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a b s t r a c t

This study proposed a precise facial feature extraction method to improve the accuracy of gender

classification under pose and illumination variations. We used the active appearance model (AAM) to

align the face image. Images were modeled by the patches around the coordinates of certain landmarks.

Using the proposed precise patch histogram (PPH) enabled us to improve the accuracy of the global

facial features. The system is composed of three phases. In the training phase, non-parametric statistics

were used to describe the characteristics of the training images and to construct the patch library.

In the inference phase, the choice of feature patch from the library needed to approximate the patch of the

testing image was based on the maximum a posteriori estimation. In the estimation phase, a Bayesian

framework with portion-oriented posteriori fine-tuning was employed to determine the classification

decision. In addition, we developed the dynamic weight adaptation to obtain a more convincing

performance. The experimental results demonstrated the robustness of the proposed method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the biometric analysis of the human face has been
shown to reveal a large amount of physical and psychological
information. The use of biometrics in gender classification has
resulted in the field of biometrics expanding at a rapid rate.
Biometrics can reveal a substantial amount of high-level semantic
information, including gender, age, ethnicity, and emotion.
Generally speaking, gender classification is divided into two
main categories: geometry-based and appearance-based. The
geometry-based category is focused on extracting the geometric
feature points from the facial image and describes the shape
structure of the face. Saatci et al. [1] presented an algorithm to
determine the gender and expression of facial images by using
active appearance models (AAMs) [2,3] for feature extraction and
support vector machines (SVMs) for classification. Mäkinen et al.
[4] illustrated a systematic evaluation on gender classification,
and showed how face alignment influences the accuracy of
gender classification using AAM. Based on the AAM, a pose and
shape-independent texture feature extraction for face recognition
is proposed in [5].

The appearance-based gender classification methods can be
divided into two categories: texture-oriented and statistics-
oriented. The texture-oriented approach utilizes different texture
ll rights reserved.
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5.
descriptors to characterize the gender of a facial image, and
utilizes a machine learning strategy to recognize the gender.
Many texture characteristics have been applied in gender classi-
fication, such as the local binary pattern (LBP) [6,7], local Gabor
binary mapping pattern (LGBMP) [8], edge histogram [9], and
wavelet transform [10,11]. Baluja et al. [12] demonstrated a
feature describing the relationship between the gray-scale values
of two pixels using five different types of pixel comparison
operators. The Adaboost algorithm [13] was applied to identify
the sex of a person from a low resolution facial image.

Among the all-texture features, LBP can be treated as a general
approach to the conventionally divergent structural and statistical
models of texture analysis. The methodology of the LBP-based
face description approach is well-established in both face analysis
and its applications. It is robust to monotonic gray-scale changes
such as in illumination variations. The basic methodology for the
LBP-based face description is as proposed by Ahonen et al. [14].
A notable example is the illumination-invariant face recognition
system proposed by Li et al. [15], which combines the LBP
features of near-infrared images and Adaboost learning. Hadid
and Pietikäinen [16] proposed the spatiotemporal LBPs descrip-
tion for gender recognition from video sequences. Zhang et al.
[17] used the LBP-based feature in terms of 40 Gabor filters with
different scales and orientations for face recognition. Zhao et al.
[18] adopted the spatiotemporal LBP descriptors to represent and
recognize the mouth regions and visual lipreading, respectively.

The statistics-based approach usually acquires satisfactory
results for the classification scheme. It focuses on using different
features that are quantified into a probability to characterize a

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.08.003
dx.doi.org/10.1016/j.patcog.2012.08.003
dx.doi.org/10.1016/j.patcog.2012.08.003
mailto:hcshih@saturn.yzu.edu.tw
dx.doi.org/10.1016/j.patcog.2012.08.003


H.-C. Shih / Pattern Recognition 46 (2013) 519–528520
facial image as to gender using its visual characteristics. Aghajanian
et al. [19] proposed a patch-based framework to determine the
ambiguous inside of an object and roughly replace each patch from
the pre-defined library and frequency parameters in order to
provide the Bayesian posteriori probability. Toews et al. [20]
presented the combination of the local scale-invariant feature
transform (SIFT) and the object class invariant model for detecting,
localizing and classifying the visual gender specific traits. Li et al.
[21] used another patch-based feature representation called Spatial
Gaussian Mixture Models to describe the image spatial information,
while taking the local and global scales into consideration for image
misalignment.

In this paper we proposed a robust facial feature description
method with a statistical classifier to determine the gender,
which represents facial characteristics locally and globally to
provide a posteriori probability with more confidence. The active
appearance model (AAM) is used to align face images. Facial
images are modeled by the patches around the coordinates of
landmarks. A so-called precise patch histogram (PPH) will be
extracted after the AAM landmark points are determined. We
applied non-parametric statistics to describe the characteristics of
the training images and construct the patch library in the training
phase. We also exploited the relationship between the PPH
features of the testing images and those of the library-images to
predict the gender in the testing phase. In the present study we
proposed a Bayesian framework in which we marginalized the
feature patches to determine the classification. It was evident that
the accuracy of the global facial features was improved using the
proposed PPH feature.

The major contributions of this paper include (1) The proposed
patch-based feature acquisition, which provides more precise
local and global facial features (i.e., PPH) for gender classification.
(2) The flexible library selection approach based on the eigenface
with k-means clustering provides a huge range of patch choices
for model estimation in both the training and the testing process.
(3) The Bayesian-oriented gender determination framework with
portion-oriented posteriori fine-tuning.

The remainder of the paper is organized as follows: Section 2
provides a brief overview of the system. In Section 3, we illustrate
how to encode the PPH based on the AAM facial feature points.
In Section 4, the algorithms of the library selection and the patch-
based gender classification are explained. Section 5 presents the
experimental results of the system, and finally, we draw our
conclusions and provide a discussion in Section 6.
2. System overview

The flow-diagram of the gender classification system is shown
in Fig. 1 as follows: (1) apply the characteristics of the eigenface
Fig. 1. The flow-diagram of the g
with k-means clustering for the library selection, (2) employ AAM
to extract the landmarks from which the feature patches can be
extracted, (3) choose the representative samples from the training
image database to be used as a patch library, (4) classify the
gender by using the inference procedure and the Bayesian
estimation to fine tune the classification.

In the training phase, the posteriori probability of each feature
patch of the library-images is obtained by the training inference.
The patch is then ranked using the values of the posteriori
probabilities. The library selection procedure is the critical pro-
cedure of the proposed gender classification system, and is based
on the number of assigned libraries with patch ranks. In the
testing phase, the posteriori probability of each feature patch of
the input testing image is determined using the on-line inference
process. Finally, a well-defined Bayesian estimation algorithm is
used to marginalize the overall posteriori probabilities of the feature
patches to make the gender decision. In addition, the portion-
oriented posteriori fine-tuning method is used to enhance the
results of the classification.

The eigenface [22] determination is based on the principle
component analysis (PCA) for finding an appropriate feature
representation in a low-dimensional space. There are two pri-
macy procedures: (a) Eigenspace generation: given I face normal-
ization image patches xi which converted into the column vector
type. (b) Projection onto the eigenspace: each of the training image
patches xi is projected onto the eigenspace as a weighting vector
which calculated using the eigenspace and the average patch
vector with inner product. After the k-means clustering, we select
the centroid of each cluster and the feature point with the
minimum Euclidean distance as the qualified library image.
3. Precise facial feature extraction

The patch-based gender classification is mainly composed of three
components: testing images, patch library and training images. In the
training phase, a statistical model is built to describe the character-
istics of the training images and is used to construct the patch library.
In the testing phase, all patches of the testing images are approxi-
mated by the patches in the library. We then compute the posteriori
probability for each patch of the approximate image and apply it for
ranking in the training phase.

3.1. Patch feature extraction using AAM

To extract more precise facial features, we need to align the
facial images in advance. The AAM algorithm provides a good fit
for locating the pre-defined facial model. Thus, we used the AAM
to fit the facial images. In this paper there are 28 AAM landmark
points that need to be determined and utilized. Each patch will be
ender classification system.
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unified at a size of 30�30 pixels. The selected patch regions may
overlap each other. However, the patch regions will be treated
independently of the facial features. Based on our observations,
the location of the last landmark point from the AAM algorithm is
usually mismatched position-wise, and this results in the perfor-
mance of the system decaying seriously. To deal with this
problem, only the first 27 patch features are used in both the
training and the testing phase.

The active appearance model (AAM) has been successfully
used to represent the appearance and shape variations of the
human face. In typical gender classification approaches, uniform
sampled grids lose the intrinsic properties of the facial image.
To overcome this problem, we aligned the precise face location
using the AAM before sampling the patch features. This means
that the AAM parameters are found by the best-matched location
between the model instance and the input image. The represen-
tation of the facial appearance is obtained by using the different
linear models for texture and shape feature [3]. The parameters of
the model are statistically learned from the training images.

3.1.1. Statistical model of facial appearance

The AAM is a statistical model of the shape and texture of the
target object, where the shape model describes the shape of the
object and the texture model describes the gray-level information
of the object. We used the labeled face images as the training data
of the AAM, and collected a labeled dataset of facial images with
landmark points for training the parameters of the AAM model.
These landmark points were selected as the salient points in the
face region. The model was built such that landmarks and edges
were defined for a set of example faces.

Generally speaking, the accuracy of the model fitting increases
the larger the number of landmark points used. However, the
computation cost of the model fitting process tends to increase as
well. Therefore, the number of landmark points will be decided by
the different manifold requirements/specifications. In the present
study, we used 28 landmark points, as shown in Fig. 2. The
positions of the landmark points are arranged around the regions
of the eyebrows, eyes, nose, mouth, and chin. However, we did
not assign any landmarks in the other regions such as ears due to
the occlusion issue.

3.1.2. Shape model

The shape information is defined by a mesh with a particular
vertex. A set of ordered NL landmarks xi, i¼1, 2,y,NL is used to
represent the shape model. We define a shape s as a vector
containing the coordinates of NL landmark points of a face image.
Let s¼ ðx1 x2 ::: xi ::: xNL

Þ
T denote the landmark coordinates

arranged in a shape model, where xiAZ2.
A shape model is constructed by using the coordinates of the

labeled points of the training images. Normally, the training
meshes are first applied to the generalized Procrustes analysis
(GPA) for normalization. Then, the principal component analysis
(PCA) is used to reduce the dimension of the aligned shape
feature. We aligned the locations of the corresponding points on
different training faces using the AAM to represent the instance sp

of a particular shape as the mean shape s and the linear
Fig. 2. Extract the 28 lined patches from the AAM landmark points.
combination of t eigenshape si as:

sp ¼ sþ
Xt

i ¼ 1

pisi, ð1Þ

where coefficient pi constitutes the shape parameter vector
p¼(p1,p2,y,pt)

T representing the matrix of the first t eigenvec-
tors. The mean shape s and the shape variations si are statistically
learned using the training dataset.

3.1.3. Texture model

To construct a texture model, all the aligned training images
are first warped into the shape-normalized space. The shape
normalized space is determined by the mean shape s of the shape
model. The texture of AAM is defined by the gray level informa-
tion at pixels x¼(x,y)T which lie inside the mean shape s. Then,
we sample the gray level information g of the warping images at
the mean shape region (i.e., gðxÞAs). Before applying PCA on the
texture data, we minimize the effect of lighting variation by
normalizing g. Let gðxÞ define the mean of the normalized texture
feature, scaled and offset so that the sum is zero and the variance
is unity. Similar to shape, q¼(q1,q2,y,qk)T is a vector of the
texture parameters representing a texture instance

gqðxÞ ¼ gðxÞþ
Xk

i ¼ 1

qigiðxÞ: ð2Þ

We iteratively estimate gðxÞ until the model converges, then
apply PCA to the normalized texture data.

3.1.4. Model search

The parameters l¼(pT qT)T of the generative model need to be
estimated in order to fit the target model (i.e., testing image).
Appearance is defined as the intensities of a facial image at a set A

of positions x in a shape-normalized space AAR2. The process of
model fitting is generally done by minimizing the error between
the modeled appearance and the target image. The error at
position xAA between the generated texture and the target image
is

xðx,lÞ ¼ gqðxÞ�It½wðx,pÞ�, ð3Þ

where w(x,p) is a warping function that maps positions xAA of
the model to positions x0AIt of the target image. The desired
parameter l̂ is obtained by minimizing the sum of the squared
error of all positions x,

l̂¼ argmin
l

X
xAA

½xðx,lÞ�2

8<
:

9=
;: ð4Þ

Many optimization algorithms have been proposed for para-
meters searching. In this paper, we adopt the so-called AAM-API
method proposed by Cootes et al. [2,23]. Its performance is
sufficient for gender classification.

3.2. Face description using a precise patch histogram

Here, we propose a so-called precise patch histogram (PPH) to
describe the local and global features of the face in a more precise
manner. The PPH is an LBP-based approach which is a multi-
resolution texture operator that takes the local and global texture
structures into consideration. As shown in Fig. 3, this PPH
effectively provides a description of the face, whereas the LBP
descriptions for the histogram contain four types of textures from
different levels, including the pixel-level within the LBP block, the
block-level within the patch, the region-level within the facial
part, and the global description in the facial image. It is worth
noting that if the histogram-based method is used, it is not



Fig. 3. Extracting a precise patch histogram (PPH).
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necessary for the patch regions to be rectangular. In addition, the
histogram-based method is tolerant for regions with a partial
overlap.

The proposed face description method is illustrated in Fig. 3,
which is an LBP-based approach for texture classification. First,
the 27 facial landmarks are determined by AAM and then facial
patches are extracted. Second, the precise patch grid is extracted
based on the locations of the landmark points. Then, the LBP is
used to describe the characteristics of the patch. Assume that
the notation (P, R) is used to represent the LBP code for the pixel
and its neighborhoods which means P sampling points on a
circle of radius of R. The value of the LBP code of a pixel gc is
given by

LBPðP,RÞ ¼
XP�1

p ¼ 0

dðgp�gcÞ2
p, ð5Þ

where

dðxÞ ¼
1 if x Z 0,

0 otherwise:

(
ð6Þ

Each feature patch is viewed as an independent component
that provides independent information about the gender (male or
female). Here, we group the patches that belong to the same facial
part, and label the ordering with a semantic weight. Based on the
face model used in this paper, the facial part of a face image
includes left eyebrow, right eyebrow, left eye, right eye, nose,
mouth, and chin. The number of LBP code occurrences in an image
is collected into a histogram (i.e., PPH). Classification is then
performed by computing the histogram similarities between the
testing image and the patch library. We observed that using a
similar approach for facial image representation results in a loss
of spatial information, while modifying the texture information
while retaining their locations is a more reliable approach. It is
also the reason for keeping the group information of the facial
part for each patch. The feature description method groups the
local characteristics of the face into a global view. Thus, the
proposed PPH description method will not only preserve the local
facial feature but also take the global characteristics into con-
sideration. This way it preserves the local feature in a more robust
way against variations in pose or illumination compared to the
holistic methods.

Gender is denoted as a random variable C with class label that
belongs to either Male or Female. The testing image Z is represented
by the patches centered around the landmark points of the AAM
fitted model Z¼[z1, z2,y, zy], where y is the number of patches.
The resolution of the patch is M�N (which we set at 30�30). We
choose It training images with corresponding gender labels (male or
female). Meanwhile, the training images are divided into a regular
grid of overlapping patches of the same size as the testing images for
use in fine-tuning process. In addition, we assign the size of the
patch library, and the system will determine the images equally
from these two classes to construct the library. The pre-trained
patch library is considered as a set of feature patches. There are y
feature patches for each image.
4. Patch-based gender classification (PGC)

Consideringv the aspects of efficiency and simplicity, we utilize
the Bayesian estimation approach for the patch-based gender
classification. The gender classification consists of two major phases:
the training phase and the inference phase. In the training phase, we
build a model with non-parametric statistics to describe the
characteristics of the training images and embed them into the
patch library. In the inference phase, the test images are approxi-
mated by the patches of the library. We can obtain the posteriori
probability for each feature patch for the approximated image based
on the ranking results in the training process. The portion-oriented
fine-tuning method is used to verify the gender class.

We used the Bayesian estimation method to predict the gender
from the facial images. The main goal of the Bayesian classifica-
tion is to compute the posteriori probability P(C9Z), which can be
derived from prior P(C) and the class-conditional densities P(Z9C).
From the training image we extract y overlapping feature patches.
Since each training image can be represented by these feature
patches, the training set can be decomposed into y patch groups
as Xp, where p¼1,2,...,y. For gender classification problem, each
patch group has two classes, expressed as Xp

¼Xp
male[Xp

female. Here,
we suppose that the feature patch xp

c,iAXp
c , where xp

c,i denotes the
pth feature patch in the ith training image with class label
cA{male, female}. The Bayesian posteriori probability over class
label C, given the training samples X, can be obtained by using the
Bayes’ rule as

PðC ¼ cjZ,XÞ ¼
PðZjC ¼ c,XÞUPðC ¼ cÞ

PðZÞ

¼
Yy

p ¼ 1

Pðzp

��C ¼ c,XÞ

PðzpÞ
UPðC ¼ cÞ, ð7Þ
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where zp is an individual testing patch of input test image Z
which provides independent information about gender based on
the training set X. Based on Eq. (7), we can use the correlation
between zp and X to determine the posteriori P(C¼c9Z, X). The
gender determination function L( � ) can be formulated by max-
imizing a posteriori as

LðZÞ ¼ argmax
c

PðC ¼ c9Z,XÞ: ð8Þ

Here, we constructed the library with y library subsets for each
class as W1

c , y, Wy
c , each with L feature patches as Wp

c¼

{xp
c,ljl¼1,2,y,L}. P(zp9x

p
c,l ) together with the relational informa-

tion of the parameter space and the training set can be used to
predict the gender probability of zp for p¼1,2,y.,y. We then
obtain the class-conditional densities P(zp 9C¼c, X), based on the
integration of the joint density P(zp, xp

c,l9C¼c, X) over a set of
parameters {xp

c,l} as

Pðzp

��C ¼ c,XÞ ¼

Z
Pðzp,xp

c,l

���C ¼ c,XÞ dxp
c,l

¼

Z
Pðzp

��xp
c,lÞUPðxp

c,l

���C ¼ c,XÞ dxp
c,l ð9Þ

4.1. Patch library construction

In the training process, we compute the accumulated fre-
quency of all possible patches from the patch library. In the
inference process, we exploit the accumulated information of the
library patches containing the highest similarity with the corre-
sponding test patch. Here, we need to take the variations of all
possible library compositions into consideration in order to
guarantee the accuracy of the gender classification.

The use of the integration extends over the parameter space,
where xp

c,l denotes all the parameters related to the pth feature
patch in the library. Eq. (9) links the required class-conditional
densities P(zp9 C¼c, X) to the chain probability of P(zp9xp

c,l ) and
P(xp

c,l9 C¼c, X) for parameter set {xp
c,l}. P(xp

c,l9 C¼c, X) denotes the
characteristic of the assembled training feature patches in X

converted into the parameter space {xp
c,l}, where for c¼{male,

female}, p¼1,2,y,y and l¼1,2,y,L. The role of the parameter
space is similar to the patch library, which represents a specific
distribution for class c.

Testing patch zp in terms of P(zp9x
p
c,l ) and P(xp

c,l9 C¼c, X) is
interpreted in the inference process and training process, respec-
tively. The first term is a testing-library inference which is an on-
line process. The second term is a library-training inference which
is an off-line process. Based on the maximum a posteriori (MAP)
estimation, we obtain the maximum posteriori over P(C¼cjZ, X)
to determine the gender of the input image.

4.2. Training process

Training set X contains two labeled training sets, {Xmale,
Xfemale} which are then further decomposed into y labeled patch
groups as Xmale¼Xp

male9p¼ 1,2,:::,y and Xfemale¼Xp
f emale9p¼ 1,2,:::,y.

Two labeled training sets can be described as Xmale¼{xp
c,ijc¼male,

p¼1,2,y,y, i¼1,2,y, It} and Xfemale¼{xp
c,ijc¼ female, p¼1,2,y,y,

i¼1,2,y,It}. We use the Bayesian rule to calculate the posteriori
density P(xp

c,l9C¼c, xp
c,i ) over the parameters space xp

c,l, and let
P(xp

c,ljC¼c,xp
c,i)¼P(xp

c,ljx
p
c,i) for a specific class c as

Pðxp
c,l9x

p
c,iÞ ¼

Pðxp
c,i9x

p
c,lÞPðx

p
c,lÞ

Pðxp
c,iÞ

: ð10Þ

The prior P(xp
c,l) denotes the weight of the lth patch in

the library subset Wp
c which is referred by the frequency of the
patches being selected in the training step, where P(xp
c,l) is

normalized using P(xp
c,l)/SlP(xp

c,l).
Frist, we acquire the likelihood function P(xp

c,i9x
p
c,l ) for each

library patch xp
c,l, which finds the posteriori density P(xp

c,l9 C¼c,
X) for class c. To calculate the likelihood P(xp

c,i9x
p
c,l ) of the labeled

training sets Xmale and Xfemale for xp
c,l. Then, we use the relation-

ship of the similarity that exists between the corresponding
feature patches xp

c,i and xp
c,l.

The MAP algorithm is used to search for the best match from
the training feature patch xp

c,i for all the candidate library feature
patches xp

c,l in Wp
c . For every training feature patch xp

c,i, we
determine the most similar library feature patch in Wp

c as

x̂p
c,l ¼ argmin

op

c,l

Fðxp
c,l,x

p
c,iÞ 8x

p
c,i, ð11Þ

where xp
c,lAWp

c , and Wp
c denotes the pth library subset, and F( � )

is the dissimilarity between two patches. The Bhattacharyya
distance measure is used in this paper.

4.3. Inference process

In this step, we determine the highest similarity between the
testing feature patch zp and the candidate library patches in the
patch library based on the MAP estimation. The MAP algorithm is
also employed to determine the best matching feature patch zp

for all the candidate library feature patches xp
c,l in Wp

c . We then
search all possible test patches of Z¼{zp} for the one with the
most matches. For every xp

c,l, we find the most similar test feature
patch as

ẑp ¼ argmin
zp

Fðzp,xp
c,lÞ 8x

p
c,l: ð12Þ

We may have the matching feature patch in the library for
each feature patch zp. The conditional probability P(xp

c,l9zp) is
formulated by a Gaussian form in terms of the dissimilarity
measure between the two feature patches. The Bayes’ rule is used
to compute the posteriori density P(zp9xp

c,l) over the parameters
{xp

c,l}

Pðzp9xp
c,lÞ ¼

Pðxp
c,l9zpÞPðzpÞ

Pðxp
c,lÞ

, ð13Þ

where the prior P(zp) denotes the weight of the pth testing patch
acquired in the inference process.

Based on the male and female training images, we have the
accumulated distribution of both males and females in the same
library space. Finally, we integrate all the facial image patches in
order to provide a posteriori probability and then determine the
gender.

4.4. Portion-oriented posteriori fine-tuning

We use the accumulated information of the library patch
which has the highest similarity with the corresponding test
patch in the inference process. Because the facial alignment is
used in this system, we can determine the position-related
patches for gender classification. This results in a higher classifi-
cation accuracy because more precise face characteristics are
employed. However, it should be noted that the AAM fitting
algorithm is not always very accurate due to the quality of face
image. Here, we illustrate a portion-oriented posteriori fine-
tuning method to improve the performance of the system. It is
the same as the aforementioned training process, but images are
divided into a series of regular grid non-overlapping patches with
the same size. Fig. 4(a) and (b) shows an example of the original
image and the image constructed from the patches with the
highest similarity from the patch library. Obviously, the location



Fig. 4. Portion-oriented class-conditional density estimation: (a) original images, (b) patch fitted images and (c) portion-oriented fine tuning.
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Fig. 5. The first 100 testing images’ posteriors with the library selecting L¼60, where the discriminant power: (a) the best case is the ]1 patch and (b) the worst case is the

]24 patch.
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of the test patch can be anywhere in the fitted patch image.
Therefore, we present a method that computes the posteriori
probability of gender estimation based on the portion of the AAM
fitted patch. As shown in Fig. 4(c), the landmark point will decide
the location of the patch measuring Ml�Nl. The class-conditional
densities P(zp 9C¼c, X) should be adjusted according to the
portion of the overlapping four patches {z01,z02,z03,z04}. The land-
mark point located in patch z01, and the overlapping area mea-
sures M1�N1. Hence, the highest density percentage will be
determined by the class probability of the first patch, and by
integrating the class-likelihoods of each block involved in the
fitted patches weighted by a Gaussian template centered at the
location of the landmark point. Thus, the class of gender can be
determined by the portion-oriented posteriori probability.
5. Experimental results and discussions

This section assesses the performance of the proposed patch-
based gender classification (PGC). First of all, we adopted the two
times AAM model fitting (it performed sufficient fitting results in
the experiment). Then, we extracted 27 patches using the AAM
landmark points as 30�30 blocks and grouping each patch to a
different facial part. The 27 facial feature patches are encoded as
PPH. The accuracy of model fitting depends on the iteration times
to optimization and the visual quality of the face image. The
experiments were performed in three subjects: (1) the effective-
ness of the different number of libraries to select from, (2) the
comparison between the two methods of weight adaptation, and
(3) the improvement using the portion-oriented posteriori fine-
tuning.

5.1. Preliminary

In the experiments, we used the facial images of the Labeled Faces

in the Wild (LFW) dataset [24] and the Color FERET dataset [25]. The
LFW dataset contains more than 13 000 images of faces collected
from the web, including 5749 people. The faces have a large range of
variation include lighting, expression, pose, race, gender, back-
ground, etc. The images of the FERET dataset also include uniform
illumination conditions and clean backgrounds. Here, we only use
the regular frontal facial images (i.e., the fa partition) in the FERET
database, containing 1364 images.

First, we collected all facial images from these two databases,
and then manually classified these images into two gender classes
which worked out to about 1862 male facial images and 1503
female facial images. Second, the Adaboost face detector was used
to extract the facial regions. Finally, the facial images were
processed using normalization and quality enhancement.

5.2. The effectiveness of the number of libraries

We chose about 800 female and 800 male images to train the
classifier. Here, we assumed that the number of patch libraries
was assigned (L¼{60, 120, 240, 300}) with independent cluster-
ing from 27 patches. The classification results for the female
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testing images from a different number of patch libraries are
shown in Figs. 5–8. The case of two distributions with more
distinguishable tendencies would indicate that the stronger dis-
criminant power was reached. The sub-figures (a) of Figs. 5–8
show that the best discriminant power for classification is where
the x-axis indicates the first 100 female images and the y-axis
represents the posteriori for every image under L¼60, 120, 240,
and 300, respectively. On the other hand, the sub-figures (a) of
Figs. 5–8 show that the worst discriminant power for classifica-
tion is in the cases of L¼60, 120, 240, and 300, respectively. Fig. 9
shows the average classification rate of over 300 testing images
while 800 training images were used in the library training step.
The experimental results show that the higher the number of
libraries selected, the stronger the discriminant ability the test
posteriori received.

For the Bayesian estimation, each single patch contained two
specific posteriors, one for females and one for males. Based on our
observation, the average PGC rate was subject to dynamic changes.
This means that some faces may have a good discriminant property
in some patches but a worst one in others. Therefore, the real gender
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Fig. 7. The first 100 testing images’ posteriors with the library selecting L¼240, where

is the ]20 patch.
posteriori for the testing step should consider summarizing or apply
dynamic weights for the 27 posteriori patches. Here, we adopted a
flexible weight adaptation method to overcome this problem. The
results are shown in the next section.

5.3. Comparisons on the weight adaptation

The classification results for 27 patches with uniform weights
have been shown in the previous experiments. In the training
phase, we can obtain the discriminant power for the extracted
patches. Obviously, each patch has a specific PGC rate. Here, we
tried to test the gender discrimination using adaptive weights. For
different library selections, the prior weight P(zp) indicates the
weight of the pth testing patch. It can be assigned by the average
weights instead of the frequency of the designated patches
selected in the inference process. Because we have two labels
(i.e., female and male), we can determine two patch weights and
then take the average of the weights of the different cases in the
library selected. The average weights for selecting the different
libraries are shown in Fig. 10.
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Fig. 9. The average classification rate of 27 patches of (a) male and (b) female PGC for testing 800 training images, and applying 300 testing images.

0 5 10 15 20 25 30
3.5

3.55

3.6

3.65

3.7

3.75

3.8
The average weight of library

The patch number

W
ei

gh
ts

Library be selected 60

Library be selected 240

Fig. 10. The average weights for 27 patches.

Table 1
The PGC results of the training/testing dataset for overall 27 patches.

]Library Uniform weights (%) Adaptive weights (%)

L¼60 96.5/75.2 97.0/80.7

L¼240 99.5/77.3 99.3/84.7
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Based on the experimental results, the patches surrounding
the eyes and mouth usually have the better discriminant ability.
We also found that the overall performance of the PGC applying
adaptive weights is better than that of the uniform weight by
roughly 5–7%. The quantitative comparisons of the PGC of the
training and testing dataset are shown in Table 1.

5.4. The improvement using portion-oriented posteriori fine-tuning

In the present paper, the library selection methods employed
the eigenface approach followed by k-means clustering and
random selection. We tested every single image on the 27 patches



Table 2
Accuracy comparisons with/without fine-tuning.

]Library Accuracy without fine-tuning Accuracy with fine-tuning

Random selection (%) With clustering (%) Random Selection With clustering

L¼60 79.2 80.1 82.4 83.9

L¼120 81.7 82.5 82.2 84.2

L¼240 82.3 84.2 84.4 86.5
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using the Bayesian estimation, and each patch contained a specific
posterior for a female and a male, respectively. Based on our
observation, the results of the random selection do not change with
the library selected. On the other hand, for the property of the PPH
facial feature description, the real facial features are usually sensitive
to the results of the AAM fitting. Therefore, the proposed portion-
oriented posteriori fine-tuning method was applied to understand
this sensitivity. The results shown in Table 2 indicate that the
performance of classification with portion-oriented fine-tuning is
apparently higher than that without fine-tuning higher by about 2%
compared to that without fine-tuning. Portion-oriented fine-tuning
is especially required when the accuracy of the AAM fitting is very
unstable. However, we need to construct another patch library in
which the training images are divided into a regular grid of over-
lapping patches. In fact, it gains the off-line computational loadings
in order to enhance the system’s performance. As part of our future
work, we will develop a more comprehensive algorithm.
6. Conclusions

In this study a precise facial feature extraction method was
employed to classify gender. The accuracy of the global facial
features was improved by using the proposed precise patch
histogram (PPH). The proposed PPH finds the correlation between
the patch features and the location information regarding the
face. We also proposed a library images selection scheme based
on the k-means clustering. A Bayesian framework with portion-
oriented fine-tuning was used to marginalize the feature patches
to make the classification. In addition, a dynamic weight adapta-
tion was developed to obtain a more convincing performance. The
experimental results showed that the portion-oriented posteriori
fine-tuning method was applied to understand this sensitivity.
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