1. List of
MEMS Milestones
Do Web and
Journal literature search to answer following questions-
Question A- For history
from 1980 to 2002 shown on above, please find 5 additional
milestones
that you think should be on the list. List reference, and briefly explain
why your
choice belongs on the list. (20%)
Question B- Please find
some reference for age of Bio-MEMS and Optical fiber
switches and
give your supporting statements or arguments. (20%)
ANS¡G
Question A
1982 ¡§Silicon as a Mechanical Material¡¨
(K. Petersen, IEEE Trans. 70)
1983 Integrated pressure sensor
(Honeywell)
1985 LIGA (W. Ehrfeld et al.)
1986 Silicon wafer bonding (M. Shimbo)
1988 First MEMS conference
1992 Bulk micromachining (SCREAM
process, Cornell)
²{¤µªº´¹¶ê³£¬O¥Ñª¿©Ò²Õ¦¨¡A©Ò¥Hª¿¦ÛµM¦¨¬°·L¾÷¹q¤£¥i¯Ê¤Öªº¤¸¯À¤§¤@¡C¦Ó¦³ÃöLIGA»sµ{¤è±¡A¦¹»sµ{¥i¥H²£¥Í°ª²`¼e¤ñªºµ²ºc¡C¥t¥~¡AÃö©óÅ髬·L¥[¤u§Þ³N©M±µ¦X§Þ³N§ó¬O¦b°µ»sµ{®É©Ò¤£¥i©Î¯Êªº¤GÓÃöÁä§Þ³N¡C¦p¦¹«nªº¬ÛÃö§Þ³N¡A¥i¥H±N쥻½ÆÂøªºµ²ºc¡A²¤Æ¦¨´X¨ì»sµ{§Y¥i°µ¥X¡C¥t¥~¡A¤]¥i±N쥻¤£¥i¯à°µ¥Xªºµ²ºc¡A¸g¹LÅ髬·L¥[¤u¡BLIGA©M±µ¦X§Þ³N¤¬¬Û»²§U«á¡A«K¥i°µ¥X¨äµ²ºc¡C¦p¦¹±N·L¾÷¹q»sµ{§Þ³N¦V«e±À¶i¤F¤@¤j¨B¡A¦]¦¹§Úı±o¥H¤W¦C¥Xªº¤»¤j¶µ¬O¥i·í§@¨½µ{¸O¨Ó¬Ý«Ý¡C
http://toshi.fujita3.iis.u-tokyo.ac.jp/research_project/optical_MEMS/1_Introduction.pdf
http://arri.uta.edu/acs/jmireles/MEMSclass/lecture1.pdf
Question B
l Bio-MEMS
http://www.eas.asu.edu/~nsf2000/Table_of_Contents/AL.pdf
Polla,
D.L., ¡§ BioMEMS
applications in medicine¡¨, MHS 2001. Proceedings of 2001 International
Symposium on, Page(s): 13 ¡V15, 2001
Ahn, C.H., ¡§ Portable biochemical detection systems using
microfluidic and BioMEMS devices¡¨, Microprocesses and Nanotechnology
Conference, Page(s): 16 ¡V17, 2001
Gadre, A.; et al., ¡§An integrated BioMEMS
fabrication technology¡¨, Semiconductor
Device Research Symposium, Page(s): 186 -189, 2001
Okandan, M.; et al., ¡§BioMEMS and microfluidics applications of surface micromachining technology¡¨, Microelectromechanical Systems Conference, Page(s): 1 -3, 2001
Wu,
Jian; et al., ¡§The glucose sensor integratable in the microchannel¡¨, Sensors
and Actuators, Volume: 78, Issue: 1-3, August 30, pp. 221-227, 2001,
¥Ñ¤W±©Ò¦Cªº°Ñ¦Ò¸ê®Æ±oª¾¡A¥iµ²¦X¥Íª«»P·L¾÷¹q»sµ{§Þ³N³Ð³y¥X¥Íª«·P´ú¾¹¨ÓÀËÅç¤H¨¤W¬O§_±w¦³¯e¯f¡A¥H«K§Y¦ª¾¹D¡A§Y¦ªvÀø¡C¦Ó¥B¦b·L¬yÅé³q¹D¤¤ªº·P´ú¾¹±qµo»Ã½¤¹ï¸²µå¿}ªº·P´ú¾¹¡A¥Î·L¾÷±ñªº¹q¸Ñ§Þ³N»s³y¡A³oÓ·P´ú¾¹¡A¦³¤@¨Ç·L¤p¤Õ°}¦C¡A¨Ã¥Î»k¨è¬ï¹Lª¿½¤¡A¦b³oÓ·L¤p¤Õ¤W¡A¬O¤@Ó¸²µå¿}®ñ¤Æ»Ã¯À½¤¡A¥Ñ©ó¤u§@¹q·¥ªº¤À¶}¥H¤Î»Ã½¤³Q¼h¿n¦b¤W±¡A¨Ï±o³oӼзǪºMUMPs¥i¥H§¹¦¨¾ãÓ»s³y¡A³oӻý¤±N³Q¨I¾ý¦b³Ì«á¤@Ó¹Lµ{¤¤¡A³o¥i¥HÁ×§K¤£¬Û®eªº°ÝÃD¦bMUMPs©M¥Íª«¶q¤§¶¡¡A¦b³oÓ¸²µå¿}·P´ú¾¹¥i¥H«Ü®e©ö³Q¾ã¦X¦b·L¤p³q¹D¤¤¡A·íª½®|©M·L¤p¤Õªº²`«×¤ñ¬O1®É¡A¦b¤j¦h¼Æ»s³y¹L®ñ¤Æ²B¥i¥H¥Î¤u§@¹q·¥¦b©P³ò®ñ¤Æ¡C¦]¦¹¥Íª«·L¾÷¹q¥iÀ³¥Î±ªº¬O¬Û·í¼e¼s¦a¡C
l
Optical
fiber switches
Field, L.A.; et al., ¡¨Micromachined 1 ¡Ñ 2 optical-fiber switch¡¨, Sensors and Actuators, Volume: 53, Issue: 1-3, May, pp. 311-315, 1996
³o½g½×¤å¬O´yz¤@Ó1¡Ñ2ªº¼öP°Ê¥úÅÖ¶}Ãö¾¹¡A³oÓ¶}Ãö¥]§t¤F¤@¼h«Ü«pªº¹qÁáÂìP°Ê¾¹¨Ã¥B¥i¥H¥h¥h²¾°Ê³æ¤@¼Ò¦¡ªº¥úÅÖ¡A¦Ó¥B§Q¥Îª¿»k¨è«õ¤@Ó«Dµ¥¦V©Êªº·¾´ë¬°¤F²Õ¸Ëªºµo°e©M±µ¦¬¡A³oÓ¶}Ãöªº§@°Ê¬O«Ü¦³½ìªº¡A©Ò¥H§Ú¿ï¾Ü³o¤@½g½×¤å¨Ó»¡©ú¥úÅÖ¶}Ãö¡C
2. (30%)Go to
the MEMS Clearinghouse at ISI (mems.isi.edu). Click on
"materials"
and find
(1) The
Young's modulus of bulk polysilicon and the range of the modulus of
thin-film
polysilicon and thin-film Silicon Nitride (Si3N4). (list the reference
source)
(2) A method for
wet etching (a) Silicon (b) Silicon Oxide (c) Silicon Nitride (d)
Al
(3) A method for
dry etching (a) Silicon (b) Silicon Oxide (c) Silicon Nitride
ANS¡G
(1) The Young's modulus of bulk polysilicon
Property |
Value |
Conditions |
Reference |
Young's Modulus |
203 GPa |
Values obtained by nanodentation at a
load of 0.2 mN with indentation depth at peak load 24 nm. |
J.mater.Res,Vol. 12,No.1,Jan1997, p.59 |
Young's Modulus |
181 GPa |
Values obtained by nanodentation at a
load of 15 mN and indentation depth of 265 nm at peak load. |
J.mater.Res,Vol. 12,No.1,Jan1997, p.59 |
The range of the modulus of thin-film polysilicon
Property |
Value |
Conditions |
Reference |
Young's Modulus |
201 GPa |
LPCVD,n+type(phosphorous doped),obtained
by nanodentation at a load of 0.2 mN and indentation depth of 25 nm at peak
load. |
J.mater.Res,Vol. 12,No.1,Jan1997, p.59 |
Young's Modulus |
176 GPa |
LPCVD,n+type(phosphorous doped),values
obtained by nanodentation at a load of 15 mN and indentation depth of 289 nm
at peak load. |
J.mater.Res,Vol. 12,No.1,Jan1997, p.59 |
Young's Modulus |
120 .. 180 GPa |
In-situ B-doped ,for thickness upto 10um
,obtained by lateral resonant structure method. |
IEEE Micro Electro Mechanical Systems
Workshop,SanDiego, California,Feb 1996, p.347 |
Young's Modulus |
152 .. 171 GPa |
Obtained from laser induced ultrasonic
surface wave method for a thickness of 0.4-0.5 um,choosing an intermediate
density. |
Thin solid films 290-291(1996), p.309 |
Young's Modulus |
160 GPa |
LPCVD film,calculated by using
Load-Deflection of composite rectangular membranes,thickness=0.2 um. |
Sensors and Actuators,20(1989), p.138 |
The range of the modulus of thin-film Silicon Nitride (Si3N4)
Property |
Value |
Conditions |
Reference |
Young's Modulus |
380 GPa |
Thin film,used in semiconductor
fabrication. |
IEEE,Micro Electro Mechanical Systems
Workshop,Feb 1990, Napa Vally,California, p.174 |
Young's Modulus |
210 GPa |
PECVD film grown on 0.2 um LPCVD Silicon
Nitride film, calculated by using Load-Deflection of composite rectangular
membranes,thickness=0.5 um. |
Sensors and actuators,20(1989), p.138 |
Young's Modulus |
290 GPa |
LPCVD film,calculated by using
Load-Deflection of composite rectangular membranes,thickness=0.2 um. |
Sensors and Actuators,20(1989), p.138 |
Young's Modulus |
104 .. 156 GPa |
Sputtered film,thickness=0.29 um, values
are calculated using electrostatically deflectable me mbrans and Cr for
metallization(thickness of 0.01 um),assumi ng density of 7200kg/m/m/m &
Young's modulus of 180 GPa for Cr films. |
IEEE Transactions on electron
devices,Vol.ED25,No.10,Oct1978, p.1249 |
(2)
(a) A method for wet etching Silicon ¡÷ KOH, HF
(b) A method
for wet etching Silicon Oxide ¡÷ BOE, HF
(c) A method
for wet etching Silicon Nitride ¡÷ H3PO4
(d) A method
for wet etching Al ¡÷ Al etchant
(3)
(a) A method for
dry etching Silicon ¡÷ plasma or RIE etch
Inject gas¡GCF4,
SF6, O2, Cl2
(b) A method for
dry etching Silicon Oxide ¡÷ plasma or RIE etch
Inject gas¡GCF4,
SF6, O2, CCl2 F2
(c) A method for dry
etching Silicon Nitride ¡÷ plasma or RIE etch
Inject gas¡GCF4,
O2, NF3, CHF3
3. (30%)Generate a set
of masks and process to make the structure in the figure below.
(no MEMS software
needed!)
Plot side views of
structure and related masks for each process.
(Note: all structure
materials are silicon)
(1) Deposit positive PR
(2) Use UV light to pattern
(3) Use RIE etching to etch oxide or nitride
(4) Remove positive PR
(5) Deposit polysilicon
(6) Deposit positive PR
(7) Use UV light to pattern
(8) Use RIE etching to etch polysilicon
(9) Remove positive PR
(10) Use wet etching (BOE, H3PO4)