1. List of MEMS Milestones

Do Web and Journal literature search to answer following questions-

Question A- For history from 1980 to 2002 shown on above, please find 5 additional

milestones that you think should be on the list. List reference, and briefly explain

why your choice belongs on the list. (20%)

Question B- Please find some reference for age of Bio-MEMS and Optical fiber

switches and give your supporting statements or arguments. (20%)

 

ANS¡G

Question A

1982 ¡§Silicon as a Mechanical Material¡¨ (K. Petersen, IEEE Trans. 70)

1983 Integrated pressure sensor (Honeywell)

1985 LIGA (W. Ehrfeld et al.)

1986 Silicon wafer bonding (M. Shimbo)

1988 First MEMS conference

1992 Bulk micromachining (SCREAM process, Cornell)

 

²{¤µªº´¹¶ê³£¬O¥Ñª¿©Ò²Õ¦¨¡A©Ò¥Hª¿¦ÛµM¦¨¬°·L¾÷¹q¤£¥i¯Ê¤Öªº¤¸¯À¤§¤@¡C¦Ó¦³ÃöLIGA»sµ{¤è­±¡A¦¹»sµ{¥i¥H²£¥Í°ª²`¼e¤ñªºµ²ºc¡C¥t¥~¡AÃö©óÅ髬·L¥[¤u§Þ³N©M±µ¦X§Þ³N§ó¬O¦b°µ»sµ{®É©Ò¤£¥i©Î¯Êªº¤G­ÓÃöÁä§Þ³N¡C¦p¦¹­«­nªº¬ÛÃö§Þ³N¡A¥i¥H±N­ì¥»½ÆÂøªºµ²ºc¡A²¤Æ¦¨´X¨ì»sµ{§Y¥i°µ¥X¡C¥t¥~¡A¤]¥i±N­ì¥»¤£¥i¯à°µ¥Xªºµ²ºc¡A¸g¹LÅ髬·L¥[¤u¡BLIGA©M±µ¦X§Þ³N¤¬¬Û»²§U«á¡A«K¥i°µ¥X¨äµ²ºc¡C¦p¦¹±N·L¾÷¹q»sµ{§Þ³N¦V«e±À¶i¤F¤@¤j¨B¡A¦]¦¹§Úı±o¥H¤W¦C¥Xªº¤»¤j¶µ¬O¥i·í§@¨½µ{¸O¨Ó¬Ý«Ý¡C

 

http://toshi.fujita3.iis.u-tokyo.ac.jp/research_project/optical_MEMS/1_Introduction.pdf

http://arri.uta.edu/acs/jmireles/MEMSclass/lecture1.pdf

 

Question B

l          Bio-MEMS

http://www.eas.asu.edu/~nsf2000/Table_of_Contents/AL.pdf

Polla, D.L., ¡§ BioMEMS applications in medicine¡¨, MHS 2001. Proceedings of 2001 International Symposium on, Page(s): 13 ¡V15, 2001

Ahn, C.H., ¡§ Portable biochemical detection systems using microfluidic and BioMEMS devices¡¨, Microprocesses and Nanotechnology Conference, Page(s): 16 ¡V17, 2001

Gadre, A.; et al., ¡§An integrated BioMEMS fabrication technology¡¨, Semiconductor Device Research Symposium, Page(s): 186 -189, 2001

Okandan, M.; et al., ¡§BioMEMS and microfluidics applications of surface micromachining technology¡¨, Microelectromechanical Systems Conference, Page(s): 1 -3, 2001

Wu, Jian; et al., ¡§The glucose sensor integratable in the microchannel¡¨, Sensors and Actuators, Volume: 78, Issue: 1-3, August 30, pp. 221-227, 2001,

 

¥Ñ¤W­±©Ò¦Cªº°Ñ¦Ò¸ê®Æ±oª¾¡A¥iµ²¦X¥Íª«»P·L¾÷¹q»sµ{§Þ³N³Ð³y¥X¥Íª«·P´ú¾¹¨ÓÀËÅç¤H¨­¤W¬O§_±w¦³¯e¯f¡A¥H«K§Y¦­ª¾¹D¡A§Y¦­ªvÀø¡C¦Ó¥B¦b·L¬yÅé³q¹D¤¤ªº·P´ú¾¹±qµo»Ã½¤¹ï¸²µå¿}ªº·P´ú¾¹¡A¥Î·L¾÷±ñªº¹q¸Ñ§Þ³N»s³y¡A³o­Ó·P´ú¾¹¡A¦³¤@¨Ç·L¤p¤Õ°}¦C¡A¨Ã¥Î»k¨è¬ï¹Lª¿½¤¡A¦b³o­Ó·L¤p¤Õ¤W¡A¬O¤@­Ó¸²µå¿}®ñ¤Æ»Ã¯À½¤¡A¥Ñ©ó¤u§@¹q·¥ªº¤À¶}¥H¤Î»Ã½¤³Q¼h¿n¦b¤W­±¡A¨Ï±o³o­Ó¼Ð·ÇªºMUMPs¥i¥H§¹¦¨¾ã­Ó»s³y¡A³o­Ó»Ã½¤±N³Q¨I¾ý¦b³Ì«á¤@­Ó¹Lµ{¤¤¡A³o¥i¥HÁ×§K¤£¬Û®eªº°ÝÃD¦bMUMPs©M¥Íª«¶q¤§¶¡¡A¦b³o­Ó¸²µå¿}·P´ú¾¹¥i¥H«Ü®e©ö³Q¾ã¦X¦b·L¤p³q¹D¤¤¡A·íª½®|©M·L¤p¤Õªº²`«×¤ñ¬O1®É¡A¦b¤j¦h¼Æ»s³y¹L®ñ¤Æ²B¥i¥H¥Î¤u§@¹q·¥¦b©P³ò®ñ¤Æ¡C¦]¦¹¥Íª«·L¾÷¹q¥iÀ³¥Î­±ªº¬O¬Û·í¼e¼s¦a¡C

 

l          Optical fiber switches

Field, L.A.; et al., ¡¨Micromachined 1 ¡Ñ 2 optical-fiber switch¡¨, Sensors and Actuators, Volume: 53, Issue: 1-3, May, pp. 311-315, 1996 

 

³o½g½×¤å¬O´y­z¤@­Ó1¡Ñ2ªº¼ö­P°Ê¥úÅÖ¶}Ãö¾¹¡A³o­Ó¶}Ãö¥]§t¤F¤@¼h«Ü«pªº¹qÁáÂì­P°Ê¾¹¨Ã¥B¥i¥H¥h¥h²¾°Ê³æ¤@¼Ò¦¡ªº¥úÅÖ¡A¦Ó¥B§Q¥Îª¿»k¨è«õ¤@­Ó«Dµ¥¦V©Êªº·¾´ë¬°¤F²Õ¸Ëªºµo°e©M±µ¦¬¡A³o­Ó¶}Ãöªº§@°Ê¬O«Ü¦³½ìªº¡A©Ò¥H§Ú¿ï¾Ü³o¤@½g½×¤å¨Ó»¡©ú¥úÅÖ¶}Ãö¡C

 

2. (30%)Go to the MEMS Clearinghouse at ISI (mems.isi.edu). Click on

"materials" and find

(1) The Young's modulus of bulk polysilicon and the range of the modulus of

thin-film polysilicon and thin-film Silicon Nitride (Si3N4). (list the reference

source)

(2) A method for wet etching (a) Silicon (b) Silicon Oxide (c) Silicon Nitride (d)

Al

(3) A method for dry etching (a) Silicon (b) Silicon Oxide (c) Silicon Nitride

 

ANS¡G

(1) The Young's modulus of bulk polysilicon

Property

Value

Conditions

Reference

Young's Modulus

203 GPa

Values obtained by nanodentation at a load of 0.2 mN with indentation depth at peak load 24 nm.

J.mater.Res,Vol. 12,No.1,Jan1997, p.59

Young's Modulus

181 GPa

Values obtained by nanodentation at a load of 15 mN and indentation depth of 265 nm at peak load.

J.mater.Res,Vol. 12,No.1,Jan1997, p.59

 

The range of the modulus of thin-film polysilicon

Property

Value

Conditions

Reference

Young's Modulus

201 GPa

LPCVD,n+type(phosphorous doped),obtained by nanodentation at a load of 0.2 mN and indentation depth of 25 nm at peak load.

J.mater.Res,Vol. 12,No.1,Jan1997, p.59

Young's Modulus

176 GPa

LPCVD,n+type(phosphorous doped),values obtained by nanodentation at a load of 15 mN and indentation depth of 289 nm at peak load.

J.mater.Res,Vol. 12,No.1,Jan1997, p.59

Young's Modulus

120 .. 180 GPa

In-situ B-doped ,for thickness upto 10um ,obtained by lateral resonant structure method.

IEEE Micro Electro Mechanical Systems Workshop,SanDiego, California,Feb 1996, p.347

Young's Modulus

152 .. 171 GPa

Obtained from laser induced ultrasonic surface wave method for a thickness of 0.4-0.5 um,choosing an intermediate density.

Thin solid films 290-291(1996), p.309

Young's Modulus

160 GPa

LPCVD film,calculated by using Load-Deflection of composite rectangular membranes,thickness=0.2 um.

Sensors and Actuators,20(1989), p.138

 

The range of the modulus of thin-film Silicon Nitride (Si3N4)

Property

Value

Conditions

Reference

Young's Modulus

380 GPa

Thin film,used in semiconductor fabrication.

IEEE,Micro Electro Mechanical Systems Workshop,Feb 1990, Napa Vally,California, p.174

Young's Modulus

210 GPa

PECVD film grown on 0.2 um LPCVD Silicon Nitride film, calculated by using Load-Deflection of composite rectangular membranes,thickness=0.5 um.

Sensors and actuators,20(1989), p.138

Young's Modulus

290 GPa

LPCVD film,calculated by using Load-Deflection of composite rectangular membranes,thickness=0.2 um.

Sensors and Actuators,20(1989), p.138

Young's Modulus

104 .. 156 GPa

Sputtered film,thickness=0.29 um, values are calculated using electrostatically deflectable me mbrans and Cr for metallization(thickness of 0.01 um),assumi ng density of 7200kg/m/m/m & Young's modulus of 180 GPa for Cr films.

IEEE Transactions on electron devices,Vol.ED25,No.10,Oct1978, p.1249

 

(2) 

(a) A method for wet etching Silicon ¡÷ KOH, HF  

(b) A method for wet etching Silicon Oxide ¡÷ BOE, HF

(c) A method for wet etching Silicon Nitride ¡÷ H3PO4 

(d) A method for wet etching Al ¡÷ Al etchant

 

(3)

(a)    A method for dry etching Silicon ¡÷ plasma or RIE etch 

Inject gas¡GCF4, SF6, O2, Cl2

(b)   A method for dry etching Silicon Oxide ¡÷ plasma or RIE etch

Inject gas¡GCF4, SF6, O2, CCl2 F2

(c)    A method for dry etching Silicon Nitride ¡÷ plasma or RIE etch

Inject gas¡GCF4, O2, NF3, CHF3

 

3. (30%)Generate a set of masks and process to make the structure in the figure below.

(no MEMS software needed!)

Plot side views of structure and related masks for each process.

(Note: all structure materials are silicon)

 

(1) Deposit positive PR

 

 

 

 


(2) Use UV light to pattern

 

 

 

 

 


(3) Use RIE etching to etch oxide or nitride

 

 

 

 

 

(4) Remove positive PR

 

 

 

 


(5) Deposit polysilicon

 

 

 

 

 


(6) Deposit positive PR

 

 

 

 

 

 


(7) Use UV light to pattern

 

 

 

 

 

 


(8) Use RIE etching to etch polysilicon

 

 

 

 

 


(9) Remove positive PR

 

 

 

 

 

 


(10) Use wet etching (BOE, H3PO4)

 

 

 

 

 

 


back