (SE=3, with ARCS), (f) HC-ordering
erosion (SE=10, with ARCS), (g) HC-ordering dilation (SE=3, without
ARCS), (h) HC-ordering dilation (SE=3, with ARCS), and (i) HC-ordering
dilation (SE=10, with ARCS).

D. Color-Based MM Operators

According to the color distance and ordering scheme
measurements, we can apply the primary operators of the
color MM, the basic operators of which are erosion and
dilation operators.

Definition 1 (Erosion and Dilation): The erosion of image f
with an s-size structural element B on pixel x is defined as

εHC,s B ( f ) (x) = { f (y) : f (y) = ∧HC [ f (b)] , b ∈ s (Bx)} .

(8)

Similarly, the dilation of image f with the n-sized structure
element B on pixel x can expressed as:

τHC,s B ( f ) (x) = { f (y) : f (y) = ∨HC [ f (b)] , b ∈ s (Bx)} .

(9)

where ∧HC and ∨HC denote the infimum and supremum,
respectively, in accordance with the proposed HC-ordering
scheme. Examples of erosion and dilation are shown in Fig. 6.

In addition, numerous color MM operations can be per-
formed by varying the combination of the erosion and dilation
operators. In this paper, we explain only a few operators
such as opening, closing, gradient, smoothing, and contrast
enhancement.

Definition 2 (Opening and Closing): The opening operator is
operated using erosion, followed by the dilation of image f .
The main purpose is to eliminate patches with color peaks
smaller than the structural element such that those closer to
the reference color can be obtained.

γHC,s B ( f ) = τHC,nB
(
εHC,s B ( f )

)
. (10)

Conversely, the closing operator is operated using dilation,
followed by the erosion of image f . The main purpose is
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Fig. 7. Opening and closing operations. (a)Original image, (b) M-ordering
opening, (c) M-ordering closing, (d) HC-ordering opening (SE=3, without
ARCS), (e) HC-ordering opening (SE=3, with ARCS), (f) HC-ordering
opening (SE=10, with ARCS), (g) HC-ordering closing (SE=3, without
ARCS), (h) HC-ordering closing (SE=3, with ARCS), and (i) HC-ordering
closing (SE=10, with ARCS).

to bridge gaps smaller than the structural element and those
that are as distant as possible from the peak of the reference
color.

ϕHC,s B ( f ) = εHC,s B
(
τHC,s B ( f )

)
. (11)

An example of the opening and closing operations is shown
in Fig. 7.

Definition 3 (Gradient): The gradient reflects the status
of the decline in intensity. The gradient value of a real
object boundary is typically larger than that of the internal
region. The purpose of the gradient operator is to generate
a symbolic energy distribution of the information on the
image texture. After the dilation operation for image f ,
and after subtracting using the eroded image, the remain-
ing value of the gradient is the norm value, which is
expressed as

∇HC ( f ) = ∥∥τHC,s B ( f ) − εHC,s B ( f )
∥∥ . (12)

Definition 4 (Smoothing): Noise corruption in the image
is the product of the false color pixel in the MM process
as well as a result of false segmentation. Therefore, before
conducting image segmentation, it is necessary to apply image
smoothing. The morphological smoothing operator typically
aims to suppress noise in the image from the opening and
closing operations. This step eliminates impulse noise with
efficiency. However, the resultant image is subjected to partial
distortion. To resolve this problem, we adopted an alternate
sequential filter (ASF) for the image-smoothing operation.
This filter enhances noise management performance more than
typical opening/closing operations do. The main objective was
to discard the patches of the peak and valley that are smaller
than the structural element. This results in noise reduction,

which can be expressed as

ASF ( f )HC,s B

= ϕHC,s BγHC,s B . . . ϕHC,2BγHC,2BϕHC,1BγHC,1B ( f ) .

(13)

Definition 5 (Contrast Enhancement): The purpose of con-
trast enhancement is to enlarge the dynamic range of den-
sity distribution, which can stretch visual distinctions. For
this paper, we employed color contrast mapping [23], which
establishes a mapping relationship by conducting a com-
parison between original and eroded images against origi-
nal and dilated images, respectively. This method evidently
enhanced the image contrast and simultaneously suppressed
image distortion. This operation enabled the system to enhance
the contrast of the image and reduce its distortion, and is
defined as

κετ
HC,s B ( f ) (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τHC,s B ( f ) (x) if ‖ f (x) − τ ( f ) (x)‖
≤ ‖ f (x) − ε ( f ) (x)‖

εHC,s B ( f ) (x) if ‖ f (x) − τ ( f ) (x)‖
> ‖ f (x) − ε ( f ) (x)‖ .

(14)

III. IMAGE SEGMENTATION BASED

ON THE HC-ORDERING

The formal procedure of bottom-up image segmentation
includes two phases: 1) presegmentation using the color
gradient image, which can first be obtained using the
HC-ordering-based MM, and then watershed image segmenta-
tion for roughly segmenting the original image; and 2) regard-
ing the region distance, the sequential regions are subjected to
the merging scheme for segmentation.

A. Image Presegmentation

The purpose of this phase is to extract the initial partitions
of the image by adopting the color gradient and watershed-
based segmentation. The watershed-based algorithm is the one
of the most efficient image segmentation methods, and was
proposed by Vincent and Soille [38]. The main concept of
the watershed algorithm involves adopting the original image
as a stereo mountain diagram. The gradient energy is treated
as the rise and decline of the mountain. Solving the region-
merging algorithm yields the initial segmentation. According
to our observations, performing split and merge to segment the
image initially yields a performance that is identical to that
of watershed segmentation. Therefore, we simply employed
watershed segmentation as the presegmentation process.

B. Region Merging Using HC-Ordering

The conventional watershed method is subject to overseg-
mentation in a small region because of noise and complex
image patterns. It reduces the performance of image segmen-
tation substantially, and thus we propose a more robust region-
merging algorithm. According to the concept of distance,
the region-based MM was employed for determining the
likelihood of merging between two adjacent regions.



SHIH AND LIU: ARCS FOR ADAPTIVE MM AND APPLICATION 4671

Fig. 8. Distance measure with global and local ranking.

Suppose that the initial partition of the region is per-
formed through watershed segmentation, and is denoted as
S = (R1, . . . , Rn). The objective of image merging is to
achieve a merger discrimination matrix P, which represents
the result of the final segmentation. Afterward, the watershed
image is tagged as the initial image, and the merging step
is executed using the bottom-up scenario to operate a global
search for the two tags (i.e., regions) with the minimum
difference. This difference value represents the mean of the
color distance Dg derived from the reference color, which
uses the dominant color of the entire image (i.e., global
rank), which are depicted by the red and blue dashed lines
shown in Fig. 8 (e.g., HSI color model). If we assume that
Ri = (p1, . . . , pn) and R j = (q1, . . . , qm) represent two
groups of pixels in adjacent regions, the global distance of Ri

can be computed with

D̂g

(
Ri , cg

re f

)
= 1

n

∑n

k=1
Dz

(
pk, cg

re f

)
, (15)

where Dz is the HSI distance, and cg
re f can be obtained

by solving (5), which indicates the global reference color.
According to (6), the ranking relationship between the two
regions of these average color distances can be measured
through R-ordering as follows:

Ri <cg
re f

R j ⇐⇒ D̂g

(
Ri , cg

re f

)
> D̂g

(
R j , cg

re f

)
. (16)

To avoid the ambiguous condition generated from
R-ordering, the C-ordering scheme is applied in this system.
From a local viewpoint, the difference value Dl is computed
between these two adjacent regions. Specifically, we calculated
the average color distance by using the dominant color as the
reference color in the HSI color space, indicated by the dotted
brown and green dashed lines shown in Fig. 8. The average
color distance is defined as

D̂l

(
Ri , c

R j
re f

)
= 1

n

∑n

k=1
Dz

(
pk, c

R j
re f

)
, (17)

where c
R j
re f denotes the reference color regarding region R j ,

which can be obtained by solving (5).

According to (16) and (17), the HC-ordering operation <R
HC

can be derived from

Ri <R
HC R j ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D̂g

(
Ri , cg

re f

)
> D̂g

(
R j , cg

re f

)

∪ D̂g

(
Ri , cg

re f

)
≤ D̂g

(
R j , cg

re f

)

∩
{

D̂l

(
Ri , c

R j
re f

)
< D̂l

(
R j , cRi

re f

)
.

(18)

Consequently, the merger discrimination matrix P can
be constructed using the global threshold T H g and local
threshold T Hl .

P(Ri , R j )

=
{

true i f D̂g(Ri , R j ) < T H g ∩ D̂l(Ri , R j ) < T Hl

f lase otherwi se.

(19)

Empirically, T H g can be adjusted using the entropy of the
color distribution, and T Hl depends on the local probability
density over the entire image. Finally, HC-ordering can be
completed by determining the minimum difference value.
When D̂g

(
Ri , R j

)
is less than the global threshold T H g and

D̂l
(
Ri , R j

)
is less than the local threshold T Hl , these two

regions can be merged. The algorithm terminates when this
difference value is larger than the predefined threshold.

C. Adaptive Threshold Determination

As mentioned, the HC-ordering method is required to
determine a threshold value for managing region merging. For
different images, a specific threshold is required. To resolve
this issue, we performed quartile analysis for the adjacent
regions, and determined an ideal threshold for merging.

1) Quartile Analysis: Quartile analysis is a statistical
method [48], [49]. The quartiles of a ranked set of data values
are three points that divide the data set into four equal groups.
Consequently, each group comprises a quarter of the data and
are distinguished by the points on 25%, 50%, and 75% of the
highest value of the data set, represented as Q1, Q2, and Q3,
respectively. Furthermore, the value of Q1 − Q3 is called
an interquartile range (IQR), which is typically applied for
characterizing the data in the presence of extremities that may
skew the data. The IQR is a relatively robust statistic compared
with the range and standard deviation, and represents the
distribution among 50% of the data set approaching the median
value. To verify the existence of outliers and determine the
“fences,” quartiles can be used through the upper and lower
limits of the data; that is, any observation is an outlier when
it is outside the range of [Q1−k(Q3−Q1), Q3+k(Q3−Q1)],
where k denotes a nonnegative constant.

2) Region-Merging Algorithm Using Quartile Analysis:
According to the quartiles of Q1 and Q3, we analyzed the
distributions of two neighboring regions Ri and R j . First,
the values of the HSI color distance regarding the reference
color cg

re f were viewed as the data set for quartile analy-
sis. Second, we obtained the values of Q1, Q2, and Q3.
Finally, we considered whether to merge the two regions
Ri and R j after observing the value of the IQR.
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Here, we suppose that the number of pixels in Ri is greater
than that in R j . Four cases are met in quartile analysis as
follows:

1) The HSI distance distribution of R j is included com-

pletely in Ri ; that is, Qg
1

(
R j , cg

re f

)
> Qg

1

(
Ri , cg

re f

)

and Qg
3

(
R j , cg

re f

)
< Qg

3

(
Ri , cg

re f

)
. This indicates that

the color distribution of R j belongs to Ri . In this case,
R j and Ri can merge, and are assigned the highest
priority for region merging.

2) The HSI distance distribution of R j is partially included
in Ri ; therefore,

a) Qg
1

(
R j , cg

re f

)
> Qg

1

(
Ri , cg

re f

)
and

Qg
1

(
R j , cg

re f

)
< Qg

3

(
Ri , cg

re f

)
, or

b) Qg
3

(
R j , cg

re f

)
> Qg

1

(
Ri , cg

re f

)
and

Qg
3

(
R j , cg

re f

)
< Qg

3

(
Ri , cg

re f

)
.

This shows that a part of the color distribution of R j

is included in Ri . In this case, R j and Ri are enabled
to merge, but with a second priority.

3) The HSI distance distribution of R j is excluded from Ri .
However, the distribution range of R j is still located in
the maximum and minimum observation values of Ri

(i.e., 1.5 times the IQR). Therefore, it satisfies the
following conditions:

a) Qg
1

(
R j , cg

re f

)
> Qg

1−1.5IQR

(
Ri , cg

re f

)

b) Qg
1

(
R j , cg

re f

)
< Qg

3+1.5IQR

(
Ri , cg

re f

)

c) Qg
3

(
R j , cg

re f

)
> Qg

1−1.5IQR

(
Ri , cg

re f

)

d) Qg
3

(
R j , cg

re f

)
< Qg

3+1.5IQR

(
Ri , cg

re f

)

This indicates that the color distribution of R j does
not belong to Ri ; however, it remains within the tolerant
range for R1. In this case, R j and Ri are permitted to
merge, but with a third priority.

4) The HSI distance distribution range of R j is excluded
completely in Ri , but is also outside of the maximum
and minimum observation values of Ri (i.e., 1.5 times
the IQR). This shows that the pixels in R j and Ri are
completely different. Basically, these two regions cannot
be merged in this case.

According to these four cases and priorities, we used a
bottom-up scenario to merge a region with fewer pixels
with another region with more pixels until convergence was
reached. Here, we computed the color distance between each
segmented region and the global reference color cg

re f to
determine the merging priorities. To ensure accuracy in the
merging process, we considered the local property of the
image. By verifying whether the local color distance between
adjacent regions exceeded the IRQ of the observation range
by 1.5 times, ambiguity problems can be avoided only if the
global distance measure is used. In summary, we employed
quartile analysis to determine the data distributions.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method,
the images under testing were adopted from the Berkeley
Segmentation Dataset [39]. We used four standard indices
to quantitatively evaluate the performance of the proposed
method. The experiments were performed to 1) determine the
effectiveness of the different system parameters; 2) compare
the morphological gradient operation with different color mod-
els; and 3) compare the results of the HC-ordering scheme with
advanced methods in image segmentation application, includ-
ing SAS [40] and SLIC superpixels [41]. In addition, typical
methods such as the marker-controlled watershed method [42]
and the mean-shift clustering method [43] were also used for
our comparison.

A. Measures of Objective Evaluation

For this study, we used four indices to evaluate the quan-
titative comparison of typically used methods, including the
Normalized Probabilistic Rand index (NPRI) [44], variation of
information (VoI) [45], global consistency error (GCE) [46],
and boundary displacement error (BDE) [47]; the property of
the NPRI differs from those of the other three indices. A higher
value of the NPRI signifies improved performance.

1) NPRI: The Probabilistic Rand index (PRI) evaluates the
performance of the segmentation result with respect to the
ground-truth image. The NPRI is an extension of the PRI,
which yields a meaningful comparison of scores between
segmented and ground-truth images.

2) VoI: The VoI is based on the relationship between the
pixel and its cluster, and is used for determining the distance
between a certain segment and another segment by employ-
ing a common information metric and conditional entropy.
The VoI has been used for measuring changes in information
between segmented and ground-truth images. A smaller value
of VoI represents a lesser degree in the amount of information
that can be changed. In other words, it represents the actual
segmented result being closer to the referenced ground-truth
image.

3) GCE: The GCE is an error measure that is used for
quantifying the consistency between image segmentations.
This index computes the probability of any two partitions that
can be classified as the same subimage at different scales.
Specifically, this index computes the probability of any two
segments that can be classified as the same subimage at
different scales. If the GCE value is small, this indicates fewer
image segmentation errors.

4) BDE: This index computes the average offset error of a
boundary pixel between two segmented regions. It defines the
error in the distance between a certain pixel on the boundary
and the closest boundary pixels in another segment.

B. Cross-Validation of System Sensitivity

To analyze the robustness of the system, we verified the
reliability of the proposed system by using diverse system
parameters. Table 1 lists the parameters used in this exper-
iment. Table 2 lists the experimental results of the differ-
ent parameters used for testing the segmentation accuracy.
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TABLE I

DIFFERENT PARAMETERS APPLIED TO THE HC-ORDERING SEGMENTATION ALGORITHMS

TABLE II

COMPARISON OF DIFFERENT PARAMETERS FOR THE HC-ORDERING SEGMENTATION ALGORITHMS

Fig. 9. Image segmentation results with the best thresholds: airplane,
(a) the proposed HC-ordering (THl=0.65), (b) HC-ordering without ARCS
(THl=0.50), (c) using Euclidean distance (THl=0.55), (d) using RGB color
space (THl=0.55).

Fig. 10. Image segmentation results with the best thresholds: hawk,
(a) the proposed HC-ordering (THl=0.75), (b) HC-ordering without ARCS
(THl=0.60), (c) using Euclidean distance (THl=0.55), (d) using RGB color
space (THl=0.60).

The most desirable performance is attained when the ARCS
is applied in the HC-ordering scheme, whereas the least
desirable performance occurs because of high interchannel
correlation in the RGB color space, which causes ranking

Fig. 11. Morphological gradient image: starfish, (a) original image
(b)-(c) the histogram using 1D KDE with HSI 4-2-2 and 8-4-4 binning
approaches, (d)-(f) the distribution map using 2D KDE in the (Cb, Cr),
(I, By), and (H, S) color models, respectively, (g)-(i) the gradient images in
the (Cb, Cr), (I, By), and (H, S) color models, respectively.

errors among the vectors. When the HSI color model is
used, a consistent result considering human perception can
be obtained. A stronger performance is obtained with the HSI
distance measurement compared with the Euclidean distance
measurement. Evidence of a robust performance of the pro-
posed method is presented in Figs. 9 and 10.

C. Comparison of Morphological Gradient Operation

For this experiment, we performed the morphological gra-
dient by using the proposed ARCS and gradient operator,
as shown in (12). The gradient of the image can be mod-
eled using the derivative between neighbor pixels. For the
gradient image, the region-merging algorithm can be used.
Figs. 11 and 12 display the obtained morphological gradients
in different color models for the natural images. As shown in
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Fig. 12. Morphological gradient image: Rock, (a) original image
(b)-(c) the histogram using 1D KDE with HSI 4-2-2 and 8-4-4 bin-
ning approaches, (d)-(f) the distribution map using 2D KDE in (Cb, Cr),
(I, By), and (H, S) color models, respectively, (g)-(i) the gradient images using
(Cb, Cr), (I, By), and (H, S) color models, respectively.

Figs. 11(b) and 11(c) as well as 12(b) and 12(c), the binning
approaches with 8 bits and 16 bits yielded similar distributions
in 1D KDE. To avoid the sparse population condition and
enhance modeling efficiency, we employed 2D modeling in
this study. Fig. 11(d)–11(f) and Fig. 12(d)–(f) present the
results of 2D KDE. The (I, By) color model yielded the
most compact and highest dynamic distributions. As shown in
Figs. 11(g)–(i) and 12(g)–(i), the gradient of the (Cb, Cr) color
model contained the oversaturation problem in the boundary,
and certain details were missing. Moreover, the gradient of
the (H, S) color model was similar to that of the (I, By) color
model; however, certain details are obscured in the starfish
example shown in Fig. 11, and bimodel distribution is evident
in the (I, By) color space. The original image in Fig. 11(a)
shows that the color is strongly distinctive between the
starfish and background seaweed. Similarly, the red circles in
Figs. 11 and 12, representing the results of (I, By),
show that it outperformed the color models (H, S)
and (Cb, Cr).

D. Comparisons With Typically Used and Advanced Methods

Section III.C presents the region-merging algorithm based
on quartile analysis. This method circumvents the threshold
determination problem of the HC-ordering method, which is
replaced by the characteristics of the data cluster to select
a suitable threshold. Here, two typical segmentation methods
were replicated and used for system evaluation. Fig. 13 shows
our quantitative comparison through a radar chart, revealing
that the overall performance of HC-ordering (with hard thresh-
old T Hl= 0.65) and the quartile-based method was more
homogeneous compared with the other two methods. Accord-
ing to the results of our quantitative evaluation (Fig. 13),
the proposed HC-ordering scheme outperformed the NPRI,
VoI, and BDE approaches. However, the evaluation with

Fig. 13. Comparison of image segmentation through a radar chart. (a) HC-
ordering method, (b) quartile method (c) mean-shift clustering method (d)
Watershed method.

Fig. 14. Image segmentation results: horse. (a) Original image,
(b)-(d) ground truth boundary, (e) mean-shift clustering method, (f) Marker
Watershed method, (g)-(s) HC-ordering result for different thresholds
(i.e., T Hl = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8), where the best result is T Hl = 0.65 with red-boxed.

GCE lacked effectiveness because the complex details affected
the performance of the color-based ordering algorithm in
color distinction. The mean-shift clustering method yielded
outstanding results in the NPRI and VoI evaluations, but
was limited in terms of the segmented images in the sub-
jective evaluation. Overall, the performance of the proposed
HC-ordering scheme was moderate, but it was more consis-
tent with subjective human perceptions compared with the
mean-shift clustering method. It was more salient in regions
with small patches, and oversegmentation rarely occurred.
Figs. 14 and 15 show two images that were tested for
our method comparison against two typically used segmen-
tation methods. The proposed HC-ordering scheme obtained
the most convincing segmentation results, and the segmen-
tation boundaries were visually closer to the ground truth.
The local threshold T Hl for the region-merging algorithm
was sensitive to the context of the tested image, and different
images require a specific threshold such as 0.65 for an image
of a horse (Fig. 14) and 0.75 for an image of a rock (Fig. 15).
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Fig. 15. Image segmentation results: rock. (a) Original image,
(b)-(d) ground truth boundary, (e) mean-shift clustering method, (f) Marker
Watershed method, (g)-(s) HC-ordering result for different thresholds
(i.e., T Hl = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8), where the best result is T Hl = 0.75 with red-boxed.

TABLE III

COMPARISON OF COLOR IMAGE SEGMENTATION ALGORITHMS

Two advanced segmentation methods were used for a
comparison against the proposed method including SAS [40]
and SLIC superpixels [41]. Table 3 lists the quantitative
results. By using different color models and distance measures,
we found that the most desirable performance emerged when
the log-opponent chromaticity (i.e., I-By) representation and
norm-2 distance were used.

V. CONCLUSION

This article proposed an HC-ordering scheme combined
with ARCS for determining the rank of color vectors and
for discriminating the merger likelihood between two adjacent
regions. The proposed ARCS scheme was used to deter-
mine the optimal reference color for MM and color image
segmentation application. We also used 1D histogram-based
modeling scheme binning from 3D color spaces such as RGB
and HSI, and adopted 2D color models such as (H, S),
(Cb, Cr), and (I, By). The experiments revealed that the seg-
mentation result obtained using the (I, By) color model more
accurately reflected subjective human perception. The pre-
sented adaptive merging algorithm with the ARCS scheme and
HC-ordering algorithm used for MM-based image segmenta-
tion outperformed typical segmentation methods. We proposed

an alternative method based on quartile analysis, and suc-
cessfully avoided the HC-ordering method for an additional
threshold determination step. This approach rendered region
merging simpler and more practical.
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